Extracting scattering and resonance properties from the lattice

Maxwell T. Hansen

Institut für Kernphysik and HIM
Johannes Gutenberg Universität
Mainz, Germany
February 10th, 2016

JLab Physics

JLab Physics

JLab Physics

CLASI 2 Torus
Magnet complete

JLab Physics

CLASI 2 Torus
Magnet complete
start baking data next year!

CLASI 2 Torus
Magnet complete
start baking data next year!

$p \gamma \rightarrow N \rho \rightarrow N \pi \pi$

Resonances are not directly detected.
Outgoing hadrons are used to reconstruct resonance properties.
It is thus highly valuable to predict these transition amplitudes from the underlying theory of QCD

$p \gamma \rightarrow N \rho \rightarrow N \pi \pi$

Resonances are not directly detected.
Outgoing hadrons are used to reconstruct resonance properties.
It is thus highly valuable to predict these transition amplitudes from the underlying theory of QCD

Combining accurake, model-independent predictions with experiment will lead to a deeper understanding of QCD's rich resonance structure

What can we extract from the lattice? We are trying to evaluate a difficult integral numerically

$$
\text { observable }=\int \mathcal{D} \phi e^{i S}\left[\begin{array}{c}
\text { interpolator } \\
\text { for observable }
\end{array}\right]
$$

What can we extract from the lattice?
We are trying to evaluate a difficult integral numerically
observable $=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}\text { interpolator } \\ \text { for observable }\end{array}\right]$
To do so we have to make four compromises

What can we extract from the lattice?

We are trying to evaluate a difficult integral numerically

$$
\text { observable }=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}
\text { interpolator } \\
\text { for observable }
\end{array}\right]
$$

To do so we have to make four compromises

What can we extract from the lattice?

 We are trying to evaluate a difficult integral numerically$$
\text { observable }=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}
\text { interpolator } \\
\text { for observable }
\end{array}\right]
$$

To do so we have to make four compromises

3 Unphysical pion masses $M_{\pi, \text { lattice }}>M_{\pi, \text { our universe }}$ But calculations at the physical pion mass do now exist

What can we extract from the lattice?

 We are trying to evaluate a difficult integral numerically $\left(\begin{array}{c}\left(\begin{array}{c}\text { observable? } \\ \text { discretized, inite volume, } \\ \text { Euclidean, heary pions }\end{array}\right.\end{array}\right)=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}\text { interpolator } \\ \text { for observable }\end{array}\right]$To do so we have to make four compromises

3 Unphysical pion masses $M_{\pi, \text { lattice }}>M_{\pi, \text { our universe }}$ But calculations at the physical pion mass do now exist

What can we extract from the lattice?

 Not possible to directly calculate

What can we extract from the lattice?

 Not possible to directly calculate
multi-particle in- and outstates

What can we extract from the lattice?

 Not possible to directly calculate
multi-particle in- and outstates
amputate and put on-shell
$\langle\pi \pi$, out $| \pi \pi$, in $\rangle=\frac{}{\langle 0| \tilde{\pi}\left(p^{\prime}\right) \tilde{\pi}\left(k^{\prime}\right) \tilde{\pi}(p) \tilde{\pi}(k)|0\rangle}$

What can we extract from the lattice?

 Not possible to directly calculate
multi-particle in- and outstates
amputate and put on-shell
$\langle\pi \pi$, out $| \pi \pi$, in $\rangle=\frac{\langle 0| \tilde{\pi}\left(p^{\prime}\right) \tilde{\pi}\left(k^{\prime}\right) \tilde{\pi}(p) \tilde{\pi}(k)|0\rangle}{}$

$$
\langle N \pi \pi, \text { out }| \mathcal{J}_{\mu}(x)|N\rangle=\langle 0| \tilde{N}\left(p_{1}^{\prime}\right) \tilde{\pi}\left(p_{2}^{\prime}\right) \tilde{\pi}\left(p_{3}^{\prime}\right) \mathcal{J}_{\mu}(x) \tilde{N}(P)|0\rangle
$$

What can we extract from the lattice?

 Not possible to directly calculate
$\langle\underline{\pi \pi|\pi \pi\rangle}$

$\langle\underline{N \pi}| \mathcal{J}_{\mu}|N\rangle$

multi-particle in- and outstates
amputate and put on-shell
$\langle\pi \pi$, out $| \pi \pi$, in $\rangle=\langle 0| \tilde{\pi}\left(p^{\prime}\right) \tilde{\pi}\left(k^{\prime}\right) \tilde{\pi}(p) \tilde{\pi}(k)|0\rangle$

$$
\langle N \pi \pi, \text { out }| \mathcal{J}_{\mu}(x)|N\rangle=\langle 0| \tilde{N} \underline{\text { amputate and put on-shell }} \frac{\left(p_{1}^{\prime}\right) \tilde{\pi}\left(p_{2}^{\prime}\right) \tilde{\pi}\left(p_{3}^{\prime}\right) \mathcal{J}_{\mu}(x) \tilde{N}(P)|0\rangle}{}
$$

Requires Minkowski momenta and infinite volume

What can we extract from the lattice?

Instead we can only access

$H_{\mathrm{QCD}}|n, L\rangle=|n, L\rangle \frac{E_{n}(L)}{\uparrow} \quad \frac{\langle n, L, " N \pi \pi "| \mathcal{J}_{\mu}(x)|" N ", L\rangle}{\uparrow}$
finite-volume energies and matrix elements labels in quotes indicate quantum numbers

What can we extract from the lattice?

 Instead we can only access$$
H_{\mathrm{QCD}}|n, L\rangle=|n, L\rangle \frac{E_{n}(L)}{\uparrow} \quad \frac{\langle n, L, " N \pi \pi "| \mathcal{J}_{\mu}(x)|" N ", L\rangle}{\uparrow}
$$

finite-volume energies and matrix elements labels in quotes indicate quantum numbers

How can we determine

$\langle\pi \pi$, out $| \pi \pi$, in \rangle and $\langle N \pi \pi$, out $| \mathcal{J}_{\mu}(x)|N\rangle$
from
$E_{n}(L)$ and $\langle n, L, " N \pi \pi "| \mathcal{J}_{\mu}(x)|" N ", L\rangle$?

It is possible to derive relations between finite- and infinite-volume physics

It is possible to derive relations between finite- and infinite-volume physics
Two-particle scattering

It is possible to derive relations between

 finite- and infinite-volume physicsTwo-particle scattering

Photo- and electroproduction
$2 \mid$
$\uparrow=\bar{L}_{E_{1}(L)}^{E_{2}(L)}$

It is possible to derive relations between

 finite- and infinite-volume physicsTwo-particle scattering

Photo- and electroproduction
$2|\mathcal{J}| 1$
$2+\mathcal{J} \mid 2$

Three-particle scattering

Finite volume

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite
L large enough to ignore $e^{-m L}$

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite
L large enough to ignore $e^{-m L}$

Assume lattice effects are small and accommodated elsewhere Work in continuum field theory throughout

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite
L large enough to ignore $e^{-m L}$

Assume lattice effects are small and accommodated elsewhere Work in continuum field theory throughout

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite
L large enough to ignore $e^{-m L}$ quantum field theory

generic relativistic QFT

 1. Include all interactions
2. no power-counting scheme

Not possible to directly calculate scattering observables to all orders

But it is possible to derive general, all-orders relations to finite-volume quantities

Assume lattice effects are small and accommodated elsewhere Work in continuum field theory throughout

Two-to-two scattering

For now assume...
identical scalars, mass m
\mathbb{Z}_{2} symmetry

Two-to-two scattering

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \underset{\text { two-particle interpolator }}{\mathcal{O}^{\dagger}}(0)|0\rangle
$$

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Two-to-two scattering

For now assume...
identical scalars, mass m
\mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

Euclidean convention
two-particle interpolator

$$
P=\left(P_{4}, \vec{P}\right)=\left(P_{4}, 2 \pi \vec{n} / L\right)
$$

but allow P_{4} to be real or imaginary

Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Two-to-two scattering

For now assume...
identical scalars, mass m
\mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

Euclidean convention

$$
P=\left(P_{4}, \vec{P}\right)=\left(P_{4}, 2 \pi \vec{n} / L\right)
$$

but allow P_{4} to be real or imaginary
CM frame energy is then $E^{* 2}=-P_{4}^{2}-\vec{P}^{2}$
Require $E^{*}<4 m$ to isolate two-to-two scattering

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Two-to-two scattering

For now assume... identical scalars, mass m \mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

At fixed L, \vec{P}, poles in C_{L} give finite-volume spectrum

C_{L} analytic structure

C_{∞} analytic structure

Two-to-two scattering

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

At fixed L, \vec{P}, poles in C_{L} give finite-volume spectrum

Calculate $C_{L}(P)$ to all orders in perturbation theory and determine locations of poles.
C_{L} analytic structure

$$
\begin{aligned}
& C_{L}(P)=\mathcal{O}^{\dagger} \bullet\left(\mathcal{O}+\mathcal{O}^{\dagger} \bullet i K\right)(\mathcal{O} \\
& +\mathcal{O}^{\dagger} \bullet i K \backsim(O) \quad \bullet \cdots
\end{aligned}
$$

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

If $E^{*}<4 m$ then $\begin{aligned} & K_{L}=K_{\infty}+\mathcal{O}\left(e^{-m L}\right) \\ & \Delta_{L}=\Delta_{\infty}+\mathcal{O}\left(e^{-m L}\right)\end{aligned}$
Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Now we introduce an important identity.

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Now we introduce an important identity.

all four-momenta are projected on shell.
Physical, propagating stakes give dominate finite-volume effects.

Lüscher, M. Nucl. Phys B354, 531-578 (1991)

Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

zero Fs
$C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+$

$C_{L}(E, \vec{P})=C_{\infty}^{\text {zero Fs }}(E, \vec{P})+A A_{F}^{\text {one }}\left(A^{\prime}\right)+$

$$
\begin{aligned}
C_{L}(E, \vec{P}) & \left.=C_{\infty}^{\text {zero Es }}(E, \vec{P})+A A^{\text {one } \mathrm{F}} A^{\prime}\right)+ \\
& =\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
C_{L}(E, \vec{P}) & =C_{\infty}^{\text {zero Es }}(E, \vec{P})+A A^{\text {one }} \boldsymbol{A} \\
& =\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}|0\rangle
\end{aligned}
$$

$$
C_{L}(E, \vec{P})=C_{\infty}^{\text {zero }(E, \vec{P})+A \text { one }}
$$

When we factorize diagrams and group infinite-volume parts... physical observables emerge!

Review...

Review...
1

Review...
1

Review...

1

$$
+O \cdot i K!i K!(O+\cdots
$$

$$
C_{L}(P)=C_{\infty}(P)
$$

Review...

1

$$
\because(D)=\Theta_{\infty}(D)
$$

We deduce...

$$
C_{L}(P)=C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A
$$

Review...

1

$$
C_{L}(P)=C_{\infty}(P)
$$

We deduce...

poles are in here

P_{4}

$$
C_{L}(P)=C_{\infty}(P)-A \xlongequal[F]{1+\mathcal{M}_{2 \rightarrow 2} F} A
$$

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to

$$
\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0
$$

Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Matrices defined using angular-momentum states

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to

$$
\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0
$$

Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Matrices defined using angular-momentum states

diagonal matrix, parametrized by $\delta_{\ell}\left(E^{*}\right)$

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to
$\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0$
Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Matrices defined using angular-momentum states

diagonal matrix, parametrized by $\delta_{\ell}\left(E^{*}\right)$
$F \equiv$ non-diagonal matrix of known geometric functions

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to
$\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0$
Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Matrices defined using angular-momentum states

diagonal matrix, parametrized by $\delta_{\ell}\left(E^{*}\right)$
$F \equiv$ non-diagonal matrix of known geometric functions

difference of two-particle loops depends on in finite and infinite volume
L, E, \vec{P}

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to
$\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0$
Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)
Matrices defined using angular-momentum states

diagonal matrix, parametrized by $\delta_{\ell}\left(E^{*}\right)$
$F \equiv$ non-diagonal matrix of known geometric functions

difference of two-particle loops depends on in finite and infinite volume $\quad L, E, P$
At low energies, lowest partial waves dominate $\mathcal{M}_{2 \rightarrow 2}$ $\begin{aligned} & \text { e.g. s-wave only } \\ & \text { with some }\end{aligned} \longrightarrow \cot \delta\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0$ rearranging scattering phase known function

Using the result (p-wave)

$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result (p-wave)

$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result (p-wave)

$\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result (p-wave)

$\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result (p-wave)

$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

$\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to

$$
\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0
$$

Has since been generalized to include...

 non-indentical particles particles with spin

MTH and Sharpe, Phys.Rev. D86 (2012) 016007 Briceño and Davoudi, Phys.Rev. D88 (2013) 094507 Briceño, Phys. Rev. D 89, 074507 (2014)

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to

$$
\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0
$$

Has since been generalized to include...

 non-indentical particles multiple two-particle channels particles with spinMTH and Sharpe, Phys.Rev. D86 (2012) 016007 Briceño and Davoudi, Phys.Rev. D88 (2013) 094507 Briceño, Phys. Rev. D 89, 074507 (2014)

The basic form of the equation stays the same, but the matrix space and definition of F change

Multiple two-particle channels

Must now include a channel index

$$
\operatorname{det}\left[\left(\begin{array}{ll}
\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\
\mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
F_{a} & 0 \\
0 & F_{b}
\end{array}\right)\right]=0
$$

Multiple two-particle channels

Must now include a channel index jet MTH and Sharpe/Briceño and Davoudi

$$
\left[\left(\begin{array}{ll}
\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\
\mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
F_{a} & 0 \\
0 & F_{b}
\end{array}\right)\right]=0
$$

Already used in JLab study of $\pi K, \eta K$
$\mathcal{M}(\pi K \rightarrow \eta K) \sim \sqrt{1-\eta^{2}}$

Wilson, Dudek, Edwards, Thomas, Phys. Rev. D 91, 054008 (2015) arXiv: 1411.2004

Multiple two-particle channels

Must now include a channel index jet MTH and Sharpe/Briceño and Davoudi

$$
\left[\left(\begin{array}{ll}
\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\
\mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
F_{a} & 0 \\
0 & F_{b}
\end{array}\right)\right]=0
$$

As well as JLab rho study with $\pi \pi, K \bar{K}$

$$
\mathcal{M}(\pi \pi \rightarrow K \bar{K}) \sim \sqrt{1-\eta^{2}}
$$

Wilson, Briceño, Dudek, Edwards, Thomas, arXiv:1507:02599

Two-particle scattering

Photo- and electroproduction

Three-particle scattering

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Insert a complete set finite-volume of states

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Insert a complete set finite-volume of states

$$
C_{L}(P) \underset{P_{4} \rightarrow i E_{n}}{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$ $\xrightarrow[0]{n}$
How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

Insert a complete set finite-volume of states

$$
C_{L}(P) \xrightarrow[P_{4} \rightarrow i E_{n}]{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Now compare this to our factorized result

$$
C_{L}(P)=C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$ $\xrightarrow{2}$
How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

Insert a complete set finite-volume of states

$$
C_{L}(P) \xrightarrow[P_{4} \rightarrow i E_{n}]{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Now compare this to our factorized result

$$
\begin{aligned}
C_{L}(P) & =C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A \\
& \xrightarrow[P_{4} \rightarrow i E_{n}]{ } \quad \frac{\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
\end{aligned}
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Insert a complete set finite-volume of states

$$
C_{L}(P) \xrightarrow[P_{4} \rightarrow i E_{n}]{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Now compare this to our factorized result

$$
\begin{gathered}
C_{L}(P)=C_{\infty}(P)-A^{F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A} A \begin{array}{c}
\mathcal{R} \text { is the residue } \\
\text { of this matrix }
\end{array} \\
\overrightarrow{P_{4} \rightarrow i E_{n}} \quad \frac{\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
\end{gathered}
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Insert a complete set finite-volume of states

$$
C_{L}(P) \underset{P_{4} \rightarrow i E_{n}}{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Now compare this to our factorized result

$$
C_{L}(P)=C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A \quad \begin{aligned}
& \mathcal{R} \text { is the residue } \\
& \text { of this matrix }
\end{aligned}
$$

$$
\overrightarrow{P_{4} \rightarrow i E_{n}}
$$

$$
\frac{\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?

$$
L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables? $L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

One has the freedom to choose \mathcal{O}^{\dagger} such that $\mathcal{O}^{\dagger}|0\rangle=\mathcal{J}_{\mu}|\pi\rangle$. (Finite-volume effects are exponentially suppressed for single particles.)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

 $\xrightarrow{2}$How can we get this from finite-volume observables?

$$
L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

One has the freedom to choose \mathcal{O}^{\dagger} such that $\mathcal{O}^{\dagger}|0\rangle=\mathcal{J}_{\mu}|\pi\rangle$.

Abstract

(Finite-volume effects are exponentially suppressed for single particles.)

$$
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}=
$$

$$
\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle
$$

R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?

$$
L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

One has the freedom to choose \mathcal{O}^{\dagger} such that $\mathcal{O}^{\dagger}|0\rangle=\mathcal{J}_{\mu}|\pi\rangle$.

(Finite-volume effects are exponentially suppressed for single particles.)

get this from the lattice

$$
\begin{array}{rc}
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}= & \text { experimental } \\
\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle
\end{array}
$$

R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?

$$
L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

One has the freedom to choose \mathcal{O}^{\dagger} such that $\mathcal{O}^{\dagger}|0\rangle=\mathcal{J}_{\mu}|\pi\rangle$.

(Finite-volume effects are exponentially suppressed for single particles.)

get this from the lattice

$$
\frac{\begin{array}{c}
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}=
\end{array} \begin{array}{c}
\text { experimental } \\
\text { observable }
\end{array}}{\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle} \begin{array}{r}
\mathcal{R}\left(E_{n}, \vec{P}, L\right)=-\operatorname{Residue}_{E_{n}}\left[\frac{1}{F^{-1}+\mathcal{M}_{2 \rightarrow 2}}\right]
\end{array}
$$

R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

get this from the lattice

$$
\begin{array}{rc}
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}= & \begin{array}{c}
\text { experimental } \\
\text { observable }
\end{array} \\
\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle
\end{array}
$$

Briceño, MTH, Walker-Loud/Briceño, MTH

Photoproduction in the rho channel

Briceño, Dudek, Edwards, Schultz, Thomas, Wilson arXiv: 1507.6622

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

get this from the lattice

$$
\begin{array}{rc}
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}= & \begin{array}{c}
\text { experimental } \\
\text { observable }
\end{array} \\
\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle
\end{array}
$$

Briceño, MTH, Walker-Loud/Briceño, MTH

Photoproduction in the rho channel

Briceño, Dudek, Edwards, Schultz, Thomas, Wilson arXiv: 1507.6622

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

Result is very general non-indentical particles - $\neq \bullet$ multiple two-particle channels
 particles with spin

R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

Result is very general non-indentical particles - $\neq 0$ multiple two-particle channels
 particles with spin

Formalism is in place to give Lallice QCD predictions of this process (ignoring three particles)
R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)

> Two-to-two transitions

Formalism complete non-indentical particles - \neq multiple two-particle channels

R. A. Briceño, MTH, arXiv: 1509.08507

Two-to-two transitions

$$
\left.\langle\pi \pi, \text { out }| \mathcal{J}_{\mu} \mid \pi \pi, \text { in }\right\rangle \equiv
$$

Formalism complete non-indentical particles

R. A. Briceño, MTH, arXiv: 1509.08507

Required to extract resonance form factors

Two-particle scattering

Photo- and electroproduction

Three-particle scattering

Three-to-three scattering

For now assume...
identical scalars, mass m
\mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}_{\mathbb{K}}^{\dagger}(0)|0\rangle \underbrace{\text { three-pion }}_{\text {interpolator }}
$$

Three-to-three scattering

\mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}_{\Gamma}^{\dagger}(0)|0\rangle
$$

Calculate $C_{L}(P)$ to all orders in perturbation theory and determine locations of poles.

Require $m<E^{*}<5 m$ to isolate three-particle states

Recall for two particles we started with a "skeleton expansion"

$$
C_{L}(P)=\bigcirc 0(O)+O \cdot(O)+(O)!(i K)!(O)+\cdots
$$

Recall for two particles we started with a "skeleton expansion"

So now we need the same for three...
$C_{L}(E, \vec{P}) \stackrel{?}{=} \bigcirc \bigcirc+\bigcirc 0=0+0+\cdots$

Recall for two particles we started with a "skeleton expansion"

So now we need the same for three...

No! We also need diagrams like

Disconnected diagrams in
lead to singularities that invalidate the derivation

New skeleton expansion

Kernel definitions:

New skeleton expansion

Kernel definitions:

$$
\begin{aligned}
& O \equiv x+x \longmapsto x+\cdots+\cdots \\
& =\equiv+\cdots+\cdots
\end{aligned}
$$

New skeleton expansion

$+\cdots$

Kernel definitions:

$$
\begin{aligned}
& \bullet=x+\theta^{+}+\cdots \\
& 0=x+\cdots+\cdots+i
\end{aligned}
$$

New skeleton expansion

$+\cdots$

Kernel definitions:

$$
\begin{aligned}
& O B+x \ll+\cdots+\cdots \\
& \because \in+\cdots
\end{aligned}
$$

Significantly more complicated than two-particle story

Three-to-three scattering

1. Work out the three particle skeleton expansion

Three-to-three scattering

1. Work out the three particle skeleton expansion $x_{L}(E, \vec{P})=\bigcirc=0+\bigcirc=0+\bigcirc=0=0+\cdots$

2. Break diagrams into finite- and infinite-volume parts

Three-to-three scattering

1. Work out the three particle skeleton expansion $C_{L}(E, \vec{P})=\bigcirc O+\bigcirc=0+\bigcirc=0=0+\cdots$
2. Break diagrams into finite- and infinite-volume parts
3. Organize and sum terms to identify infinike-volume observables

Three-to-three scattering

1. Work out the three particle skeleton expansion

2. Break diagrams into finite- and infinite-volume parts
3. Organize and sum terms to identify infinile-volume observables

Major complicating factors:

More diagram topologies, more degrees of freedom, three-to-three amplitude contains "long distance" kinematic poles

Three-to-three scattering

Current status:

Formalism is complete for the simplest three-scalar system
General, model-independent relation between finite-volume energies and three-to-three scattering amplitude

Derived using a generic relativistic field theory
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

Three-to-three scattering

Current status:

Formalism is complete for the simplest three-scalar system
General, model-independent relation between
finite-volume energies and three-to-three scattering amplitude
Derived using a generic relativistic field theory
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

Important caveats:

Identical particles with no two-to-three transitions

$$
\pi \pi \pi \rightarrow \pi \pi \pi
$$

Requires that two-particle scattering phase is bounded

$$
\left|\delta_{\ell}(E)\right|<\pi / 2
$$

Three-to-three scattering

To check the result we have expanded the lowest threeparticle energy in powers of $1 / L$.

$$
E=3 m+\frac{a_{3}}{L^{3}}+\frac{a_{4}}{L^{4}}+\frac{a_{5}}{L^{5}}+\frac{a_{6}}{L^{6}}+\mathcal{O}\left(1 / L^{7}\right)
$$

Three-to-three scattering

To check the result we have expanded the lowest threeparticle energy in powers of $1 / L$.

$$
E=3 m+\frac{a_{3}}{L^{3}}+\frac{a_{4}}{L^{4}}+\frac{a_{5}}{L^{5}}+\frac{a_{6}}{L^{6}}+\mathcal{O}\left(1 / L^{7}\right)
$$

These terms were already known.
Our result agrees, providing a strong check K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775

Beane, Detmold, Savage, Phys. Rev. D76 (2007) 074507

Three-to-three scattering

To check the result we have expanded the lowest threeparticle energy in powers of $1 / L$.

$$
E=3 m+\frac{a_{3}}{L^{3}}+\frac{a_{4}}{L^{4}}+\frac{a_{5}}{L^{5}}+\frac{a_{6}}{L^{6}}+\mathcal{O}\left(1 / L^{7}\right)
$$

These terms were already known.
Our result agrees, providing a strong check
K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775

Beane, Detmold, Savage, Phys. Rev. D76 (2007) 074507
This part is new... turns out that relativistic effects enter at this order...

$$
\begin{aligned}
\frac{a_{6}}{a_{3}} & \equiv\left(\frac{a}{\pi}\right)^{3}\left[2532.01+\frac{16 \pi^{3}}{3}(3 \sqrt{3}-4 \pi) \log \left(\frac{m L}{2 \pi}\right)\right] \\
& -37.25 \frac{a^{2}}{m}+\frac{3 \pi a}{m^{2}}+6 \pi r a^{2}-\frac{\mathcal{M}_{3, \mathrm{thr}}}{48 m^{3} a_{3}}
\end{aligned}
$$

MTH and Sharpe, arXiv:1602.00324

Three-to-three scattering

To check the result we have expanded the lowest threeparticle energy in powers of $1 / L$.

$$
E=3 m+\frac{a_{3}}{L^{3}}+\frac{a_{4}}{L^{4}}+\frac{a_{5}}{L^{5}}+\frac{a_{6}}{L^{6}}+\mathcal{O}\left(1 / L^{7}\right)
$$

These terms were already known.
Our result agrees, providing a strong check
K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775

Beane, Detmold, Savage, Phys. Rev. D76 (2007) 074507
This part is new... turns out that relativistic effects enter at this order...

$$
\begin{array}{r}
\frac{a_{6}}{a_{3}} \equiv\left(\frac{a}{\pi}\right)^{3}\left[2532.01+\frac{16 \pi^{3}}{3}(3 \sqrt{3}-4 \pi) \log \left(\frac{m L}{2 \pi}\right)\right] \\
\text { MTH and Sharpe, arXiv: } 1602.00324
\end{array} \begin{gathered}
\text { independently in } \\
\begin{array}{c}
\text { checked } \\
\text { through } \phi^{4} \text { theory } \\
\text { through }\left(\lambda^{3}\right) \\
\text { MTH and Sharpe, }
\end{array} \\
\text { Phys. Rev. D 93, 014506 (2016) }
\end{gathered}
$$

Three-to-three scattering

To check the result we have expanded the lowest threeparticle energy in powers of $1 / L$.

$$
E=3 m+\frac{a_{3}}{L^{3}}+\frac{a_{4}}{L^{4}}+\frac{a_{5}}{L^{5}}+\frac{a_{6}}{L^{6}}+\mathcal{O}\left(1 / L^{7}\right)
$$

These terms were already known.
Our result agrees, providing a strong check
K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775

Beane, Detmold, Savage, Phys. Rev. D76 (2007) 074507
This part is new... turns out that relativistic effects enter at this order...

$$
\begin{aligned}
\frac{a_{6}}{a_{3}} & \equiv\left(\frac{a}{\pi}\right)^{3}\left[2532.01+\frac{16 \pi^{3}}{3}(3 \sqrt{3}-4 \pi) \log \left(\frac{m L}{2 \pi}\right)\right] \\
& -37.25 \frac{a^{2}}{m}+\frac{3 \pi a}{m^{2}}+6 \pi r a^{2}-\frac{\mathcal{M}_{3, \text { thr }}}{48 m^{3} a_{3}}
\end{aligned} \begin{gathered}
\text { relativistic three- } \\
\text { particle observable } \\
\text { Add in a known "long }
\end{gathered}
$$

MTH and Sharpe, arXiv:1602.00324

Currently underway:

Relax all simplifying assumptions:

Allow all particle types, allow two-to-three couplings, remove bound on phase shift

$$
K \pi \rightarrow K \pi \pi \quad N \pi \rightarrow N \pi \pi \quad N N N \rightarrow N N N
$$

Briceño, MTH, Sharpe, in development

Currently underway:

Relax all simplifying assumptions:

Allow all particle types, allow two-to-three couplings, remove bound on phase shift

$$
K \pi \rightarrow K \pi \pi \quad N \pi \rightarrow N \pi \pi \quad N N N \rightarrow N N N
$$

Briceño, MTH, Sharpe, in development

Use matching trick to recover transition amplitudes

Summary

Reviewed methods to map finite-volume observables into physically observable scattering and transition amplitudes

Summary

Reviewed methods to map finite-volume observables into physically observable scattering and transition amplitudes

Results come from studying all-orders expansions in generic relativistic quantum field theory
The work is technical and requires developing new tools and methods for each new system

Summary

Reviewed methods to map finite-volume observables into physically observable scattering and transition amplitudes

Results come from studying all-orders expansions in generic relativistic quantum field theory
The work is technical and requires developing new tools and methods for each new system

Can the scattering and Eransition amplitudes of QCD be extracted from Lattice QCD in a general, model independent way?

So far all signs point ko yes!

My work at JLab:

$p \gamma \rightarrow N \rho \rightarrow N \pi \pi$

Experimental groups at JLab are measuring exactly the kinds of processes accommodated by this formalism.

My work at JLab:

$p \gamma \rightarrow N \rho \rightarrow N \pi \pi$

Experimental groups at JLab are measuring exactly the kinds of processes accommodated by this formalism.

Lattice group at JLab leads the field in applying this kind of formalism

My work at JLab:

It would accelerate progress significantly
if I had the opportunity to continue developing and also to apply this formalism here at Jlab.

My work at JLab:

$p \gamma \rightarrow N \rho \rightarrow N \pi \pi$

It would accelerate progress significantly
if I had the opportunity to continue developing and also to apply this formalism here at Jlab.

The ideal scenario...

Regular interaction with experimental, lattice and theory groups:
Identifying the most relevant observables,
Developing formalism to extract these,
Performing the calculations

My work at JLab:
 One example of symbiosis...

Formalism can also be applied in the "other direction" to gain insight on lattice observables

My work at JLab:

More concretely...

My work at JLab:

More concretely...

In one to two years:

The formalism needed for $N \pi \rightarrow N \pi \pi$ and $N \gamma \rightarrow N^{*} \rightarrow N \pi \pi$ expected to be complete.

First lattice studies of three-particle systems

$$
K \pi \rightarrow K \pi \pi \quad \omega \rightarrow \pi \pi \pi
$$

My work at JLab:

More concretely...

In one to two years:

The formalism needed for $N \pi \rightarrow N \pi \pi$ and $N \gamma \rightarrow N^{*} \rightarrow N \pi \pi$ expected to be complete.

First lattice studies of three-particle systems

$$
K \pi \rightarrow K \pi \pi \quad \omega \rightarrow \pi \pi \pi
$$

In five years:

Automated result for \mathbf{n}-body scattering and transitions implemented in a publicly available code library

My work at JLab:

More concretely...

In one to two years:

The formalism needed for $N \pi \rightarrow N \pi \pi$ and $N \gamma \rightarrow N^{*} \rightarrow N \pi \pi$ expected to be complete.

First lattice studies of three-particle systems

$$
K \pi \rightarrow K \pi \pi \quad \omega \rightarrow \pi \pi \pi
$$

In five years:

Automated result for \mathbf{n}-body scattering and transitions implemented in a publicly available code library

> Thanks for listening!

Backup Slides

Two-to-two transition amplitudes

Infinite volume

$$
i \mathcal{M}_{3 \rightarrow 3} \equiv \begin{gathered}
\text { Sum of all connected Feynman diagrams } \\
\text { with six external legs }
\end{gathered}
$$

Infinite volume

$i \mathcal{M}_{3 \rightarrow 3} \equiv \begin{gathered}\text { Sum of all connected Feynman diagrams } \\ \text { with six external legs }\end{gathered}$

Infinite volume

$i \mathcal{M}_{3 \rightarrow 3} \equiv \begin{gathered}\text { Sum of all connected Feynman diagrams } \\ \text { with six external legs }\end{gathered}$

Certain external momenta put this on-shell!

Infinite volume

$i \mathcal{M}_{3 \rightarrow 3} \equiv \begin{gathered}\text { Sum of all connected Feynman diagrams } \\ \text { with six external legs }\end{gathered}$

Certain external momenta put this on-shell!
$\mathcal{M}_{3 \rightarrow 3}$ has kinematic singularities at certain momenta

No dominance of lowest partial waves

Infinite volume

Degrees of freedom for three on-shell particles with (E, \vec{P})

Infinite volume

Degrees of freedom for three on-shell particles with (E, \vec{P})

$$
\vec{k}, l, m
$$

New skeleton expansion

$+\cdots$

Compare to two-particle skeleton expansion

What is new here?

1. Degrees of freedom are different
two particles
three particles
two-particle angular momentum

$$
\vec{k}+\begin{gathered}
\text { two-particle angular } \\
\text { momentum }
\end{gathered}
$$

Our result only depends on finite-volume momentum

$$
\vec{k}=\frac{2 \pi}{L} \vec{n}
$$

What is new here?

1. Degrees of freedom are different two particles
two-particle angular momentum
three particles

$\vec{k}+$ two-particle angular momentum

Our result only depends on finite-volume momentum $\quad \vec{k}=\frac{2 \pi}{L} \vec{n}$
Quantization condition expressed using matrices with indices

$$
\vec{k}, \ell, m
$$

What is new here?

2. Three parkicle divergences

$$
\left.\left.\begin{array}{cc}
\text { Define } i \mathcal{M}_{\mathrm{df}, 3 \rightarrow 3} \\
=i \mathcal{M}_{3 \rightarrow 3}-\left[i \mathcal{M}_{2 \rightarrow 2} S i \mathcal{M}_{2 \rightarrow 2}\right.
\end{array}\right) \int i \mathcal{M}_{2 \rightarrow 2} S i \mathcal{M}_{2 \rightarrow 2} S i \mathcal{M}_{2 \rightarrow 2}+\ldots,\right]
$$

This subtraction emerges naturally in our finite-volume analysis

What is new here?

3. Must now worry about sum crossing kwo-particle unitary cusp

two particle energy

What is new here?

3. Must now worry about sum crossing two-particle unitary cusp

What is new here?

3. Must now worry about sum crossing kwo-particle unitary cusp
To remove cusp

Analytically continue principal value below threshold then interpolate to prescription-free subthreshold form

Polejaeva, K. and Rusetsky, A. Eur. Phys. J. A48 (2012) 67

What is new here?

3. Musk now worry about sum crossing kwo-particle unitary cusp

To remove cusp

$i \epsilon$ prescription $\longrightarrow \underset{\text { value }}{\text { principal }} \widetilde{\mathrm{PV}}$

What is new here?

3. Musk now worry about sum crossing kwo-particle unitary cusp
has a cusp

$i \widetilde{\mathcal{K}}_{2 \rightarrow 2}=>=$

What is new here?

3. Musk now worry about sum crossing kwo-particle unitary cusp

$$
\operatorname{iM}_{2 \rightarrow 2} \sim \underset{i \mathcal{M}_{\mathrm{df}, 3 \rightarrow 3}}{ } \stackrel{i \mathcal{K}_{2 \rightarrow 2}}{ }
$$

We relate these infinite-volume quantities to the finite-volume spectrum

Three-particle result

$$
C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A_{3}^{\prime} i F_{3} \frac{1}{1-i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3} i F_{3}} A_{3}
$$

$$
\begin{aligned}
i F_{3} & \equiv \frac{i F}{2 \omega L^{3}}\left[\frac{1}{3}+\frac{1}{1-i \mathcal{M}_{L, 2 \rightarrow 2} i G} i \mathcal{M}_{L, 2 \rightarrow 2} i F\right] \\
i \mathcal{M}_{L, 2 \rightarrow 2} & \equiv i \mathcal{K}_{2 \rightarrow 2} \frac{1}{1-i F i \mathcal{K}_{2 \rightarrow 2}}
\end{aligned}
$$

All factors are matrices with indices \vec{k}, ℓ, m

Three-particle result

$$
C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A_{3}^{\prime} i F_{3} \frac{1}{1-i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3} i F_{3}} A_{3}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { sum-integral } \\
\text { difference }
\end{array} \\
& \quad i F_{3} \equiv \frac{i F}{2 \omega L^{3}}\left[\frac{1}{3}+\frac{1}{1-i \mathcal{M}_{L, 2 \rightarrow 2} i G} i \mathcal{M}_{L, 2 \rightarrow 2} i F\right] \\
& i \mathcal{M}_{L, 2 \rightarrow 2} \equiv i \mathcal{K}_{2 \rightarrow 2} \frac{1}{1-i F i \mathcal{K}_{2 \rightarrow 2}} \quad \begin{array}{l}
\text { encodes } \\
\text { switches }
\end{array} \\
& \qquad \begin{array}{ll}
\text { sum of all two-particle loops (with summed momenta) }
\end{array} \\
& =0
\end{aligned}
$$

All factors are matrices with indices \vec{k}, ℓ, m

Three-particle result

At fixed (L, \vec{P}), finite-volume spectrum is all solutions to

$$
\begin{gathered}
\operatorname{det}\left[1-i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3} i F_{3}\right]=0 \\
i F_{3} \equiv \frac{i F}{2 \omega L^{3}}\left[\frac{1}{3}+\frac{1}{1-i \mathcal{M}_{L, 2 \rightarrow 2} i G} i \mathcal{M}_{L, 2 \rightarrow 2} i F\right] \quad i \mathcal{M}_{L, 2 \rightarrow 2} \equiv i \mathcal{K}_{2 \rightarrow 2} \frac{1}{1-i F i \mathcal{K}_{2 \rightarrow 2}}
\end{gathered}
$$

Three-particle result

At fixed (L, \vec{P}), finite-volume spectrum is all solutions to

$$
\begin{gathered}
\text { det }\left[1-i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3} i F_{3}\right]=0 \\
{ }_{i F_{3} \equiv} \equiv \frac{i F}{2 \omega L^{3}}\left[\frac{1}{3}+\frac{1}{1-i \mathcal{M}_{L, 2 \rightarrow 2} i G} i \mathcal{M}_{L, 2 \rightarrow 2} i F\right] \quad i \mathcal{M}_{L, 2 \rightarrow 2} \equiv i \mathcal{K}_{2 \rightarrow 2} \frac{1}{1-i F i \mathcal{K}_{2 \rightarrow 2}} \\
\text { MTH and Sharpe, Phys. Rev. D90, 116003(2014) }
\end{gathered}
$$

Model independent general result of relativistic scalar field theory

Three-particle result

At fixed (L, \vec{P}), finite-volume spectrum is all solutions to

$$
\begin{gathered}
\text { det }\left[1-i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3} i F_{3}\right]=0 \\
i F_{3} \equiv \frac{i F}{2 \omega L^{3}}\left[\frac{1}{3}+\frac{1}{1-i \mathcal{M}_{L, 2 \rightarrow 2} i G} i \mathcal{M}_{L, 2 \rightarrow 2} i F\right] \quad i \mathcal{M}_{L, 2 \rightarrow 2} \equiv i \mathcal{K}_{2 \rightarrow 2} \frac{1}{1-i F i \mathcal{K}_{2 \rightarrow 2}} \\
\text { MTH and Sharpe, Phys. Rev. D90, 116003(2014) }
\end{gathered}
$$

Model independent general result of relativistic scalar field theory Assumes two-particle phase shift is bounded by $\pi / 2$

Three-particle result

 At fixed (L, \vec{P}), finite-volume spectrum is all solutions to$$
\begin{gathered}
\text { det }\left[1-i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3} i F_{3}\right]=0 \\
i F_{3} \equiv \frac{i F}{2 \omega L^{3}}\left[\frac{1}{3}+\frac{1}{1-i \mathcal{M}_{L, 2 \rightarrow 2} i G} i \mathcal{M}_{L, 2 \rightarrow 2} i F\right] \quad i \mathcal{M}_{L, 2 \rightarrow 2} \equiv i \mathcal{K}_{2 \rightarrow 2} \frac{1}{1-i F i \mathcal{K}_{2 \rightarrow 2}} \\
\text { MTH and Sharpe, Phys. Rev. D90, 116003(2014) }
\end{gathered}
$$

Model independent general result of relativistic scalar field theory Assumes two-particle phase shift is bounded by $\pi / 2$ Infinite matrices truncate if we truncate in angular momentum

Three-particle result

At fixed (L, \vec{P}), finite-volume spectrum is all solutions to

$$
\begin{gathered}
\text { det }\left[1-i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3} i F_{3}\right]=0 \\
i F_{3} \equiv \frac{i F}{2 \omega L^{3}}\left[\frac{1}{3}+\frac{1}{1-i \mathcal{M}_{L, 2 \rightarrow 2} i G} i \mathcal{M}_{L, 2 \rightarrow 2} i F\right] \quad i \mathcal{M}_{L, 2 \rightarrow 2} \equiv i \mathcal{K}_{2 \rightarrow 2} \frac{1}{1-i F i \mathcal{K}_{2 \rightarrow 2}} \\
\text { MTH and Sharpe, Phys. Rev. D90, 116003(2014) }
\end{gathered}
$$

Model independent general result of relativistic scalar field theory Assumes two-particle phase shift is bounded by $\pi / 2$ Infinite matrices truncate if we truncate in angular momentum

Strongest truncation is the isotropic limit, gives simple result

$$
\mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}\left(E_{n}^{*}\right)=-\left[F_{3, \text { iso }}\left(E_{n}, \vec{P}, L\right)\right]^{-1}
$$

Relating $i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ to $i \mathcal{M}_{3 \rightarrow 3}$

$+\cdots$

First we modify $C_{L}(E, \vec{P})$ to define $i \mathcal{M}_{L, 3 \rightarrow 3}$

Relating $i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ to $i \mathcal{M}_{3 \rightarrow 3}$

1. Amputate interpolaking fields

Relating $i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ to $i \mathcal{M}_{3 \rightarrow 3}$

$$
+\cdots
$$

$$
+\quad=
$$

$$
+\int_{\frac{1-1}{1-1}+1}^{\frac{1-1}{2-1}}+\cdots
$$

First we modify $C_{L}(E, \vec{P})$ to define $i \mathcal{M}_{L, 3 \rightarrow 3}$
2. Drop disconnected diagrams

Relating $i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ to $i \mathcal{M}_{3 \rightarrow 3}$

$$
\begin{aligned}
& \left.+{ }^{+\cdots} 00+\cdots\right\}
\end{aligned}
$$

First we modify $C_{L}(E, \vec{P})$ to define $i \mathcal{M}_{L, 3 \rightarrow 3}$
3. Symmetrize

Relating $i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ to $i \mathcal{M}_{3 \rightarrow 3}$

Replacing all loop momentum sums with i-epsilon prescription integrals gives
physical three-to-three scattering amplitude

$$
i \mathcal{M}_{3 \rightarrow 3}=\left.\lim _{L \rightarrow \infty}\right|_{i \epsilon} i \mathcal{M}_{L, 3 \rightarrow 3}
$$

Relating $i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ to $i \mathcal{M}_{3 \rightarrow 3}$

$$
\begin{gathered}
i \mathcal{M}_{L, 3 \rightarrow 3}=i \mathcal{D}_{L}+\mathcal{S}\left[\mathcal{L}_{L} i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3} \frac{1}{1-i F_{3} i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}} \mathcal{R}_{L}\right] \\
i \mathcal{M}_{3 \rightarrow 3}=\left.\lim _{L \rightarrow \infty}\right|_{i \epsilon} i \mathcal{M}_{L, 3 \rightarrow 3} \\
\text { MTH and Sharpe, Phys. Rev. D 92,114509 (2015) }
\end{gathered}
$$

Gives integral equation relating $i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ to $i \mathcal{M}_{3 \rightarrow 3}$

Completes formal story (for the setup considered!)

Relation only depends on on-shell scattering quantities

$1 / L$ expansions

In 1957, Huang and Yang determined energy shift for \mathbf{n} identical bosons in a box
K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775

$$
E_{0}(n, L)=\frac{4 \pi a}{M L^{3}}\left\{\binom{n}{2}-\left(\frac{a}{\pi L}\right)\binom{n}{2} \mathcal{I}+\left(\frac{a}{\pi L}\right)^{2}\left\{\binom{n}{2} \mathcal{I}^{2}-\left[\binom{n}{2}^{2}-12\binom{n}{3}-6\binom{n}{4}\right] \mathcal{J}\right\}\right\}+\mathcal{O}\left(L^{-6}\right)
$$

where a is the two-particle scattering length and

$$
\mathcal{I}=\lim _{\Lambda \rightarrow \infty} \sum_{\mathbf{i} \neq \mathbf{0}}^{|\mathbf{i}| \leq \Lambda} \frac{1}{|\mathbf{i}|^{2}}-4 \pi \Lambda=-8.91363291781 \quad \mathcal{J}=\sum_{\mathbf{i} \neq \mathbf{0}} \frac{1}{|\mathbf{i}|^{4}}=16.532315959
$$

$1 / L$ expansions

In 1957, Huang and Yang determined energy shift for \mathbf{n} identical bosons in a box
K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775

$$
E_{0}(n, L)=\frac{4 \pi a}{M L^{3}}\left\{\binom{n}{2}-\left(\frac{a}{\pi L}\right)\binom{n}{2} \mathcal{I}+\left(\frac{a}{\pi L}\right)^{2}\left\{\binom{n}{2} \mathcal{I}^{2}-\left[\binom{n}{2}^{2}-12\binom{n}{3}-6\binom{n}{4}\right] \mathcal{J}\right\}\right\}+\mathcal{O}\left(L^{-6}\right)
$$

where a is the two-particle scattering length and

$$
\mathcal{I}=\lim _{\Lambda \rightarrow \infty} \sum_{\mathbf{i} \neq \mathbf{0}}^{|\mathbf{i}| \leq \Lambda} \frac{1}{|\mathbf{i}|^{2}}-4 \pi \Lambda=-8.91363291781 \quad \mathcal{J}=\sum_{\mathbf{i} \neq \mathbf{0}} \frac{1}{\left.\mathbf{i}\right|^{4}}=16.532315959
$$

In 2007 Beane, Detmold and Savage pushed the order to $1 / L^{6}$ and the latter two calculated to $1 / L^{7}$ the next year

Beane, S., Detmold, W. \& Savage, M. Phys. Rev. D76 (2007) 074507
Detmold, W. \& Savage, M. Phys. Rev. D77 (2008) 057502

At $1 / L^{6}$ a three-particle contact term appears

$1 / L$ expansions

Last year Detmold and Flynn performed a similar calculation for matrix elements
Detmold and Flynn, Phys. Rev. D91, 074509 (2015)

$$
\begin{aligned}
\langle n| J|n\rangle= & n \alpha_{1}+\frac{n \alpha_{1} a^{2}}{\pi^{2} L^{2}}\binom{n}{2} \mathcal{J}+\frac{\alpha_{2}}{L^{3}}\binom{n}{2} \\
& +\frac{2 n \alpha_{1} a^{3}}{\pi^{3} L^{3}}\binom{n}{2}\left\{\mathcal{K}\binom{n}{2}-\left[\mathcal{I} \mathcal{J}+4 \mathcal{K}\binom{n-2}{1}+\mathcal{K}\binom{n-2}{2}\right]\right\}-\frac{2 \alpha_{2} a}{\pi L^{4}}\binom{n}{2} \mathcal{I} \\
& +\frac{n \alpha_{1} a^{4}}{\pi^{4} L^{4}}\left[3 \mathcal{I}^{2} \mathcal{J}+\mathcal{L}\left(186-\frac{241 n}{2}+\frac{29}{2} n^{2}\right)+\mathcal{J}^{2}\left(\frac{n^{2}}{4}+\frac{3 n}{4}-\frac{7}{2}\right)\right. \\
& +\mathcal{I} \mathcal{K}(4 n-14)+\mathcal{U}(32 n-64)+\mathcal{V}(16 n-32)]+\mathcal{O}\left(1 / L^{5}\right)
\end{aligned}
$$

Here $\mathcal{I}, \mathcal{J}, \cdots$ are known geometric constants and α_{1}, α_{2} are one- and two-boson current couplings

Nonperturbative and non-relativistic

Non-relativistic Faddeev analysis
In 2012, Polejaeva and Rusetsky derived a Lüscher-like result using non-relativistic Faddeev equations
Polejaeva and Rusetsky, Eur. Phys. J. A48, 67 (2012)
Demonstrates that on-shell S-matrix determines spectrum Difficult to extract scattering from the formalism

Nonperturbative and non-relativistic

Non-relativistic Faddeev analysis
In 2012, Polejaeva and Rusetsky derived a Lüscher-like result using
non-relativistic Faddeev equations
Polejaeva and Rusetsky, Eur. Phys. J. A48, 67 (2012)
Demonstrates that on-shell S-matrix determines spectrum Difficult to extract scattering from the formalism

Dimer formalism
In 2013, Briceño and Davoudi studied three-particles in finite-volume using the Dimer formalism
Briceño and Davoudi, Phys. Rev. D87, 094507 (2013)
Recovered Lüscher result when two of the three become bound

$$
k \cot \delta=-k \cot \phi+\eta \frac{e^{-\gamma L}}{L}
$$

Final result involves an integral equation that one needs to solve numerically

Three-particle bound state

This year Meißner, Rios and Rusetsky determined the finite-volume energy shift to a three-body bound state

$$
\Delta E=c \frac{\kappa^{2}}{m} \frac{|A|^{2}}{(k L)^{3 / 2}} \exp (-2 \kappa L / \sqrt{3})+\cdots
$$

Meißner, Rios and Rusektsky. Phys. Rev. Lett. 114, 091602 (2015)

Assumes the unitary limit for two-particle scattering Result derived using non-relativistic quantum mechanics

Review...

Review...
1

Review...
1

Review...

1

$$
+O \cdot i K!i K!(O+\cdots
$$

$$
C_{L}(P)=C_{\infty}(P)
$$

Review...

1

$$
\because(D)=\Theta_{\infty}(D)
$$

We deduce...

$$
C_{L}(P)=C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A
$$

Review...

1

$$
C_{L}(P)=C_{\infty}(P)
$$

We deduce...

poles are in here

P_{4}

$$
C_{L}(P)=C_{\infty}(P)-A \xlongequal[F]{1+\mathcal{M}_{2 \rightarrow 2} F} A
$$

Scattering of multiple two-particle channels

$$
\pi \pi \rightarrow \bar{K} K \quad \pi K \rightarrow \eta K
$$

Make following replacements

$$
\overparen{i K} \rightarrow\left(\begin{array}{ll}
\left.\sqrt[\left(K_{1}+1\right)]{\left(i K_{1}+2\right.}\right) \\
\sqrt{\left(K_{2}+1\right)} & \left.\sqrt{\left(K_{2}+2\right)}\right)
\end{array}\right)
$$

And also for the rho meson

Wilson, Briceño, Dudek, Edwards, Thomas, arXiv:1507:02599

And also for the rho meson

Wilson, Briceño, Dudek, Edwards, Thomas, arXiv:1507:02599

