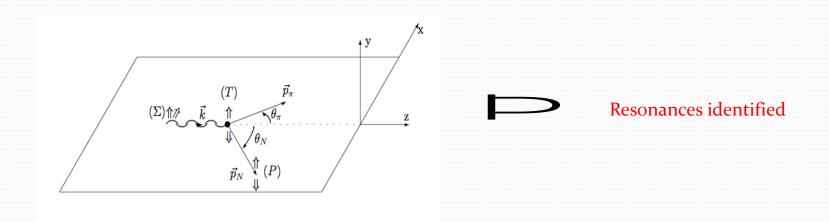
GEANT4 and Pion Photo-production in the intermediate energy regime at Jefferson Lab


Sokhna Bineta Lo Amar

Advisor: Prof. Oumar Ka, UCAD Co-Advisor: Dr. Paul Guèye, Hampton Univ./JLab/FRIB

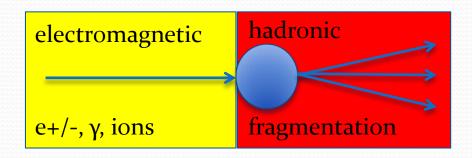
Université Cheikh Anta Diop, Dakar (Sénégal) Theory Center seminars June, 22 2016

- Pion photo-production : alternative method for probing the matter
 - Electromagnetic and hadronic Interactions combined

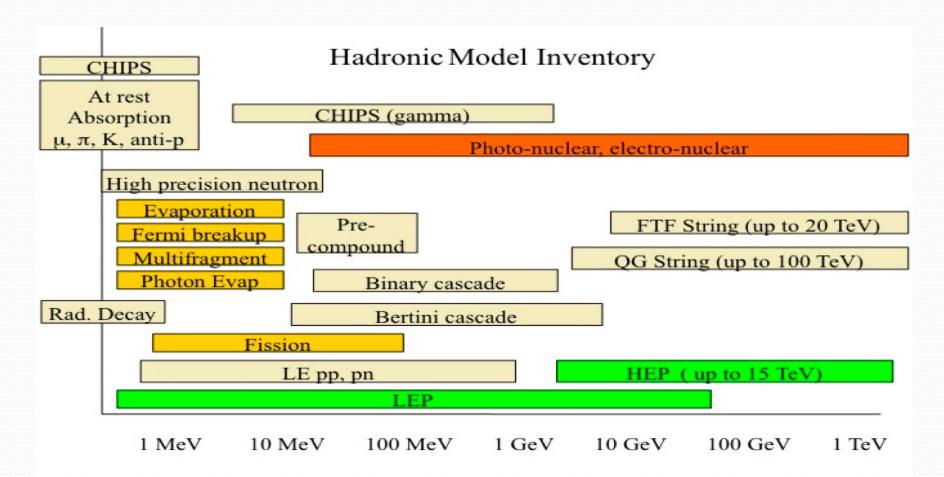
- In the intermediate energy regime

• GEANT4,

- tool for simulation and data analysis
- Validate G4 physics using Jlab data in the GeV range


- GEANT₄ Overview
- Cross section comparison
- Data comparison analysis
- Results
 - Total cross sections
 - Angular distribution
 - Total cross section integrated
 - Energetic distribution
- Conclusion & perspectives

- GEANT4 : GEometry ANd Tracking 4
 - Developed and maintained by an international collaboration
- **Purpose**: simulate the interaction between particle and matter
- **Application**: high-energy, nuclear, space and material sciences to medical physics
- Ingredients
 - Large flexible set of models for physical interactions of leptons and hadrons
 - Electromagnetic and hadronic processes (both elastic and inelastic)
 - Range : eV to TeV
 - Extensive support of geometry and visualization tools + advanced scoring and tracking options


- Interactions in GEANT4 as a physical process and its associated model(s);
- Two distinct packages: electromagnetic physics and hadronic physics;

- Photo-and lepto-nuclear interactions in a hybrid process;
- Hadro-nuclear interaction in a hadronic process

GEANT4 Overview (3/4)

• Tens of categories of hadronic models (Geant4 .9.6.po2)

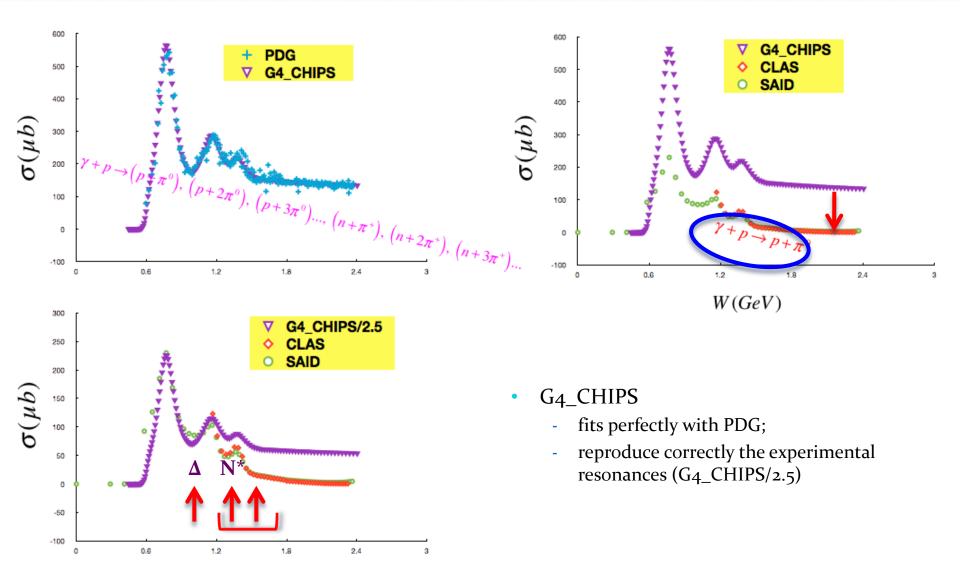
GEANT4 Overview (4/4)

• Different models considering incidents particles

Model	Incident Particles	Incident Energy	Applications
Parameterized Low Energy Parameterized (LEP) High Energy Parameterized (HEP)	p, n, π, Κ, Λ, Σ, Ω, Ξ, α, t, d.	$0 \rightarrow \sim 30 \text{ GeV}$ $\sim 10 \rightarrow 15 \text{ TeV}$	Describing showers in detectors
Pre-compound (PRECO)	p, n	$0{ ightarrow}170~{ m MeV}$	- Used for nucleus interactions at low energies
Cascade Bertini (BERT) Binary Invariant Cascade (BIC)	p, n, π, Κ, Λ, Σ⁺, Σ⁻ Ω⁻, Ξ⁻, Ξ ⁰ p, n., <mark>Gamma</mark> π⁺, π⁻	$egin{array}{ccc} 0 & ightarrow 10 \; { m GeV} \ 0 & ightarrow 10 \; { m GeV} \ 0 & ightarrow 1.3 \; { m GeV} \end{array}$	For intermediates energies
String Quark –Gluon –String (QGS) Fritiof (FTF)	p, n, K, π.	$\sim 10 \rightarrow \sim \text{TeV}$ Down to much lower $\sim 3 \text{ GeV}$	Recommended for use in shielding applications as well in High energy
Chiral – Invariant – Phase – Space (CHIPS)	μ, π, K, anti-p, anti-baryon <mark>Gamma</mark>	At rest $\sim 1 \text{MeV} \rightarrow \sim 1 \text{GeV}$	For low to medium range energies
High Precision neutron (HP)	Neutrons	< 20 MeV	 Requires detailed for neutron transport Can be used for radiation protection
Low Background experiments (LBE)		Low energies	
Other Capture Fission Isotope production	In a nucleus Modeling Sequence for π [°] ; Validation of CHIPS for	At rest Low energies < 100 MeV From100 MeV down	Useful for activation studies
	Pion Neutron	to thermal	

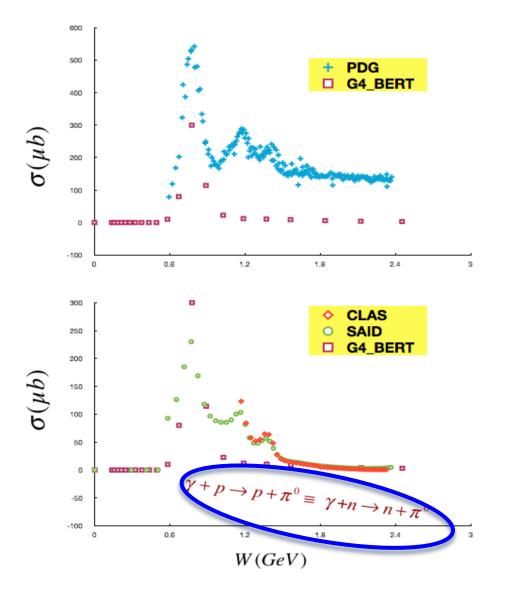
Cross sections comparison (1/3)

- Jefferson Lab: Pion photo-production experimental data from Hall B
- **Comparison:** PDG and GEANT₄ (CHIPS & BERT)
 - PDG: Particle Data Group


Large collaboration aimed at summarizing data for particle physics and related fields Database that includes various compilations and evaluations of elementary particles properties

Comparison: GEANT4 and SAID+Jefferson Lab experimental data

- SAID: Scattering Analysis Interactive Dial-in

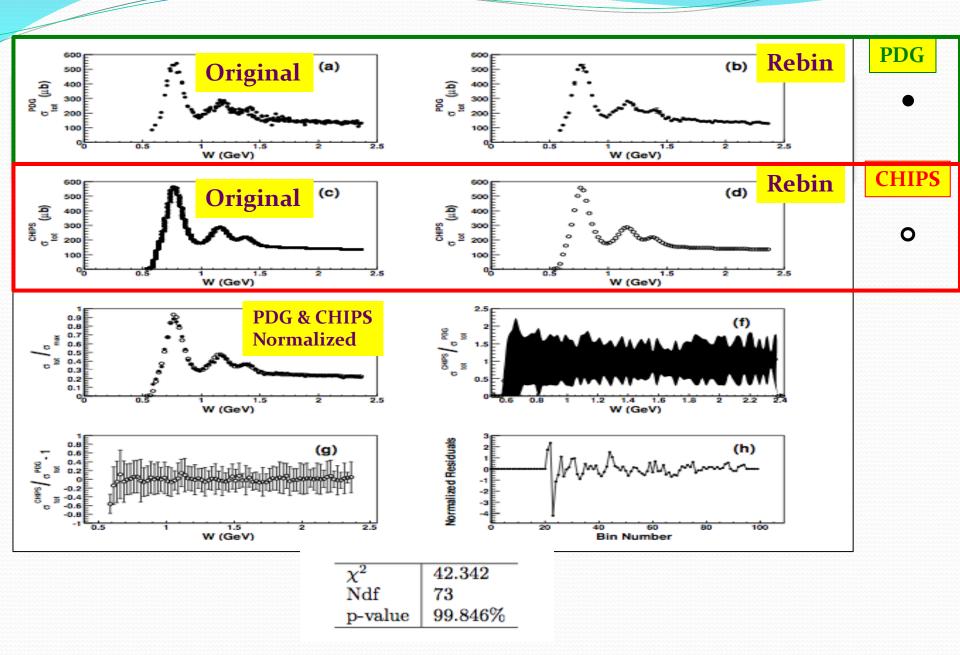

(Phenomenological model driven from world-wide experimental data and maintained by GWU)

Cross sections comparison (2/3)

W(GeV)

Cross sections comparison (3/3)

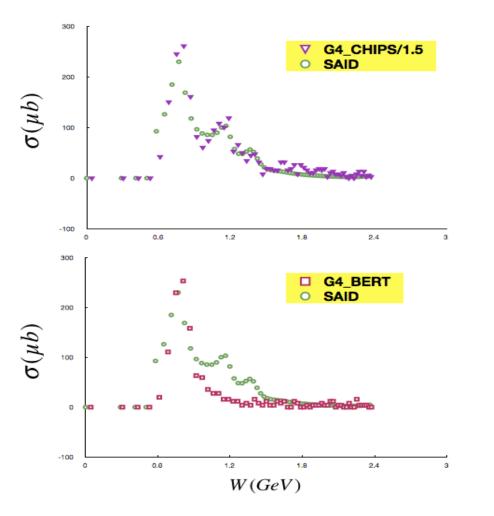
- G4_BERT
 - Describes relatively well Δ resonances but few data in this range
 - Limitation: same results for photoproduction of $\gamma(p,p)\pi^{o}$ and $\gamma(n,n)\pi^{o}$
 - More simulation and comparison with data using this model is highly desirable


Data comparison analysis(1/2)

- 1. Generate 2 histograms with same binning
- **2**. Perform χ² minimization
 - 1 Follow the prescription from Gagunashvili
 - 2 N. D. Gagunashvili, *Chi square goodness of fit tests for weighted histograms*, Journal of Instrumentation 10 (2015) P0500
- 3. Check normalized residuals for low statistics issue

<u>Notes</u>

- Example: total cross section CHIPS vs. PDG
- Similar approach for all work:
 - ✓ Geant4 vs. SAID
 - Angular & energy distributions


Data comparison analysis(2/2)

Total Cross sections

Results

 $\gamma + p \rightarrow p + \pi^0$

G4_CHIPS

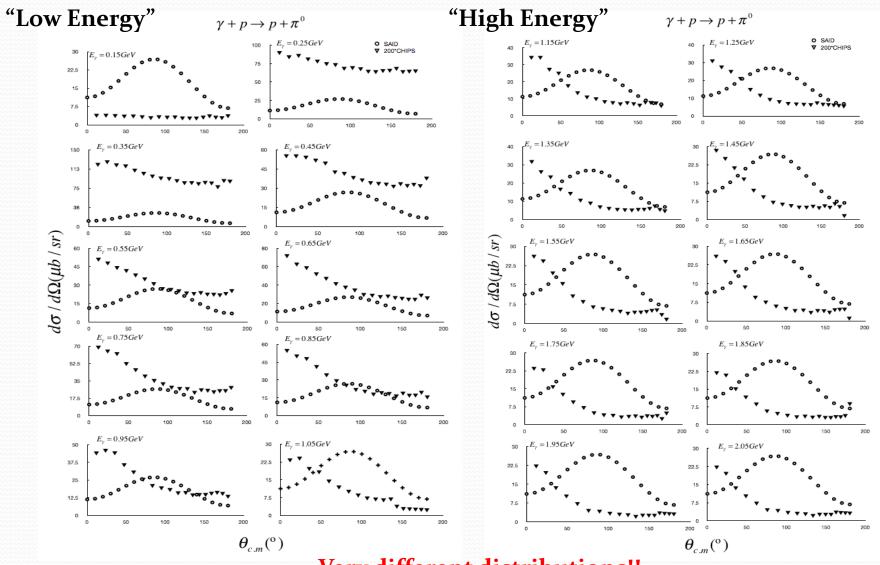
- Confirmation that CHIPS describes very well the fitting model, hence the experimental data
- Simulation is improved but over estimation with a smaller coefficient
- Lots of fluctuations after the second resonance
- (see differential cross section simulation)

G4_BERT

- Tabulated data fit with simulation results
- Geant4 database only for protons
- Recommendation: do not use for neutrons

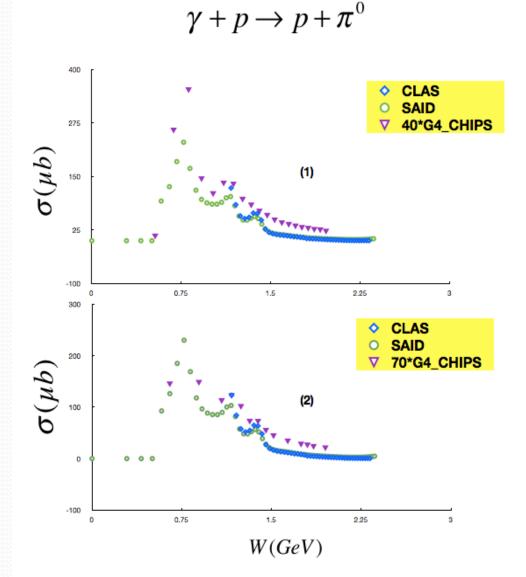
Differential Cross sections

- JLab experiments total cross sections : obtained from $\Sigma d\sigma/d\Omega$
- Differential cross section : generated both angular and energetic distributions
- **Objective :** detailed comparison between Geant₄ and Jlab/SAID data for σ_{Tot} and $d\sigma/d\Omega$


 \rightarrow simulate number of events under scattering angle theta in the lab frame

From the kinematics data, we calculate theta in the center of mass frame following the relation

$$Q_{c.m} = a \tan\left(\frac{\sin(Q_{lab})}{\cos(Q_{lab}) - \left(\frac{m_{\rho^{\pm,0}} * E_{lab}^g}{m_{prot} * P_{\rho^{\pm,0}}}\right)}\right)$$
(5)


- Differential cross section calculated for :
 - a given energy and variable angle: angular distribution
 - a given angle and variable energy: energetic distribution

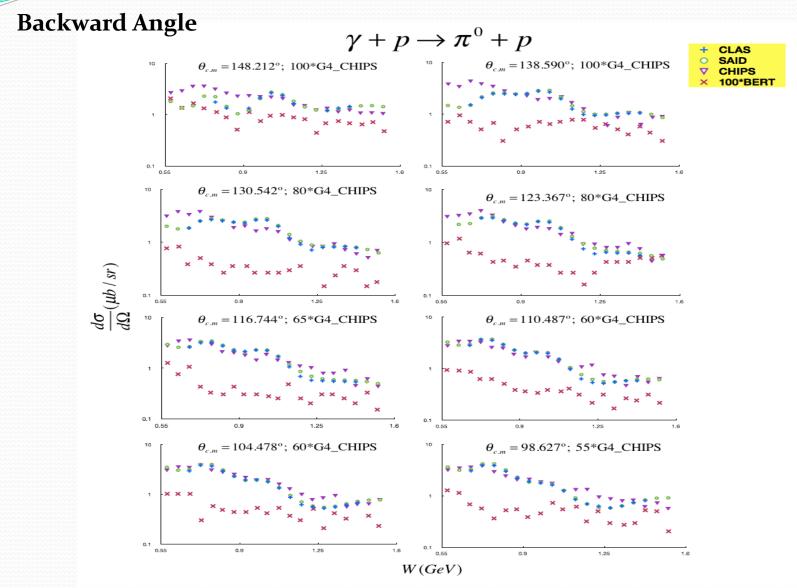
Angular Distributions

Very different distributions!!

Total Cross sections integrated

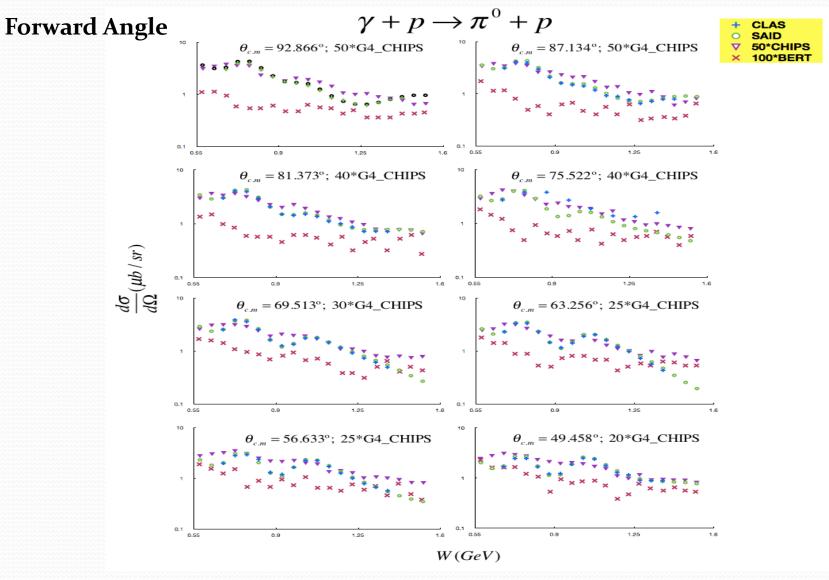
 Differential cross section integrated over scattering angles

(1): Third resonance not well-described


(Energy step used is not the same as Jlab)

(2): Rebinning shows good agreement

In process ...


(1) Different binning

Energetic Distributions (1/2)

Preliminary

Energetic Distributions (2/2)

Preliminary

Conclusion & Perspectives

Conclusion

- Study of pion photo-production off hydrogen in Geant4 using JLab/SAID data
- Comprehensive comparison of differential and total cross sections
- Qualitative analysis: seems OK Quantitative: with chi-square (next step)
- CHIPS model: reasonable in the intermediate energy range
- BERT model: necessary to perform more comparison/improvement

Perspectives

- Finish the simulation for the proton target (in progress)
- Same exercises for the neutron target (very near future)
- Applications to heavier targets (if time allows it)
- Provide recommendation for the users of Geant4 models in mesons photoproduction within the intermediate energy regime