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Electromagnetic form factors

We can probe the structure of a proton using virtual photons, which couple
to quarks via the current

Jµ = 2
3 ūγµu − 1

3 d̄γµd − 1
3 s̄γµ s + . . .

Symmetries constrain matrix elements between proton states with
momenta p and p′:

〈p′ |Jµ |p〉 = ū(p′)
[
γµF1 (Q2) +

iσµν (p′−p)ν

2mp
F2 (Q2)

]
u(p),

where Q2 = −(p′ − p)2 is the four-momentum transfer and F1,2 are the Dirac
and Pauli form factors.
Electric and magnetic form factors:

GE (Q2) = F1 (Q2) − Q2

(2mp )2
F2 (Q2), GM (Q2) = F1 (Q2) + F2 (Q2)
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Electromagnetic form factors

In the nonrelativistic limit, GE (Q2) and GM (Q2) are Fourier transforms of the
charge and magnetization densities in a proton.
I GE (0) = 1, the charge of a proton
I GM (0) = µ, the magnetic moment of a proton, in units of the nuclear

magneton µN =
e

2mp

Even though this interpretation doesn’t hold relativistically, it is still used to
define the charge and magnetic radii using the derivatives at Q2 = 0:
I r2

E = −6GE
′(0)

I r2
M = −6GM

′(0)/µ

Relativistically, there is a rigorous interpretation of F1 (Q2) as the 2-D Fourier
transform of the transverse charge density in the infinite-momentum frame.
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Flavour separation

Define single-flavour form factors using unit charge:

Jµ → Jq
µ ≡ q̄γµq, GE,M (Q2) → Gq

E,M (Q2).

Proton form factors from ep sca�ering involve all flavours:

Gγ (p)
E,M =

2
3 Gu

E,M − 1
3 Gd

E,M − 1
3 Gs

E,M + . . .

Form factors of a neutron are measured in experiments using sca�ering o�
2H or 3He targets. Assuming isospin symmetry, we get

Gγ (n)
E,M =

2
3 Gd

E,M − 1
3 Gu

E,M − 1
3 Gs

E,M + . . .

By measuring the parity-violating asymmetry in elastic ~ep sca�ering, the
contribution from Z exchange can be isolated. This gives

GZ (p)
E,M = (1 − 8

3 sin2 θW )Gu
E,M − (1 − 4

3 sin2 θW ) (Gd
E,M + Gs

E,M) + . . .

Neglecting heavier quarks, combining these three measurements yields the
strange form factors Gs

E,M.
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La�ice QCD

. . . is a regularization of Euclidean-space QCD such that the path integral
can be done fully non-perturbatively
I Euclidean spacetime becomes a periodic hypercubic la�ice, with

spacing a and box size L3
s × Lt .

I Path integral over fermion degrees of freedom is done analytically, for
each gauge configuration. Solving the Dirac equation with a fixed
source yields a source-to-all quark propagator.

I Path integral over gauge degrees of freedom is done numerically using
Monte Carlo methods to generate an ensemble of gauge configurations.

I An ensemble with degenerate u and d quarks is called Nf = 2; adding a
heavier s quark gives Nf = 2 + 1, etc.

The a→ 0 and Ls,Lt → ∞ extrapolations need to be taken by using multiple
ensembles.
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Nucleon matrix elements using la�ice QCD

To find matrix elements, compute

C2pt (t,~p) =
∑
~x

e−i~p ·~x〈N (~x , t )N̄ (~0,0)〉

t→∞−→ e−E (~p)t |〈p|N̄ |Ω〉|2

C3pt (T ,τ ;~p,~p′) =
∑
~x,~y

e−i~p′ ·~xei(~p′−~p) ·~y〈N (~x ,T )O (~y,τ )N̄ (~0,0)〉

τ→∞
T −τ→∞−→ e−E (~p′) (T −τ )e−E (~p)τ 〈Ω |N |p′〉〈p′ |O|p〉〈p|N̄ |Ω〉

Then form ratios to isolate 〈p′ |O|p〉.
For O a quark bilinear, there are two kinds of quark contractions for C3pt:

connected disconnected
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Connected contractions

We have e�icient solvers for source-to-all quark propagators. Connected
contractions can be computed using these via the sequential propagator
technique.

1. Fix the source and compute the forward propagator.

2. Fix the sink and T ; compute the backward (sequential) propagator.

3. Combine the two to compute arbitrary O = q̄ . . . q, for all τ ∈ [0,T ].
For the proton, these contribute for q ∈ {u,d }. If we take isovector (u − d)
observables, then these are the only contributing contractions.
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Disconnected contractions

For strange quarks in the proton, these are the only contribution.
Disconneced light quarks are also needed for, e.g., the proton radius.

Using, e.g., O = q̄Γq, these involve the disconnected loop,

T (~q, t,Γ) = −
∑
~x

ei~q ·~x Tr[ΓD−1 (x ,x )],

which involves the quark propagator D−1 (x ,y ) from every point on a
timeslice back to itself.
We can estimate the all-to-all propagator stochastically using noise sources
η that satisfy E (ηη†) = I. By solvingψ = D−1η, we get

D−1 (x ,y ) = E (ψ (x )η† (y )).
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Dilution

For a random vector η with components of magnitude |ηi | = 1, the diagonal
of ηη† is exact and the variance comes from the o�-diagonal parts.

e.g. η =



η1

η2

η3

η4


 , ηη† =




1 η1η
∗
2 η1η

∗
3 η1η

∗
4

η2η
∗
1 1 η2η

∗
3 η2η

∗
4

η3η
∗
1 η3η

∗
2 1 η3η

∗
4

η4η
∗
1 η4η

∗
2 η4η

∗
3 1


 , E (ηη†) = I

Dilution: use a complete set of projectors {Pb |P2
b = Pb,

∑
b Pb = I} to partition

the components of η and eliminate parts of the variance:

η (b) ≡ Pbη; E


∑

b

η (b)η (b)†

 = I

e.g. η (1) =



η1

η2

0
0


 , η

(2) =




0
0
η3

η4


 ,

∑
b

η (b)η (b)† =




1 η1η
∗
2 0 0

η2η
∗
1 1 0 0

0 0 1 η3η
∗
4

0 0 η4η
∗
3 1



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Dilution

In many cases, using N dilution projectors to target the most important
parts of the noise yields a be�er than 1/

√
N reduction. Commonly used:

I Spin dilution
I Colour dilution
I Spatial dilution

1 homeopathic limit

am
ou

nt
of

no
is

e

number of solves

multiple noise sources
bad dilution scheme

good dilution scheme In the homeopathic limit,
complete dilution is
equivalent to fully
computing a disconnected
loop without stochastic
estimation.
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Hierarchical probing

(A. Stathopoulos, J. Laeuchli, K. Orginos, SIAM J. Sci. Comput. 35(5) (2013) S299–S322 [1302.4018])

Use a sequence of specially-constructed spatial Hadamard vectors in order
to progressively increase the level of spatial dilution.

red: +1
black: −1

Take the component-wise product η[b] ≡ zb � η and average over b.
For each fixed number 2n of Hadamard vectors, this is equivalent to a
di�erent spatial dilution scheme.
We use 128 three-dimensional Hadamard vectors to eliminate the variance
from neighboring sites up to distance 7.
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Fi�ing Q2-dependence

We want to fit GE,M (Q2) with curves to determine the radii and magnetic
moment from the slope and intercept at Q2 = 0.
I Common approach: use simple fit forms such as a dipole.
I Be�er: use z-expansion. Conformally map domain where G(Q2) is

analytic in complex Q2 to |z | < 1, then use a Taylor series:

Q
2

z

[R. J. Hill and G. Paz, Phys. Rev. D 82 (2010) 113005]

z (Q2) =

√
tcut + Q2 − √tcut√
tcut + Q2 +

√
tcut

,

G(Q2) =
∑

k

akz (Q2)k ,

with Gaussian priors imposed on the coe�icients ak . Specifically,
I For GE , set a0 = 0 (charge conservation) and leave a1 unconstrained.
I For GM, leave a0 and a1 unconstrained.

Thus rE,M and µ are not directly constrained.
For higher coe�icients, impose |ak>1 | < 5 max{|a0 |, |a1 |}, and vary the bound
to estimate systematic uncertainty.
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La�ice calculation
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We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors Gs
E and

Gs
M in the kinematic range 0 ≤ Q2 ≲ 1.2 GeV2. For the first time, bothGs

E andGs
M are shown to be nonzero

with high significance. This work uses closer to physical lattice parameters than previous calculations, and
achieves an unprecedented statistical precision by implementing a recently proposed variance reduction
technique called hierarchical probing. We perform model-independent fits of the form factor shapes using
the z-expansion and determine the strange electric and magnetic radii and magnetic moment. We compare
our results to parity-violating electron-proton scattering data and to other theoretical studies.

DOI: 10.1103/PhysRevD.92.031501 PACS numbers: 12.38.Gc, 13.40.Em, 13.40.Gp

The nucleon electromagnetic form factors describe how
electric charge and current are distributed inside protons
and neutrons, and are therefore among the most important
observables characterizing these building blocks of
ordinary matter. Because nucleons contain only up and
down valence quarks, these two quark flavors dominate the
electromagnetic form factors. Isolating the small contribu-
tions from the other quark flavors is a significant challenge
for both experiment and theory, but is of fundamental
importance for our understanding of the structure of
protons and neutrons, and of the nonperturbative dynamics
of QCD. After the up and down quarks, strange quarks are
expected to give the next-largest contribution to the
electromagnetic form factors. The cross section of elastic
electron-proton scattering used to extract the form factors is
dominated by photon exchange, which probes the sum of
all quark-flavor contributions weighted according to
their electric charges. However, by analyzing the small
parity-violating effects arising from interference with
Z-boson exchange, the strange-quark contribution to the
electromagnetic form factors can be isolated [1,2]. The
available experimental results, which focus on momentum
transfersQ2 in the vicinity of 0.2 GeV2, are consistent with
zero but constrain the relative contribution of the strange
quarks to be within a few percent [3–15].

Ab initio calculations of the nucleon electromagnetic
form factors Gq

E and Gq
M of an individual quark flavor q

(see, e.g., Ref. [16] for the definitions) are possible using
lattice QCD. The form factors can be extracted from
Euclidean three-point functions of the form

X

z;y

e−ip
0·ðz−yÞe−ip·ðy−xÞhNβðzÞVμ

qðyÞN̄αðxÞi; ð1Þ

whereN is an interpolating field with the quantum numbers
of the nucleon, Vμ

q ¼ q̄γμq is the vector current for quark
flavor q, and p, p0 are the spatial momenta of the initial and
final states. In the three-point function (1), performing the
path integral over the quark fields leaves a path integral
over the gauge fields, which contains the product of the
fermion determinants and the nonperturbative quark propa-
gator contractions illustrated in Fig. 1. The connected
contraction arises only for q ¼ u; d and is numerically
large, while the disconnected contraction is present for all
quark flavors (and is the origin of the strange-quark
contribution to the electromagnetic form factors). The
disconnected quark loop in Fig. 1 has the form

Tμ
q ¼ −

X

y

eiðp0−pÞ·yTr½γμD−1
q ðy; yÞ�; ð2Þ

where Dq is the lattice Dirac operator, and the trace is over
color and spin indices. The numerical computation of the
propagator D−1

q ðy; yÞ for all spatial lattice points y using
*green@kph.uni‑mainz.de
†smeinel@email.arizona.edu
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I Nf = 2 + 1 Wilson-clover fermions
I a = 0.114 fm, 323 × 96
I mu = md > mphys

ud , corresponding to pion mass 317 MeV

I ms ≈ mphys
s

I 1028 gauge configurations
I disconnected loops for six source timeslices

(128 Hadamard vectors, plus color+spin dilution)
I two-point correlators from 96 source positions
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Hierarchical probing vs. many noise sources

Study using 1/3 of gauge configurations.

1 10 100
N

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

G( 2
3 u− 1

3 d)
M (Q2 ≈ 0.11 GeV2) (disconnected)

noise only
h. probing

Equal cost at same N
(= NHadamard or Nnoise).

Points o�set
horizontally.

(S. Meinel, La�ice 2014)
Jeremy Green (Mainz) Nucleon strange electromagnetic form factors from la�ice QCD January 8, 2016, JLab 16 / 23



Disconnected GE (Q2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Q2 (GeV2)

−0.004
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0.000

0.002

0.004
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0.008
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G
E

strange
light disconnected
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Disconnected GM(Q2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Q2 (GeV2)
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−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

G
M

strange
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Extrapolation to physical quark masses

By themselves, the disconnected light-quark form factors are unphysical,
but they can be understood in partially quenched QCD and partially
quenched chiral perturbation theory (ChPT): q ∈ {u,d ,s} → q ∈ {u,d ,s, l, l̃}.

At leading one-loop order in partially quenched ChPT, the radii and
magnetic moment depend on one meson mass:

mloop =


mK for strange quarks

mπ for disconnected light quarks

The ChPT expressions poorly describe our data, but we use them to
motivate a crude physical-point extrapolation: interpolate in m2

loop to the
physical m2

K .
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Strange magnetic moment and radii at physical point

Gs
E (Q

2) = − 1
6 (r

2
E )

sQ2 + O(Q4), Gs
M (Q2) = µs − 1

6 (r
2
M)sQ2 + O(Q4)

Best estimate at physical quark masses: use linear interpolation in m2
loop:

(r2
E )

s = −0.0067(10) (17) (15) fm2,

(r2
M)s = −0.018(6) (5) (5) fm2,

µs = −0.022(4) (4) (6) µN ,

where the uncertainties are

1. statistical

2. systematics at mπ = 317 MeV

3. physical-point extrapolation
(= magnitude of shi� from result
at mπ = 317 MeV)

Including the charge factor of −1/3 yields a ∼ 0.3–0.4% contribution to the
proton r2

E , µr2
M, and µ, respectively.
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Strange magnetic moment

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1
µs (µN)

lattice QCD (this work, mπ = 317 MeV)

lattice QCD (this work, physical point)

lattice QCD [17]

connected LQCD + octet µ from expt. [16]

. . . same, with quenched lattice QCD [29]

finite-range-regularized chiral model [30]

light-front model + deep inelastic scattering data [31]

perturbative chiral quark model [32]

dispersion analysis [33]

parity-violating elastic scattering [34]
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Forward-angle sca�ering experiments

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Q2 (GeV2)

−0.05

0.00

0.05

0.10

0.15
G

s E
+

η
G

s M
G0
HAPPEX

A4
lattice

η ≈ AQ2, A = 0.94 GeV−2

Jeremy Green (Mainz) Nucleon strange electromagnetic form factors from la�ice QCD January 8, 2016, JLab 22 / 23



Conclusions and outlook

I High statistics and hierarchical probing methods are e�ective at
producing a signal for the disconnected electromagnetic form factors.

I Strange quarks contribute a very small amount to the proton radii and
magnetic moment (∼ 0.3%).

I Obtaining a clear nonzero strange-quark signal will be a significant
challenge for future parity-violating elastic sca�ering experiments,
especially at forward sca�ering angles.

I Additional calculations, especially closer to physical quark masses, are
needed to confirm the physical-point estimates.

I The same techniques can be applied for other operators, but
renormalization is required. This will lead to calculations of the axial
form factors as well as the decomposition of the proton’s longitudinal
and angular momentum into quark and gluon contributions.
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Hadamard vectors

Hadamard vectors hb can be used to obtain the same results as dilution, by
taking the component-wise product η[b] ≡ hb � η and averaging over b.
e.g. Hadamard vectors: h1 = (1,1,1,1), h2 = (1,1,−1,−1)

η[1] =



η1

η2

η3

η4


 , η

[2] =



η1

η2

−η3

−η4


 ,

1
2

∑
b

η[b]η[b]† =




1 η1η
∗
2 0 0

η2η
∗
1 1 0 0

0 0 1 η3η
∗
4

0 0 η4η
∗
3 1




If we had used only η[1], we would also get the correct expectation value
(only with more noise).
−→ Hadamard vectors allow for progressively increasing the level of
dilution, while making use of previous e�ort.

Jeremy Green (Mainz) Nucleon strange electromagnetic form factors from la�ice QCD January 8, 2016, JLab 25 / 23



Partially quenched ChPT at leading one-loop order

Inputs: pseudoscalar decay constant and baryon axial couplings.
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At this order, PQChPT poorly
describes the data.
−→ use simple linear
interpolation in m2

loop.
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