| Introduction<br>000 | Spectroscopy methods<br>000000 | Results<br>000000<br>0000 | Conclusion |
|---------------------|--------------------------------|---------------------------|------------|
|                     |                                |                           |            |

#### Ben Hörz

 '08 - '11 B.Sc. Physics, Humboldt-University Berlin Thesis: Light Scattering by Large Particles in Geometrical Optics Approximation

(jointly with FU Berlin, polarization-resolved raytracing software suite)

- '11 '13 M.Sc. Physics, Humboldt-University Berlin Thesis: ChPT for 2+1+1 Flavor of Wilson Fermions with Twisted Masses (O. Bär)
- '13 '16 (exp.) Ph.D. in Mathematics, Trinity College Dublin Resonances from Lattice QCD (J. Bulava)
- 15/08 15/12 Fulbright visiting researcher at Carnegie Mellon University (C. Morningstar)

| Introduction<br>000 | Spectroscopy methods<br>000000 | Results<br>000000<br>0000 | Conclusion |
|---------------------|--------------------------------|---------------------------|------------|
|                     |                                |                           |            |

### Excited states from Lattice QCD

### Ben Hörz Trinity College Dublin

January 8, 2016

 ・<一</li>

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・



- Quantum chromodynamics describes the strong interaction in the Standard Model
- Euclidean path integral  $(a,L,T) \leftrightarrow$  statistical ensemble

$$\begin{split} \langle 0|\bar{\psi}\Gamma\psi(x)\bar{\psi}\Gamma'\psi(y)|0\rangle_{c} &= \\ &\int DU\,\mathrm{tr}\left[M^{-1}(x,y)\Gamma M^{-1}(y,x)\Gamma'\right]\frac{\det M\mathrm{e}^{-S_{g}}}{Z} \end{split}$$

- Monte Carlo with importance sampling of the path integral gives Euclidean correlation functions
- Dirac matrix *M* is large, sparse, ill-conditioned
- Its inverse is required for calculating correlation functions

| Introduction<br>○●○                  | Spectroscopy methods<br>000000 | Results<br>000000<br>0000 | Conclusion |
|--------------------------------------|--------------------------------|---------------------------|------------|
| Infinite-Volume Physics from Lattice | QCD                            |                           |            |

### Spectroscopy

 decomposition of correlation matrix in terms of Hamiltonian eigenstates

$$C_{ij}(t) = \sum_{n} \langle 0 | O_i | n \rangle \langle n | \overline{O}_j | 0 \rangle e^{-E_n t}$$

- symmetries of the system ⇔ block-diagonalization of Hamiltonian (*quantum numbers*)
- matrix of temporal correlators facilitates extraction of  $E_n, n = 1, 2, ...$
- energy eigenvalues of multi-particle states in a box with periodic boundary conditions are shifted by their interactions [Lüscher '86, '90, '91; Rummukainen, Gottlieb '95]
- renewed theoretical interest

e.g. [Kim, Sachrajda, Sharpe '05; Briceño, Hansen, Walker-Loud '14] and applications e.g. [Wilson et al '15; Briceño et al '15]

| Introduction              | Spectroscopy methods |                | Conclusion |
|---------------------------|----------------------|----------------|------------|
| 000                       |                      | 000000<br>0000 |            |
| Infinite Volume Physics f | rom Lattice OCD      |                |            |

## Timelike pion form factor from Lattice QCD

- behavior of Lüscher quantization condition under small perturbations encodes even more information [Meyer '12]
- derivation by Meyer closely related to Lellouch-Lüscher formalism
   [Lellouch, Lüscher '01]
- Key formula

$$|F_{\pi}(s)|^{2} = \frac{3\pi s}{2L^{3}p^{5}}g(\gamma)\left(q\phi'(q) + p\frac{\partial\delta_{1}(p)}{\partial p}\right)\left|\langle 0|V^{(\mathbf{P},\Lambda)}|\mathbf{P},\Lambda,\mathfrak{n}\rangle\right|^{2}$$

• special case of  $0 \rightarrow 2$  transition amplitude

[Briceño, Hansen '15]

|                            | Spectroscopy methods | Results        | Conclusion |
|----------------------------|----------------------|----------------|------------|
|                            | 00000                | 000000<br>0000 |            |
| The stochastic LapH method |                      |                |            |

# All-to-all propagators

- all-to-all propagators required for two-particle states, each with definite momentum
- Dirac matrix *M* is ill-conditioned and intractable
- two key insights:
  - 1 important physics is captured by a low-dimensional subspace  $\rightarrow$  distillation
  - 2 achievable overall accuracy is limited by incomplete sampling of the path integral
    - ightarrow stochastic

| Introduction<br>000        | Spectroscopy methods<br>○●○○○○ | Results<br>000000<br>0000 | Conclusion |
|----------------------------|--------------------------------|---------------------------|------------|
| The stochastic LapH method |                                |                           |            |

## Distillation

 important contributions to the quark propagator are encoded in subspace

$$-\Delta v_n = \lambda_n v_n$$

- spanned by  $N_{\rm ev} \ll 12 \times L^3$  eigenvectors of covariant 3D Laplace operator [Peardon et al '08]
- projector into subspace acts like smearing operator



| Introduction<br>000        | Spectroscopy methods | Results<br>000000<br>0000 | Conclusion |
|----------------------------|----------------------|---------------------------|------------|
| The stochastic LapH method |                      |                           |            |

- distillation has proven successful in baryon, two-meson, charmonium, ... spectroscopy
  - [HadSpec Collaboration '12 ff.]
- $\blacksquare$  but, for constant physical smearing:  $\textit{N}_{\rm ev} \propto \textit{V} = \textit{L}^3$
- use stochastic estimation in the low-dimensional subspace
   [Morningstar et al '11]
- for random noise vectors  $\eta_i^{(r)} \in Z_4, i=1,\ldots,N_{\mathsf{ev}}$

$$M'_{ij}^{-1} = \lim_{N_{\eta} \to \infty} \frac{1}{N_{\eta}} \sum_{r=1}^{N_{\eta}} X_i^{(r)} \eta_j^{(r)*}, \text{ where } M' X^{(r)} = \eta^{(r)}$$

practical stochastic estimates using dilution [Foley et al '05]

| Introduction<br>000        | Spectroscopy methods<br>000●00 | <b>Results</b><br>000000<br>0000 | Conclusion |
|----------------------------|--------------------------------|----------------------------------|------------|
| The stochastic LapH method |                                |                                  |            |

- #inversions  $\propto$   $N_\eta$  imes  $N_{\sf dil}$  instead of  $N_{\sf ev}$
- one noise per quark line for unbiased estimate of a diagram
- required  $N_{dil}$  is independent of V
- local coherence of low-quark modes the phenomenon that powers deflation [Lüscher '07]

Other nice features of *stochastic LapH*:

- each quark line outer product of a "source"  $\eta$  and a "sink" X
- minimal storage required to save propagator (a few complex numbers)
- factorization of objects required for correlator construction
- universally applicable method

e.g. string breaking [Koch, .., BH et al '15]

| Introduction<br>000        | Spectroscopy methods<br>0000●0 | <b>Results</b><br>000000<br>0000 | Conclusion |
|----------------------------|--------------------------------|----------------------------------|------------|
| The stochastic LapH method |                                |                                  |            |

$$|F_{\pi}(s)|^{2} = \frac{3\pi s}{2L^{3}p^{5}}g(\gamma)\left(q\phi'(q) + p\frac{\partial\delta_{1}(p)}{\partial p}\right)\left|\langle 0|V^{(\mathbf{d},\Lambda)}|\mathbf{d},\Lambda,\mathfrak{n}\rangle\right|^{2}$$
$$V_{\mu}^{(\text{imp, ren)}} = Z_{V}\left(1 + b_{V}am\right)\left(\bar{\psi}\gamma_{\mu}\psi + iac_{V}\partial_{\nu}\left\{\bar{\psi}\sigma_{\mu\nu}\psi\right\}\right)$$



• could enforce  $\pi$  form factor = 1 at  $Q^2 = 0$ 

c.f. [Shultz, Dudek, Edwards '15]

• want to use non-perturbative  $Z_V \rightarrow$  'unsmeared' V

| Introduction<br>000        | Spectroscopy methods<br>00000● | Results<br>000000<br>0000 | Conclusion |
|----------------------------|--------------------------------|---------------------------|------------|
| The stochastic LapH method |                                |                           |            |

• quark propagator has outer-product form  $M^{-1} = X \eta^{\dagger}$ 



• use  $\gamma_5$ -hermiticity to switch source and sink  $\rightarrow \bar{\eta}, \bar{X}$ 

 compute *current sink functions* right after inversions, before smearing and writing to disk

| Introduction<br>000         | Spectroscopy methods<br>000000 | Results<br>•00000<br>•000 | Conclusion |
|-----------------------------|--------------------------------|---------------------------|------------|
| Anisotropic Wilson Fermions |                                |                           |            |

Exploratory study on  $\pi - \pi$  scattering (here I = 1 -  $\rho$ -channel):

•  $N_f = 2 + 1$  anisotropic Wilson clover

[HadSpec Collaboration '09]

a<sub>s</sub>/a<sub>t</sub> ≈ 3.44 → large volume, but good temporal resolution  $32^3 \times 256$ ,  $m_\pi \approx 240$  MeV,  $a_s \approx 0.12$  fm,  $L \approx 4$  fm  $m_\pi T \approx 10$ → safe from thermal effects





• GEVP on the mean at fixed  $(t_0, t_d)$  to form

$$\hat{C}_{mn}(t) = (v_n, C(t)v_m)$$

- Fit diagonal elements to single exponential
- Monitor consistency across GEVP parameters and fit models

| Introduction<br>000         | Spectroscopy methods<br>000000 | Results<br>00●000<br>0000 | Conclusion |
|-----------------------------|--------------------------------|---------------------------|------------|
| Anicotropic Wilcon Formions |                                |                           |            |



| Spectroscopy methods | Results               | Conclusion |
|----------------------|-----------------------|------------|
|                      | <b>000000</b><br>0000 |            |

Anisotropic Wilson Fermions

## Lüscher quantization condition in moving frames

$$\mathbf{P} = rac{2\pi}{L}\mathbf{d}, \ \mathbf{p} = rac{2\pi}{L}\mathbf{q}, \ \gamma = rac{E}{\sqrt{s}}, \ w_{lm} = rac{8Z_{lm}(\mathbf{d},\gamma,\mathbf{q}^2)}{\gamma\pi^{-3/2}L^3q'^{-2}}$$

| d         | Λ            | $p^3 \cot \delta_1$                                                                          | #operators |
|-----------|--------------|----------------------------------------------------------------------------------------------|------------|
| (0,0,0)   | $T_{1u}^{+}$ | W00                                                                                          | 4          |
| (0,0,n)   | $A_1^+$      | $w_{00} + \frac{2}{\sqrt{5}}w_{20}$                                                          | 3 / 2      |
|           | $E^+$        | $w_{00} - \frac{1}{\sqrt{5}}w_{20}$                                                          | 3 / 4      |
| (0,1,1)   | $A_1^+$      | $w_{00} + \frac{1}{2\sqrt{5}}w_{20} + \sqrt{\frac{6}{5}}iw_{21} - \sqrt{\frac{3}{10}}w_{22}$ | 4          |
|           | $B_1^+$      | $w_{00} - rac{1}{\sqrt{5}}w_{20} + \sqrt{rac{6}{5}}w_{22}$                                 | 3          |
|           | $B_2^+$      | $w_{00} + \frac{1}{2\sqrt{5}}w_{20} - \sqrt{\frac{6}{5}}iw_{21} - \sqrt{\frac{3}{10}}w_{22}$ | 3          |
| (1, 1, 1) | $A_1^+$      | $w_{00} - 2\sqrt{\frac{6}{5}}iw_{22}$                                                        | 4          |
|           | $E^+$        | $w_{00} + \sqrt{\frac{6}{5}}iw_{22}$                                                         | 3          |

Göckeler et al '12]





16/22

| Introduction<br>000         | Spectroscopy methods<br>000000 | Results<br>00000●<br>0000 | Conclusion |
|-----------------------------|--------------------------------|---------------------------|------------|
| Anisotropic Wilson Fermions |                                |                           |            |

Recent results from the JLab group on the same ensemble:

[Wilson et al '15]

$$g_{
ho\pi\pi}^{
m JLab} = 5.688(75)$$
  
 $g_{
ho\pi\pi} = 6.16(36)$ 

- exact distillation requires 170 times as many inversions
- discrepancy in g<sub>ρππ</sub> illustrates need for careful checks of systematic effects in these calculations
- how to approach the chiral limit?
  - direct calculations  $4m_{\pi} < m_{
    ho}$  at  $m_{\pi}^{
    m phys}$
  - EFT approach: Unitarized ChPT [Bolton, Briceño, Wilson '15]

|                            | Spectroscopy methods | Results | Conclusion |
|----------------------------|----------------------|---------|------------|
|                            |                      | 000000  |            |
| CLS effort with open bound | any conditions       |         |            |
| CLS enore with open bound  | ary conditions       |         |            |

• we have initiated a spectroscopy project using the recent  $N_f = 2 + 1$  ensembles generated through the CLS effort

[Bruno et al '14]

Lattice setup (N200)

 $L^3 \times T = 48^3 \times 128$ 

 O(a)-improved Wilson fermions, Lüscher-Weisz gauge action, open temporal BC

•  $m_\pi pprox$  280 MeV,  $m_{
m K} pprox$  460 MeV, a pprox 0.064 fm

•  $m_{\pi}L \approx 4.4$ ,  $2m_K/m_{\pi} \approx 3.3$ 

| Spectroscopy methods  | Results               | Conclusion |
|-----------------------|-----------------------|------------|
|                       | 000000<br><b>0000</b> |            |
| and a second Britania |                       |            |

CLS effort with open boundary conditions



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

|                         | Spectroscopy methods | Results | Conclusion |
|-------------------------|----------------------|---------|------------|
|                         |                      | 000000  |            |
| CLS effort with open bo | undary conditions    |         |            |

## Timelike pion form factor

$$|F_{\pi}(s)|^{2} = \frac{3\pi s}{2L^{3}p^{5}}g(\gamma)\left(q\phi'(q) + p\frac{\partial\delta_{1}(p)}{\partial p}\right)\left|\langle 0|V^{(\mathbf{d},\Lambda)}|\mathbf{d},\Lambda,\mathfrak{n}\rangle\right|^{2}$$

- $\blacksquare$  extract energy levels for given momentum  ${\bf d}$  and irrep  $\Lambda$   $\quad\checkmark$
- use all levels across all irreps to map out the phase shift  $\delta_1(p)$  and parametrize it
- compute  $\phi'(q)$  for each energy level numerically
- extract the finite volume current matrix element

[Bulava, BH et al '15]

イロト イボト イヨト イヨト

20 / 22

3





PRELIMINARY

- curve is the Gounaris-Sakurai parametrization of  $|F_{\pi}(E_{cm})|^2$
- no fit prediction using the values of  $m_r$  and  $g_{\rho\pi\pi}$  from the phase shift analysis

| Introduction<br>000 | Spectroscopy methods<br>000000 | Results<br>000000<br>0000 | Conclusion |
|---------------------|--------------------------------|---------------------------|------------|
|                     |                                |                           |            |

- advances in spectroscopy methods
- Lüscher-type methods can be put to pratical use
- but: keep systematics in mind
  - analysis techniques
  - cutoff effects
  - exponential finite volume effects
  - chiral limit
- interplay between theory and practitioners
- exciting prospects
  - three-particle states, four-particle states
  - baryon resonances, scalar resonances
  - . . .



Isoscalar pion-pion and kaon-kaon scattering,  $\mathbf{d} = [0, 1, 1]$ , is a set of the set o

22 / 22



Isoscalar pion-pion and kaon-kaon scattering,  $\mathbf{d} = [0, 0, 0]$ ,  $\mathbf{d} = [0, 0, 0]$ 

22 / 22





Figure: History of vacuum expectation value of SS  $\eta$  [0,0,0]  $A_{1g}^{\pm}$  =  $\Im Q Q$ 

| Introduction<br>000 | Spectroscopy methods | Results<br>000000<br>0000 | Conclusion |
|---------------------|----------------------|---------------------------|------------|
|                     |                      |                           |            |

## Temporal boundary effects

- boundary effects expected to decay as  $e^{-2m_{\pi}t}$  near the chiral limit [Bruno et al. 2015]
- we do see large boundary effects in the spectrum of the lattice Laplacian



Figure: Smallest and largest retained EV of the lattice Laplacian normalized by their plateau average ( $N_{cfg} = 26$ ). Lowest EV offset for legibility.



Figure: Correlated single-exponential fits to the rotated correlators in [0,1,1]  $A_1^+$ .

| Spectroscopy methods |                | Conclusion |
|----------------------|----------------|------------|
|                      | 000000<br>0000 |            |

evaluate correlation functions

$$D_i(t) = \left\langle V^{(\mathbf{d},\Lambda)}(t_0+t) ar{O}^{(\mathbf{d},\Lambda)}_i(t_0) 
ight
angle$$

•  $V^{(\mathbf{d},\Lambda)}$  are linear combinations of

$$(V_R)^a_\mu = Z_V (1 + b_V a m_q) \left\{ V^a_\mu + a c_V \tilde{\partial}_\nu T^a_{\mu\nu} 
ight\}$$

that transform irreducibly under the lattice symmetries

- nonperturbative Z<sub>V</sub> [Dalla Brida '15]
   one-loop b<sub>V</sub>, c<sub>V</sub> [Aoki, Frezzotti, Weisz '99]
- GEVP eigenvectors from "ordinary" correlation matrix gives optimized current correlation functions

$$\hat{D}_i(t) = (D(t), v_i) \stackrel{t \to \infty}{=} \langle 0 | V^{(\mathbf{d}, \Lambda)} | \mathbf{d}\Lambda i \rangle \langle \mathbf{d}\Lambda i | \bar{O}_i^{(\mathbf{d}, \Lambda)} | 0 \rangle \times \mathrm{e}^{-E_i^{(\mathbf{d}, \Lambda)} t}$$

| Introduction<br>000 | Spectroscopy methods<br>000000 | <b>Results</b><br>000000<br>0000 | Conclusion |
|---------------------|--------------------------------|----------------------------------|------------|
|                     |                                |                                  |            |

$$\hat{D}_i(t) = \langle 0 | V^{(\mathbf{d},\Lambda)} | \mathbf{d}\Lambda i 
angle \, \langle \mathbf{d}\Lambda i | ar{D}_i^{(\mathbf{d},\Lambda)} | 0 
angle imes \mathrm{e}^{-E_i^{(\mathbf{d},\Lambda)}t}$$

the three ratios all tend to the desired matrix element

$$\begin{split} R_{1}^{(i)}(t) &= \frac{\hat{D}_{i}(t)}{\hat{C}_{ii}^{\frac{1}{2}}(t)e^{-\frac{1}{2}E_{i}t}}, \\ R_{2}^{(i)}(t) &= \frac{\hat{D}_{i}(t)\langle \mathbf{d}\Lambda i | \bar{O}_{i}^{(\mathbf{d},\Lambda)} | 0 \rangle}{\hat{C}_{ii}(t)}, \\ R_{3}^{(i)}(t) &= \frac{\hat{D}_{i}(t)}{\langle \mathbf{d}\Lambda i | \bar{O}_{i}^{(\mathbf{d},\Lambda)} | 0 \rangle e^{-E_{i}t}}, \end{split}$$