From quarks and gluons to the structure of hadrons

Gernot Eichmann

University of Giessen, Germany

Jefferson Lab, Virginia, USA
March 2, 2016

Outline

Part I:

- Introduction
- Bethe-Salpeter \& Faddeev equations
- Form factors
- Tetraquarks
- Compton scattering

Part II: Ongoing and future directions

- Meson \& baryon spectroscopy
- Transition form factors
- Compton scattering, PDFs, GPDs
- From quarks and gluons to nuclei

Introduction

Ambitious experimental program underway with JLab @ $\mathbf{1 2} \mathbf{G e V}$:

Elastic scattering

Meson electroproduction

Compton scattering

- Search for exotic mesons
- Nucleon form factors, flavor separation, proton radius
- Nucleon resonances and transition form factors
- Valence quark distributions and flavor structure
- Spatial and momentum tomography of nucleons (GPDs, TMDs)
- Short-range structure of nuclei, quarks and gluons in the nucleus, EMC effect

Introduction

QCD Lagrangian: $\quad \mathcal{L}=\bar{\psi}(\not \emptyset+i g \not{A}+m) \psi+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}$

- contains propagators and interactions:
- fully dressed n-point Green functions contain all quantum effects:

But!

- $\alpha\left(Q^{2}\right)$ becomes large at low momenta \Rightarrow need nonperturbative methods!

Origin of mass generation and confinement?

- Quarks and gluons are confined: we don't measure quarks \& gluons, but hadrons

mesons

baryons

glueballs?

hybrids?
(q)

pentaquarks??
\Rightarrow need to understand spectrum and interactions!

Introduction

Requires combined efforts of experiment, theory and phenomenology:

- Amplitude analyses
- Hadronic reaction models
- Chiral effective field theory
- Microscopic approaches and models

- Lattice QCD

$$
\langle 0| T \psi(x) \bar{\psi}(y) \ldots|0\rangle=\int \mathcal{D} A \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-S} \psi(x) \bar{\psi}(y) \ldots
$$

- Dyson-Schwinger, Bethe-Salpeter, Faddeev equations

- DSEs: quantum eqs. of motion
- nonperturbative, covariant
- all momentum scales, light and heavy quarks
- chiral symmetry
- truncations: model / neglect higher n-point functions to obtain closed system

Introduction

Sketch of a generic electromagnetic form factor:

Introduction

Sketch of a generic electromagnetic form factor:

> spacelike:
> $e^{-} N \rightarrow e^{-} N$
charge,
magnetic moment,...

0

How can we calculate this from the quark level?
quark-photon vertex

'rainbow-ladder'

quark propagator

Faddeev amplitude

QCD's Green functions

- Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

- Gluon propagator

$$
\frac{D\left(p^{2}\right)}{p^{2}}\left(\delta^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) \quad \ldots 0 \infty \infty
$$

- Three-gluon vertex

$$
\begin{aligned}
F_{1}[& \delta^{\mu \nu}\left(p_{1}-p_{2}\right)^{\rho}+\delta^{\nu \rho}\left(p_{2}-p_{3}\right)^{\mu} \\
& \left.+\delta^{\rho \mu}\left(p_{3}-p_{1}\right)^{\nu}\right]+\ldots
\end{aligned}
$$

see also Huber \& von Smekal, JHEP 1304 (2013)
Agreement between lattice, DSE \& FRG within reach

- Quark-gluon vertex

Hadrons?

- Hadron properties are encoded in higher n-point functions.

For example, quark four-point function contains all possible meson poles:

Hadrons?

- Hadron properties are encoded in higher n-point functions.

For example, quark four-point function contains all possible meson poles:

$\left.\langle 0| T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \psi\left(y_{1}\right) \bar{\psi}\left(y_{2}\right)|0\rangle \sim \sum \frac{\chi(q, P) \bar{\chi}\left(q^{\prime}, P\right)}{P^{2}+m^{2}}\right\rangle \begin{gathered}\text { "Bethe-Salpeter } \\ \text { wave function" }\end{gathered}$

- Lattice QCD: construct gauge-invariant current correlators

Hadrons?

- Bethe-Salpeter approach: use scattering equation to obtain G in the first place: $G=G_{0}+G_{0} K G$

Homogeneous BSE for BS wave function:

- Kernel is connected to quark Dyson-Schwinger equation via chiral symmetry (can be derived from nPI effective action):

\rightarrow no constant quark mass unless NJL contact interaction
\rightarrow no crossed-ladder unless consistent quark-gluon vertex
\rightarrow cannot add confinement potential, drop spin-orbit terms, etc.
- In turn: em. gauge invariance, chiral symmetry, massless pion in chiral limit ... for free

Hadrons?

- Bethe-Salpeter approach: use scattering equation to obtain G in the first place: $G=G_{0}+G_{0} K G$

Homogeneous BSE for BS wave function:

- Kernel is connected to quark Dyson-Schwinger equation via chiral symmetry (can be derived from nPI effective action):

Maris, Roberts, Tandy,
PRC 56 (1997), PRC 60 (1999)

Rainbow-ladder:

gluon exchange with effective interaction
$\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(k^{2} \Lambda^{2}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)$
adjust scale Λ to observable, keep width η as parameter
see also: Qin, Chang et al., PRC 84 (1011), Binosi et al., PLB 742 (2015)

- In turn: em. gauge invariance, chiral symmetry, massless pion in chiral limit ... for free

Baryons

- Covariant Faddeev equation for baryons: keep 2-body interactions \& rainbow-ladder, but no further approximations: $M_{N}=0.94 \mathrm{GeV}$
GE, Alkofer, Krassigg, Nicmorus, PRL 104 (2010), GE, PRD 84 (2011)

Relativistic bound states:

64 / 128 tensor structures for nucleon / Δ

- Octet \& decuplet baryons, pion cloud effects, beyond rainbow-ladder
Sanchis-Alepuz, Fischer, PRD 90 (2014), Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014), Sanchis-Alepuz, Williams PLB 749 (2015)
- Baryon form factors: nucleon and $\Delta \mathrm{FFs}, N \rightarrow \Delta \gamma$ transition
GE, PRD 84 (2011), Sanchis-Alepuz, Williams, Alkofer, PRD 87 (2013), Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

Delta:

Sanchis-Alepuz et al., PRD 84 (2011)

Nucleon:
GE, Alkofer,
Krassnigg, Nicmorus, PRL 104 (2010);

GE, PRD 84 (2011)
ρ-meson:
Maris \& Tandy, PRC 60 (1999)

Pion form factor

A. Krassnigg (Schladming 2010),

Maris \& Tandy, Nucl. Phys. Proc. Suppl. 161 (2006)

- Form factor from

- Timelike vector meson poles automatically generated by quark-photon vertex BSE!

$\Rightarrow \Gamma^{\mu}=$ Ball-Chiu (em. gauge invariance)
+ Transverse part (vm. poles \& dominance)
- Form factor at large Q^{2}

Chang, Cloet, Roberts, Schmidt, Tandy, PRL 111 (2013)

- Include pion cloud effects:

GE, Fischer, Kubrak, Williams, in preparation

Nucleon em. form factors

Three-body results: all ingredients calculated, model dependence shown by bands GE, PRD 84 (2011)

- electric proton form factor: consistent with data, possible zero crossing
- magnetic form factors: missing pion effects at low Q^{2}
- Similar for axial \& ps. FFs, Δ elastic and $N \rightarrow \Delta \gamma$ transition GE, Fischer, EPJ A 48 (2012), Sanchis-Alepuz et al., PRD 87 (2013),
Alkofer et al., Hyp. Int. 234 (2015)
\Rightarrow "quark core without pion-cloud effects"

Nucleon em. form factors

Nucleon charge radii:
isovector (p-n) Dirac (F1) radius

- Pion-cloud effects missing (\Rightarrow divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments: isovector ($p-n$), isoscalar ($p+n$)

- But: pion-cloud cancels in $\kappa^{s} \Leftrightarrow$ quark core Exp: $\quad \kappa^{s}=-0.12$
!!
GE, PRD 84 (2011)

Nucleon- $\Delta-\gamma$ transition

- Magnetic dipole transition $\left(G_{M}^{*}\right)$ dominant: quark spin flip (s wave). "Core $+25 \%$ pion cloud"
- Electric \& Coulomb quadrupole ratios small \& negative, encode deformation.
Reproduced without pion cloud: OAM from \mathbf{p} waves! GE, Nicmorus, PRD 85 (2012)
- First three-body results similar

Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

Meson spectrum

Light meson spectrum (PDG): grouped with J ${ }^{\mathrm{PC}}$ and flavor content

- Nonrelativistic level ordering:

- Vector mesons:

- Pseudoscalar mesons? spontaneous chiral symmetry breaking \& axial anomaly
- Scalar mesons?!

Tetraquarks?

Light scalar $\left(0^{++}\right)$mesons don't fit into the conventional meson spectrum:

-Why are a_{0}, f_{0} mass-degenerate?

- Why are their decay widths so different?

$$
\begin{aligned}
& \Gamma(\sigma, \kappa) \approx 550 \mathrm{MeV} \\
& \Gamma\left(a_{0}, f_{0}\right) \approx 50-100 \mathrm{MeV}
\end{aligned}
$$

- Why are they so light?

Scalar mesons ~ p-waves, should have masses similar to axialvector \& tensor mesons $\sim 1.3 \mathrm{GeV}$

Tetraquarks?

What if they were tetraquarks (diquark-antidiquark)?

$\begin{array}{cc}\left.\begin{array}{ll}f_{0}(980 \mathrm{MeV}) \\ a_{0}(980 \mathrm{MeV})\end{array}\right\} & \text { us } \overline{u s}, \ldots \\ \kappa(800 \mathrm{MeV}) & \text { us } \overline{u d}, \ldots \\ \sigma(500 \mathrm{MeV}) & \text { udud }\end{array}$

- Explains mass ordering \& decay widths:
f_{0} and a_{0} couple to $\mathrm{K} \bar{K}$, large widths for σ, κ
- Alternative: meson molecules?

Weinstein, Isgur 1982, 1990; Close, Isgur, Kumano 1993

- Support for non-qव̄ nature of σ from dispersive analyses, unitarized ChPT, large Nc, extended linear σ model, quark models
Pelaez 2004, Weinberg 2013, Cohen, Llanes-Estrada, Pelaez, Ruiz de Elvira 2014, Londergan, Nebreda, Pelaez, Szczepaniak 2014, Parganlija, Giacosa, Rischke 2010, .

Tetraquarks

Four-quark bound-state equation:

Four-body interactions

Keep two-body interactions with rainbow-ladder kernel: well motivated by many other studies, tetraquark is s-wave

Structure of the amplitude

General structure of Bethe-Salpeter amplitude $\Gamma(p, q, k, P)$ complicated:

$$
\begin{array}{rlr}
\Gamma(p, q, k, P)=\sum_{i} f_{i}\left(p^{2}, q^{2}, k^{2}, \ldots\right) & \tau_{i}(p, q, k, P) \\
256 \text { Dirac- }
\end{array}
$$

9 Lorentz invariants

Lorentz tensors
2 Color tensors
$3 \otimes \overline{3}, 6 \otimes \overline{6}$ or
$1 \otimes 1,8 \otimes 8$
$($ Fiez

Arrange Lorentz invariants into multiplets of permutation group S4:
GE, Fischer, Heupel, PRD 92 (2015)

$$
\Rightarrow f_{i}\left(\mathcal{S}_{0}, \nabla, \Delta, \bigcirc\right)
$$

- Singlet: $\mathcal{S}_{0}=\frac{1}{4}\left(p^{2}+q^{2}+k^{2}\right)$
- Doublet: $\mathcal{D}_{0}=\frac{1}{4 \mathcal{S}_{0}}\left[\begin{array}{c}\sqrt{3}\left(q^{2}-p^{2}\right) \\ p^{2}+q^{2}-2 k^{2}\end{array}\right]$
- 2 Triplets:
\square

Keep s waves only:
Fierz-complete, 16 tensors:
e.g. $\left\{\begin{array}{c}C^{T} \gamma_{5} \otimes \gamma_{5} C \\ C^{T} \gamma^{\mu} \otimes \gamma^{\mu} C \\ \cdots\end{array}\right\}$ in (12)(34)
automatically includes also
$\gamma_{5} \otimes \gamma_{5}$ in (23)(14), (31)(24)

Four quarks \Rightarrow meson molecule

- Four-quark equation dynamically generates pion poles outside the integration domain

GE, Fischer, Heupel, PLB 753 (2016)

- Dynamical formation of a 'meson molecule’, diquarks almost irrelevant!
- Pion poles drive tetraquark mass from 1.4 GeV to $\sim 350 \mathrm{MeV}$
- Poles enter integration domain above threshold $M>2 m_{\pi}$: the tetraquark becomes a resonance
- Four-body equation generates bound state together with its decay channels!

Four quarks \Rightarrow meson molecule

Same pattern for multiplet partners:
GE, Fischer, Heupel, PLB 753 (2016)

$$
\sigma, \kappa, a_{o} / f_{o} \sim 350,750,1080 \mathrm{MeV}
$$

- Light scalar 'mesons' are light because they 'feel' Goldstone nature of π, η, K
- σ is resonance close to $\pi \pi$ threshold, becomes bound state in charm region
- Similar results from meson-meson / diquark-antidiquark two-body equations: analogous to quark-diquark model for baryons

Heupel, GE, Fischer, PLB 718 (2012) GE, Cloet, Alkofer, Krassnigg, Roberts, PRC 79 (2009)

Same mechanism: baryons dominated by diquarks, tetraquarks by pseudoscalar mesons. Resolves problem with dq-dq interpretation: ' $2 \times 800 \mathrm{MeV}$ - binding energy ' $\sim 500 \mathrm{MeV}$?!

Compton scattering

Four independent variables:

$$
\begin{array}{cc}
\eta_{+}=\frac{Q^{2}+Q^{\prime 2}}{2 m^{2}}, & \eta=\frac{Q \cdot Q^{\prime}}{m^{2}}, \\
\omega=\frac{Q^{2}-Q^{\prime 2}}{2 m^{2}}, & \lambda=\frac{p \cdot \Sigma}{m^{2}}
\end{array}
$$

- RCS: nucleon polarizabilities

Krupina \& Pascalutsa, PRL 110 (2013)

- VCS: generalized polarizabilities
- DVCS: handbag dominance, GPDs
- Forward limit: structure functions in DIS
- Timelike region: $\mathrm{p} \overline{\mathrm{p}}$ annhihilation at PANDA
- Spacelike region: two-photon corrections to nucleon form factors, proton radius puzzle?

Compton scattering

- Two-photon corrections to form factors: can explain difference between Rosenbluth and polarization transfer measurements
Guichon, Vanderhaeghen, PRL 91 (2003)

Arrington, Blunden, Melnitchouk
Prog. Part. Nucl. Phys. 66 (2011)

- Proton radius puzzle:
can 2γ corrections explain difference between electron and muon measurements?
So far: probably not, but . . .
Carlson, Vanderhaeghen, 2011
Birse, McGovern, EPJ A 48 (2012)

Compton scattering

Compton amplitude $=$ sum of Born terms +1 PI structure part:

Griesshammer, McGovern, Phillips, Feldman, Prog. Part. Nucl. Phys. 67 (2012)

„Pion cloud" (ChPT)

s/u-channel
nucleon resonances
$\left(\Delta, N^{*}, \ldots\right)$
but also:

\Rightarrow is there a common underlying quark-level description?

... at the quark level

Closed expression for Compton amplitude at quark level (here: rainbow-ladder, modulo crossing \& permutation)

GE, Fischer, PRD 85 (2012) \& PRD 87 (2013)

\checkmark crossing symmetry
$\sqrt{ }$ em. gauge invariance
\checkmark perturbative processes included
$\checkmark \mathrm{s}$, t , u channel poles generated in QCD

But only sum is gauge invariant, not individual diagrams \Rightarrow problem! Solved by projecting onto full tensor basis (transverse + gauge)

Proton polarizabilities

First results: GE, 1601.04154

- bands = results inside cone (70% of radius)
- compared to GPs from dispersion relation Pasquini et al., EPJ A11 (2001), Downie \& Fonvieille, EPJ ST 198 (2011)

- Impulse approximation: α_{E} dominated by handbag, β_{M} small due to cancellation

\Rightarrow cf. meson electroproduction:

 "QCD background"!- Large Δ contribution to β_{M}, expect large pion effects!

In total: polarizabilities \approx
Impulse app. (handbag + t-channel poles)

+ nucleon resonances (mostly Δ)
+ pion cloud (at low η_{+})?

Summary Part I

Nucleon and Delta masses \& form factors

- microscopic description works reasonably well, improvements underway
- need to include meson cloud effects
- nucleon resonances? \rightarrow see Part II

Light scalar mesons as tetraquarks

- transition from four quarks to "meson molecule"
- resonances!
- many future applications \rightarrow see Part II

Compton scattering

- hadronic vs. quark-level decomposition (general!)
- polarizabilities
- meson electroproduction from quark level? \rightarrow see Part II

Outline

Part I:

- Introduction
- Bethe-Salpeter \& Faddeev equations
- Form factors
- Tetraquarks
- Compton scattering

Part II: Ongoing and future directions

- Meson \& baryon spectroscopy
- Transition form factors
- Compton scattering, PDFs, GPDs
- From quarks and gluons to nuclei

Meson spectroscopy

- Beyond rainbow-ladder is becoming state-of-the-art for mesons

Fischer, Williams, PRL 103 (2009); Chang, Roberts, PRL 103 (2009); Williams, Fischer, Heupel, PRD 93 (2016)

- Light meson spectrum beyond rainbow-ladder:

Sanchis-Alepuz, Williams, PLB 749 (2015)

- Gluon propagator, qg and ggg vertex solved in the process, no need for model interaction!
- Radial excitations and exotics now in right ballpark
- Recent results: scalar mesons above 1 GeV
Williams, Fischer, Heupel, PRD 93 (2016)

Meson spectroscopy

- Tetraquarks in charmonium \& bottomonium spectrum:

$X(3872), Y(4260)$, charged Z states?

Meson spectroscopy

- Four-body BSE dynamically determines strengths of these components: four quarks rearrange themselves into dq- $\overline{d q}$, molecule, hadroquarkonium

- Can we distinguish different tetraquark configurations?

Meson spectroscopy

- Glueball calculations underway

Meyers, Swanson, PRD 87 (2013), Sanchis-Alepuz, Fischer, Kellermann, von Smekal, PRD 92 (2015)

- Hybrid mesons with DSEs and BSEs:

Collab. with C. Fischer, J. Segovia, R. Williams

Study both within three-body and "quark-diquark" inspired approach: $q \bar{q}$ octet repulsive, $q g$ triplet attractive

Application to hybrid baryons?

- Exotic quantum numbers: can be obtained with BSEs, but not on lattice?

Baryon spectroscopy

J^{P}	$1 /{ }^{+}$	$3 /{ }^{+}$	$1 / 2$	$3 / 2$. ${ }^{\text {a }}$
$1 / 2$	P_{11} $\mathrm{N}(940)$ $\mathrm{N}(1440)$ N (1710) N(1880)	P_{13} N (1720) N (1900)	S_{11} N (1535) $\mathrm{N}(1650)$ N(1895)	D_{13} $\mathrm{N}(1520)$ N(1700) N (1875)	

- "Missing resonances": three-quark vs. quark-diquark composition?
- Roper: level ordering? 1st radial excitation of nucleon? Gluonic excitation? Molecule?
- "Quark core" vs. meson-baryon coupled channel effects?
- Hybrid baryons?
- Connection to quark-gluon substructure in QCD?

Baryon spectroscopy

Nucleon resonances:

efforts with quark-diquark and three-quark approaches underway

- Roper: 1st radial excitation of nucleon

Segovia, El-Bennich, Rojas, Cloet, Roberts, Xu, Zong, PRL 115 (2015)

- First results from three-quark equation

Sanchis-Alepuz, GE, Fischer, in preparation
$M_{N^{*}}=1.45 \mathrm{GeV}$

	Nucleen	Roper
s-wave	66%	15%
P-wave	33%	61%
d-wave	1%	24%

- Same trend for $N(1535), \Delta(1620), \Delta(1700), \Delta(1910)$ (dominated by negative-parity diquarks) GE, 1602.03462

Baryon spectroscopy

Meson-baryon interactions?

- Calculate "quark core", assume that chiral interactions will provide the rest. (But what is the core? Where do we stop?)

- Implement quark-gluon topologies that produce pion cloud effects... difficult! 4PI?
- Implement effective pion cloud at quark level

Fischer, Nickel, Wambach, PRD 76 (2007), Cloet, Bentz, Thomas, PRC 90 (2014), Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014)

- New avenue? Solve five-quark equation \Rightarrow system will dynamically rearrange itself into $N \pi, \ldots$ if this is dominant

- Analogous to $\Lambda(1405)$: three-quark state or molecule?
Hall et al., PRL 114 (2015)
- LHCb pentaquark?

Aaij et al., PRL 115 (2015)

Technical challenge: resonances! Luescher method, finite volume?

Transition form factors

High-precision data on $N \rightarrow \gamma N^{*}$ transition form factors available. Theory predictions?

- Roper: in ballpark of data, missing pion cloud Segovia et al., PRL 115 (2015)
- $N(1535)$, etc.?

Transition form factors

High-precision data on $N \rightarrow \gamma N^{*}$ transition form factors available.
Theory predictions?

- Roper: in ballpark of data, missing pion cloud Segovia et al., PRL 115 (2015)
- $N(1535)$, etc.? Example:
$N(1535)$ elastic FF (preliminary)
Q^{2} range limited by
quark + diquark "threshold":

$$
Q^{2}<4\left[\left(m_{q}+m_{\mathrm{ps}}\right)^{2}-M^{2}\right]
$$

Trick: calculate FFs with lower M, approach calculated mass from below.
"Neutron" charge $\rightarrow 0$: gauge invariance ok!

- Implement pion cloud effects: start with pion electromagnetic FF
GE, Fischer, Kubrak, Williams, in preparation

Pion electroproduction

Extraction of nucleon resonances from electroproduction amplitudes depends on knowledge of non-resonant "QCD background"

- decomposition analogous to Compton scattering
(there: large contribution to $\alpha+\beta$!)

 production $\hat{=}$ VCS plane
- same phase space, but relevant kinematic region difficult to access
\Rightarrow effective scaling behavior, similar to Compton scattering?
\Rightarrow need amplitude decomposition with correct implementation of gauge invariance \& analyticity

Compton scattering

Formalism for Compton scattering at quark level established:

- Amplitude decomposition with correct implementation of gauge invariance \& analyticity
- t-channel meson poles reproduced GE, Fischer, PRD 87(2013)
- general form of $N \rightarrow \gamma N^{*}$ transition form factors w/o kinematic constraints and offshell extension (\rightarrow for hadronic reaction models) GE, Ramalho, in preparation
- scalar polarizabilities GE, 1601.04154

Next steps:

- spin polarizabilities
- two-photon corrections to nucleon electromagnetic FFs
- proton radius puzzle?

- RCS/WACS: handbag vs. PQCD? Fanelli etal., PRL 115 (2015)
- DVCS, generalized parton distributions
- Forward limit and nucleon structure functions
- Timelike Compton scattering?

Nucleon structure

- Non-local four-point correlator: Wigner distribution, "mother" of TMDs, GPDs, PDFs, FFs

$$
W(p, \Delta, z)=\langle N| \psi\left(\frac{z}{2}\right) \bar{\psi}\left(-\frac{z}{2}\right)\left|N^{\prime}\right\rangle
$$

- With gauge link: sum of diagrams with arbitrarily many gluons coming out of G
- At same light-cone time $z^{+}=0$:

Lorcé, Pasquini, Vanderhaeghen, JHEP 1105 (2011)

- Same kinematics as in Compton amplitude: 4 Lorentz invariants, 32 "form factors"
- Establish basis free of kinematic constraints \Rightarrow only singularities in "FFs" are dynamical \Rightarrow facilitates extrapolating DSE results \& modeling
- DSE studies for pion GPDs underway:

Mellin moments \rightarrow double distributions \rightarrow GPDs Mezrag, Moutarde, Rodriguez-Quintero, 1602.07722

From quarks and gluons to nuclei

Transition from quark-gluon to nuclear degrees of freedom
\Rightarrow generalize tetraquark studies to pentaquarks and hexaquarks

Six quarks

Three diquarks?

- only input are quarks and gluons
- dynamical generation of hadron poles, system is dominated by lowest-lying poles
- resonances!

Numerous open questions:

- Six ground states, one of them deuteron Dyson, Xuong, PRL 13 (1964)
- Dibaryon vs. hidden-color configurations? Bashkanov, Brodsky, Clement, PLB 727 (2013)
- d*(2380), H-Dibaryon?
- Deuteron form factors from quark level?
- Microscopic origins of nuclear binding?
\Rightarrow complementary to ongoing lattice calculations!
NPLQCD collab.: Beane et al., PRD 87 (2013), ...

From quarks and gluons to nuclei

NN interaction?

- NN potential: long-range pion exchange vs. short-range repulsive core
- Nuclear ab-initio calculations

Bedaque, van Kolck 2002, Bogner, Furnstahl, Schwenk 2010,
Machleidt \& Entem 2011, Epelbaum, Meissner 2012,
Carlson et al. 2015, Vary et al. 2015

- Lattice (HAL-QCD): calculate scattering matrix, retroactively extract NN potential Aoki etal. 2012
- Microscopic decomposition analogous to FFs and other scattering amplitudes:

(a)

- only input are quarks and gluons
- quark interchange and pion exchange automatically included
- dibaryon exchanges

From quarks and gluons to nuclei

Nucleons in a nuclear environment:

- Baryon effects important at high nuclear densities: phase structure of QCD, critical endpoint?
- Nucleon form factors and structure functions: medium effects vs. short-range structure? Underlying QCD mechanism?
- Finite T and μ : DSE, FRG, model studies

Qin et al., PRL 106 (2011), Fischer, Luecker, PLB 718 (2013), Wang et al., PRD 87 (2013), Cloet, Bentz, Thomas, PLB 642 (2006), ..

Baryon back-reaction on phase diagram
GE, Fischer, Welzbacher, PRD 93 (2016)

Need to solve meson BSE and baryon Faddeev equation at T and μ, analyze phase structure, calculate form factors and structure functions

Summary Part II: near future

Meson spectroscopy:

- beyond rainbow-ladder
- tetraquarks, glueballs, hybrids

Baryon spectroscopy:

- nucleon resonances \& transition form factors
- microscopic background in electroproduction

Hadron structure:

- Compton scattering and its (many) applications
- Longitudinal, transverse and spin structure: GPDs, TMDs, PDFs

QCD and nuclei:

- Dibaryons and NN interaction from quark level
- Medium modifications of form factors and structure functions

Backup slides

Bethe-Salpeter equations

- Extract hadron properties from poles in $q \bar{q}, q q q, q q \overline{q q}$ scattering matrices:

- defines onshell Bethe-Salpeter amplitude. Simplest example: pion

$$
\psi(q, P)=\gamma_{5}\left(f_{1}+f_{2} \not P+f_{3} \phi+f_{4}[\phi, p]\right) \otimes \text { Color } \otimes \text { Flavor }
$$

most general Dirac-Lorentz structure, Lorentz-invariant dressing functions:

$$
f_{i}=f_{i}\left(q^{2}, q \cdot P, P^{2}=-m^{2}\right)
$$

$\Rightarrow \quad \begin{aligned} & \text { pion is made of } \mathbf{s} \text { waves and } p \text { waves! } \\ & \text { (relative momentum } \sim \text { orbital angular momentum) }\end{aligned}$

- Same in lattice QCD: construct gauge-invariant current correlators

$$
\begin{aligned}
& \mathcal{O} \otimes \stackrel{P^{2} \rightarrow-m^{2}}{\infty} \\
& \left\langle(\bar{\psi} \mathcal{O} \psi)_{x}(\bar{\psi} \mathcal{O} \psi)_{y}\right\rangle=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-i S}(\bar{\psi} \mathcal{O} \psi)_{x}(\bar{\psi} \mathcal{O} \psi)_{y} \quad \longrightarrow \quad e^{-m t}
\end{aligned}
$$

Hadrons?

- Bethe-Salpeter approach: use scattering equation to obtain G in the first place: $G=G_{0}+G_{0} K G$

Homogeneous BSE for BS wave function:

- BS wave function only makes sense onshell, but homogeneous BSE = eigenvalue equation, can be solved for offshell momenta:

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i}, \quad \lambda_{i} \xrightarrow{p^{2} \rightarrow-m_{i}^{2}} 1
$$

Largest eigenvalue \Leftrightarrow ground state, smaller ones \Leftrightarrow excitations

Restricted by singularities in quark propagator (no physical threshold!):
mesons: $M<2 m_{p}$ baryons: $M<3 m_{p}$ $m_{p} \sim 500 \mathrm{MeV}$

Mesons

- Dynamical chiral symmetry breaking generates "constituent- quark masses"
$S_{0}(p)=\frac{-i \not p+m}{p^{2}+m^{2}} \rightarrow S(p)=\frac{1}{A\left(p^{2}\right)} \frac{-i \not p+M\left(p^{2}\right)}{p^{2}+M^{2}\left(p^{2}\right)}$
- Pion is Goldstone boson: $m_{\pi}{ }^{2} \sim m_{q}$

- Rainbow-ladder works well for pseudoscalar \& vector mesons:
masses, form factors, decays, ...
Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999); Bashir et al., Commun.Theor. Phys. 58 (2012)
- Also heavy mesons

Fischer, Kubrak, Williams, EPJ A 51 (2015), Hilger et al., PRD 91 (2015)

Axial form factors

- looks like magnetic form factors: missing structure at low $Q^{2} \Rightarrow g_{A}$ too small
- Timelike meson poles:
a_{1} in $G_{A}, \pi \& \pi(1300)$ in $G_{P}, G_{\pi N N}$
- Goldberger-Treiman relation reproduced for all quark masses:
$G_{A}(0)=\frac{f_{\pi}}{M_{N}} G_{\pi N N}(0)$

Quark-diquark model

- Assumption: separable $q q$ scattering matrix \Rightarrow Faddeev equation simplifies to quark-diquark BSE

Oettel, Hellstern, Alkofer, Reinhardt, PRC 58 (1998), Cloet, GE, El-Bennich, Klahn, Roberts, FBS 46 (2009) Segovia, Cloet, Roberts, Schmidt, FBS 55 (2014)

- Quark exchange between quark \& diquark binds nucleon
- Calculate all quark and diquark ingredients from quark level \Rightarrow direct link to quark-gluon interaction! Rainbow-ladder: scalar diquark $\sim \mathbf{8 0 0} \mathrm{MeV}$, axialvector diquark $\sim \mathbf{1 G e V}$
- N and Δ masses \& form factors very similar: quark-diquark model is good approximation for three-body equation

- Nucleon and Δ electromagnetic FFs, $N \rightarrow \Delta \gamma$ and $N \rightarrow \Delta \pi$ transition GE, Cloet, Alkofer, Krassnigg, Roberts, PRC 79 (2009), Nicmorus, GE, Alkofer, PRD 82 (2010),

Oettel, Pichowsky, von Smekal, Mader, GE, Blank, Krassnigg, PRD 84 (2011), GE, Nicmorus, PRD 85 (2012)

Quark-diquark model

- Assumption: separable $q q$ scattering matrix \Rightarrow Faddeev equation simplifies to quark-diquark BSE

- Quark exchange between quark \& diquark binds nucleon
- Calculate all quark and diquark ingredients from quark level \Rightarrow direct link to quark-gluon interaction! Rainbow-ladder: scalar diquark $\sim \mathbf{8 0 0} \mathrm{MeV}$, axialvector diquark $\sim \mathbf{1 ~ G e V}$
- N and Δ masses \& form factors very similar: quark-diquark model is good approximation for three-body equation
- Nucleon and Δ electromagnetic FFs, $N \rightarrow \Delta \gamma$ and $N \rightarrow \Delta \pi$ transition

GE, Nicmorus, PRD 85 (2012)
 GE, Cloet, Alkofer, Krassnigg, Roberts, PRC 79 (2009), Nicmorus, GE, Alkofer, PRD 82 (2010), Mader, GE, Blank, Krassnigg, PRD 84 (2011), GE, Nicmorus, PRD 85 (2012)

Δ electromagnetic FFs

Almost no experimental information since Δ unstable: $\Delta \rightarrow N \pi$
Magnetic moment $\mu_{\Delta} \sim 3.5$ with large errors (Δ^{+}).
But Ω^{-}(spin $3 / 2$, sss) is stable w.r.t strong interaction, magnetic moment $\left|\mu_{\Omega}\right|=3.6(1)$. Accidental?

$$
J^{\mu, \rho \sigma}(P, Q)=i \mathbb{P}^{\rho \alpha}\left(P_{f}\right)\left[\left(F_{1}^{\star} \gamma^{\mu}-F_{2}^{\star} \frac{\sigma^{\mu \nu} Q^{\nu}}{2 M_{\Delta}}\right) \delta^{\alpha \beta}-\left(F_{3}^{\star} \gamma^{\mu}-F_{4}^{\star} \frac{\sigma^{\mu \nu} Q^{\nu}}{2 M_{\Delta}}\right) \frac{Q^{\alpha} Q^{\beta}}{4 M_{\Delta}^{2}}\right] \mathbb{P}^{\beta \sigma}\left(P_{i}\right)
$$

Form factors at $Q^{2}=0$:

$$
\begin{array}{ll}
G_{E_{0}}(0)=e_{\Delta} & \text { charge } \\
G_{E_{2}}(0)=\mathcal{Q} & \text { electric quadrupole moment } \\
G_{M_{1}}(0)=\mu_{\Delta} & \text { magnetic dipole moment } \\
G_{M_{3}}(0)=\mathcal{O} & \text { magnetic octupole moment }
\end{array}
$$

almost quark-mass independent, match Ω^{-}magnetic moment
Nicmorus, GE, Alkofer, PRD 82 (2010)

Sanchis-Alepuz, Alkofer, Williams, PRD 87 (2013)

$$
m_{\pi}^{2}\left[\mathrm{GeV}^{2}\right]
$$

Pion cloud effects

- Hadron level:

$N \pi$ contributions to nucleon self-energy; charge radii diverge in chiral limit, $\Delta \rightarrow N \pi$ decay cusps, etc.

- Baryons: pion effects reduce N, Δ masses but also f_{π} (sets the scale) by similar amount: net effect small Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014)
- Pion form factor: photon also couples to pion (necessary for gauge invariance), π exchange in quark-photon vertex

- Quark level:
π contributions to quark self-energy, effective π exchange between quarks; pion not elementary field!
Fischer, Nickel, Wambach, PRD 76 (2007)

[^0]
DSE / Faddeev landscape $N \rightarrow N^{*} \gamma$

	Quark-diquark$D=-D-D$			Three-quark$D=10+=0+10+1] 0$		
	Contact interaction	QCD-based model	$\begin{aligned} & \text { DSE } \\ & \text { (RL) } \end{aligned}$	RL	bRL	$b R L+3 q$
N, Δ masses	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\ldots
N, Δ em. FFs	\checkmark	\checkmark	\checkmark	\checkmark		
$N \rightarrow \Delta \gamma$	\checkmark	\checkmark	\checkmark	\ldots		
Roper	\checkmark	\checkmark		\cdots		
$N \rightarrow N^{*} \gamma$	\checkmark	$\sqrt{ }$		\ldots		
$N^{*}(1535), \ldots$	\ldots	\ldots		\ldots	\cdots	
$N \rightarrow N^{*} \gamma$	\ldots	\ldots				

$N^{*}(1535) ?$

Form factors:
no kinematic constraints CLAS data \& toy parametrization with " ρ bump"

...vs. helicity amplitudes
 in $\left[10^{-3} \mathrm{GeV}^{-1 / 2}\right]$

kinematic zeros at
$Q^{2}=-\left(m_{R} \pm m\right)^{2}$
see also
Ramalho \& Tsushima, PRD 84 (2011)

Negative parity resonances?

N*(1535): the recipe

- Calculate quark DSE and (pseudoscalar, vector) diquark BSEs \& propagators in complex plane

- Solve Faddeev equation, obtain $\mathrm{N}^{*}(1535)$ mass and wave function

- Calculate quark-photon and (pseudoscalar, vector scalar, axialvector) diquark-photon vertices

N^{*} (1535): expectations vs. results

- Mesons and (opposite-parity) diquarks intrinsically linked in rainbow-ladder
- Ps \& v mesons ok, but sc \& av mesons too light, repulsive shifts beyond RL
Fischer, Williams, PRL 103 (2009), Chang, Roberts, PRL 103 (2009)
\Rightarrow also ps \& v diquarks should be "too light"
\Rightarrow same for N^{*} (1535), etc. Chen et al., FBS 53 (2012)

- Three-body Faddeev equation: $M(1535) \sim 1.1 \mathrm{GeV}$ Sanchis-Alepuz, Williams, PLB 749 (2015)

$$
q^{-0} D==\lambda=1\left(P^{2}\right)=
$$

- But quark-diquark BSE with ps \& v diquarks only: $M(1535) \sim 1.65 \ldots 1.70 \mathrm{GeV}$!
- Including sc \& av diquarks for $N^{*}(1535), N^{*}(1520)$: not yet fully consistent (nor stable), but important for $N^{*}(1520)$. Near mass degeneracy?
- Transition form factor (with ps \& v diquarks only) extremely small \Rightarrow ps \& v diquarks not enough?

Nucleon resonances: $J^{P}=\frac{1}{2}^{ \pm}$

- Offshell nucleon-photon vertex depends on 12 tensor structures (4 gauge +8 transverse)

- onshell everything collapses into 2 form factors:

$$
J^{\mu}=\bar{u}_{f}\left[F_{1} \gamma^{\mu}+\frac{F_{2}}{2 m} \frac{i}{2}\left[\gamma^{\mu}, Q \in\right] u_{i}\right.
$$

- No gauge part for $N \rightarrow N^{*}\left(\frac{1}{2}^{ \pm}\right)$transition form factors (no conserved charge), hence

$$
J^{\mu}=\bar{u}_{f}\left[{ }_{i \gamma_{5}}^{1}\right][\frac{F_{1}}{m^{2}} \underbrace{t_{Q Q}^{\mu \nu} \gamma^{\nu}}_{Q^{2} \gamma_{T}^{\mu}}+\frac{F_{2}}{2 m} \frac{i}{2}\left[\gamma^{\mu}, \not Q\right]] u_{i}
$$

$\Rightarrow F_{1}$ and F_{2} free of kinematic constraints

$$
t_{A B}^{\mu \nu}=A \cdot B \delta^{\mu \nu}-B^{\mu} A^{\nu}
$$

- What about offshell form factors in nucleon Born term?
γ^{μ} clashes with gauge invariance, only $t_{Q Q}^{\mu \nu} \gamma^{\nu}, \frac{i}{2}\left[\gamma^{\mu}, \not \subset\right]$ allowed:
must use Dirac current
Gauge invariance restored by 1PI part GE, Fischer, PRD 87 (2013)
\Rightarrow careful with offshell form factors!

Nucleon resonances: $J^{P}=\frac{3}{2}^{ \pm}$

- Offshell $N \rightarrow N^{*}\left(\frac{3}{2}^{ \pm}\right)$transition vertices: Rarita-Schwinger rep. contains spin-3/2 \& 1/2; must get rid of offshell spin-1/2 background

Vertices must satisfy electromagnetic \& spin-3/2 gauge invariance and invariance under point transformations:

$$
Q^{\mu} \Gamma_{\mathrm{R}}^{\alpha \mu}=0, \quad k^{\alpha} \Gamma_{\mathrm{R}}^{\alpha \mu}=0, \quad \gamma^{\alpha} \Gamma_{\mathrm{R}}^{\alpha \mu}=0
$$

Pascalutsa, Timmermanns, PRC 60 (1999)
Shklyar, Lenske, PRC 80 (2009)
GE, Ramalho, in preparation

- General form of offshell $N \rightarrow \frac{3}{2}^{ \pm}$transition currents: 12 form factors

$$
\begin{aligned}
& \varepsilon_{k Q}^{\alpha \mu}=\gamma_{5} \varepsilon^{\alpha \mu \rho \sigma} k^{\rho} Q^{\sigma} \\
& t_{k Q}^{\alpha \mu}=k \cdot Q \delta^{\alpha \mu}-Q^{\alpha} k^{\mu}
\end{aligned} \Leftrightarrow \begin{array}{cc}
g_{M}\left(\partial^{\mu} \bar{\psi}^{\alpha}\right) \widetilde{F}^{\alpha \mu} \psi & \sim g_{M} \bar{\psi}^{\alpha} \gamma_{5} \varepsilon_{k Q}^{\alpha \mu} A^{\mu} \psi \\
g_{E}\left(\partial^{\mu} \bar{\psi}^{\alpha}\right) \gamma_{5} F^{\alpha \mu} \psi \sim g_{E} \bar{\psi}^{\alpha} \gamma_{5} t_{k Q}^{\alpha \mu} A^{\mu} \psi \\
\quad & \\
\vdots
\end{array}
$$

- onshell everything collapses into 3 form factors:

$$
J^{\mu}=\frac{1}{m^{2}} \bar{u}_{f}^{\alpha}\left[\begin{array}{c}
i \gamma_{5} \\
1
\end{array}\right]\left[F_{1} \varepsilon_{k Q}^{\alpha \mu}-F_{2} t_{k Q}^{\alpha \mu}-\frac{F_{3}}{m} i t_{k \gamma}^{\alpha \beta} t_{Q Q}^{\beta \mu}\right] u_{i}
$$

\Rightarrow no kinematic constraints.
Jones-Scadron decomposition not good offshell!

Tetraquarks

- Solution of four-body equation (same input) reproduces mass pattern for light scalar mesons: $\sigma, \kappa, a_{0}, f_{0}$ GE, Fischer, Heupel, 1508.07178 [hep-ph]

- BSE dynamically generates pion poles in wave function, drive σ mass from 1.5 GeV to $\sim 350 \mathrm{MeV}$

Four quarks rearrange
to "meson molecule", diquarks irrelevant

Tetraquark is at the same time dynamically generated resonance!

Muon g-2

- Muon anomalous magnetic moment:
total SM prediction deviates from exp. by $\sim 3 \sigma$

- Theory uncertainty dominated by QCD: Is QCD contribution under control?

Hadronic vacuum polarization

$a_{\mu}\left[10^{-10}\right]$	Jegerlehner, Nyffeler, Phys. Rept. $477(2009)$	
Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
• LBL	10.5	(2.6)
SM:	11659	182.8
Diff:	26.1	(4.9)

- LbL amplitude: ENJL \& MD model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Pauk 2014

Muon g-2

- Muon anomalous magnetic moment:
total SM prediction deviates from exp. by $\sim 3 \sigma$

- Theory uncertainty dominated by QCD: Is QCD contribution under control?

Hadronic vacuum polarization

$a_{\mu}\left[10^{-10}\right]$	Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)	
Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
•LBL	$\mathbf{1 0 . 5}$	$\mathbf{(2 . 6)}$
SM:	11659182.8	(4.9)
Diff:	26.1	(8.0)

- LbL amplitude at quark level, derived from gauge invariance:

GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

- no double-counting, gauge invariant!
- need to understand structure of amplitude GE, Fischer, Heupel, PRD 92 (2015)

[^0]: GE, Fischer, Kubrak, Williams, in preparation

