Chiral effective field theory for hadron and nuclear physics

Jose Manuel Alarcón

Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn

Biographical presentation

Biographical presentation

- Born in 1983 in Cartagena in the Region of Murcia (Spain).
- 2001 I started my studies in Physics at the University of Murcia.
- 2005 I received the 1st prize in the physics contest "Celebrando Ia Física" organized by the University of Murcia.
- 2006 I completed my studies with the best grades, receiving a special prize for it (Premio extraordinario fin de carrera).
- 2007 I finished the "Master of Advanced Physics", with specialization in theoretical physics, at the University of Valencia (maximum grade in Master Thesis).
- 2007 I started to work on my thesis under the supervision of Prof. Jose Antonio Oller, at the University of Murcia.
- Topic: Relativistic formulations of chiral EFT with baryons and application to πN scattering.

Biographical presentation

 2012 - I defended my thesis, entitled "Baryon Chiral Perturbation Theory in its manifestly covariant forms and the study of the πN dynamics & On the Y(2175) resonance". (Sobresaliente Cum Laude). • 2014 - Thesis awarded with the "Premio extraordinario de doctorado", given to the best thesis in physics defended in the period 2012-2013 at the University of Murcia. 2015 - Thesis awarded by the Nuclear Physics Division of the European Physical Society with the Dissertation Award (2012-2014) • July 2012 - I started to work in the group of Prof. Marc Vanderhaeghen at the Johannes Gutenberg University, Mainz.

- \bullet Working with V. Pascalutsa: Nucleon Polarizabilities and μH Lamb shift.
- September 2014 I started to work in Bonn.

• Application of EFT to *ab initio* many-body nuclear calculations.

Research topics

Application of chiral EFT with baryons to fundamental hadronic reactions:

• Understanding of the chiral dynamics of the hadronic processes at low energies.

Application of chiral EFT with baryons to fundamental hadronic reactions:

• Understanding of the chiral dynamics of the hadronic processes at low energies.

• Insight into the internal structure of the nucleon.

- Understanding of the chiral dynamics of the hadronic processes at low energies.
- Insight into the internal structure of the nucleon.
- πN scattering.

- Understanding of the chiral dynamics of the hadronic processes at low energies.
- Insight into the internal structure of the nucleon.
- πN scattering.
 - Fundamental hadronic reaction involving one baryon.

- Understanding of the chiral dynamics of the hadronic processes at low energies.
- Insight into the internal structure of the nucleon.
- πN scattering.
 - Fundamental hadronic reaction involving one baryon.
 - Long range part of the NN forces.

- Understanding of the chiral dynamics of the hadronic processes at low energies.
- Insight into the internal structure of the nucleon.
- πN scattering.
 - Fundamental hadronic reaction involving one baryon.
 - Long range part of the NN forces.
 - Not completely understood in the context of chiral dynamics

Application of chiral EFT with baryons to fundamental hadronic reactions:

- Understanding of the chiral dynamics of the hadronic processes at low energies.
- Insight into the internal structure of the nucleon.
- πN scattering.
 - Fundamental hadronic reaction involving one baryon.
 - Long range part of the NN forces.
 - Not completely understood in the context of chiral dynamics

Disagreement with dispersive approaches [Becher and Leutwyler, JHEP (2001)].

- Understanding of the chiral dynamics of the hadronic processes at low energies.
- Insight into the internal structure of the nucleon.
- πN scattering.
 - Fundamental hadronic reaction involving one baryon.
 - Long range part of the NN forces.
 - Not completely understood in the context of chiral dynamics
 - Disagreement with dispersive approaches [Becher and Leutwyler, JHEP (2001)].
 - Information about the internal scalar structure of the nucleon

- Understanding of the chiral dynamics of the hadronic processes at low energies.
- Insight into the internal structure of the nucleon.
- πN scattering.
 - Fundamental hadronic reaction involving one baryon.
 - Long range part of the NN forces.
 - Not completely understood in the context of chiral dynamics
 - Disagreement with dispersive approaches [Becher and Leutwyler, JHEP (2001)].
 - Information about the internal scalar structure of the nucleon ——> $\sigma_{\pi N}$

- Understanding of the chiral dynamics of the hadronic processes at low energies.
- Insight into the internal structure of the nucleon.
- πN scattering.
 - Fundamental hadronic reaction involving one baryon.
 - Long range part of the NN forces.
 - Not completely understood in the context of chiral dynamics
 - Disagreement with dispersive approaches [Becher and Leutwyler, JHEP (2001)].
 - Information about the internal scalar structure of the nucleon ——> $\sigma_{\pi N}$
 - Important hadronic uncertainty in direct detection of DM [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [Ellis, Olive and Savage PRD 77, (2008)].
 - Formation of elements needed for life [Berengut et. al., PRD 87, (2013)].

• The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:
 - At low energies above threshold IR, EOMS as well as Heavy Baryon ChPT give very similar results.

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:
 - At low energies above threshold IR, EOMS as well as Heavy Baryon ChPT give very similar results.
 - The inclusion of the Δ (1232) makes a difference in the prediction of the phenomenology at low energies

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:
 - At low energies above threshold IR, EOMS as well as Heavy Baryon ChPT give very similar results.
 - The inclusion of the $\Delta(1232)$ makes a difference in the prediction of the phenomenology at low energies \longrightarrow EOMS is clearly the best.

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:
 - At low energies above threshold IR, EOMS as well as Heavy Baryon ChPT give very similar results.
 - The inclusion of the $\Delta(1232)$ makes a difference in the prediction of the phenomenology at low energies \longrightarrow EOMS is clearly the best.

J. M. Alarcón (HISKP Bonn)

• EOMS + Δ (1232):

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:
 - At low energies above threshold IR, EOMS as well as Heavy Baryon ChPT give very similar results.
 - The inclusion of the $\Delta(1232)$ makes a difference in the prediction of the phenomenology at low energies \longrightarrow EOMS is clearly the best.

• EOMS + Δ (1232):

• Agreement with the dispersive approaches

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:
 - At low energies above threshold IR, EOMS as well as Heavy Baryon ChPT give very similar results.
 - The inclusion of the $\Delta(1232)$ makes a difference in the prediction of the phenomenology at low energies \longrightarrow EOMS is clearly the best.

• EOMS + Δ (1232):

Agreement with the dispersive approaches
 BChPT is reliable!

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:
 - At low energies above threshold IR, EOMS as well as Heavy Baryon ChPT give very similar results.
 - The inclusion of the $\Delta(1232)$ makes a difference in the prediction of the phenomenology at low energies \longrightarrow EOMS is clearly the best.

• EOMS + Δ (1232):

- Agreement with the dispersive approaches
- BChPT is reliable!
- Determination of $\sigma_{\pi N}$ from modern phenomenological information.

 $\sigma_{\pi N} = 59(7) \text{ MeV}$

[Alarcón, Martín Camalich and Oller, PRD 85 (2012)]

- The two manifestly Lorentz invariant schemes were used: Infrared Regularization (IR) and Extended-On-Mass-Shell (EOMS).
- Conclusions [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]:
 - At low energies above threshold IR, EOMS as well as Heavy Baryon ChPT give very similar results.
 - The inclusion of the $\Delta(1232)$ makes a difference in the prediction of the phenomenology at low energies \longrightarrow EOMS is clearly the best.

• EOMS + Δ (1232):

- Agreement with the dispersive approaches
- BChPT is reliable!
- Determination of $\sigma_{\pi N}$ from modern phenomenological information.

 $\sigma_{\pi N} = 59(7) \text{ MeV}$

- [Alarcón, Martín Camalich and Oller, PRD 85 (2012)]
- Analysis confirmed point by point by the Roy-Steiner analysis of [Hoferichter et al., PRL 115 (2015)]

Nucleon Polarizabilities and Lamb shift

Nucleon Polarizabilities

• Relativistic Chiral EFT+ Δ calculation of forward VVCS up to $O\left(\frac{p^4}{\Delta}\right)$ • Spin Polarizabilites:

J. M. Alarcón (HISKP Bonn)

10/18

Nucleon Polarizabilities

• Relativistic Chiral EFT+ Δ calculation of forward VVCS up to $O\left(\frac{p^4}{\Delta}\right)$ • Spin Polarizabilites:

J. M. Alarcón (HISKP Bonn)

10/18

Nucleon Polarizabilities

• Relativistic Chiral EFT+ Δ calculation of forward VVCS up to $O\left(\frac{p^4}{\Delta}\right)$ • Spin Polarizabilites:

J. M. Alarcón (HISKP Bonn)

10/18

$$T^{\mu\nu}(P,q) = -\left(g^{\mu\nu} + \frac{q^{\mu}q_{\nu}}{q^2}\right)T_1(\nu,Q^2) + \frac{1}{m_N^2}\left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right)\left(P^{\nu} - \frac{P \cdot q}{q^2}q^{\nu}\right)T_2(\nu,Q^2)$$

• The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\text{pol})}$ [Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014)].

(µeV)	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
$\Delta E_{2S}^{(\mathrm{pol})}$	-12(2)	-11.5	-18.5	-7.4(2.4)	-8.5(1.1)	-15.3(5.6)	-8.2 ^{+2.0} -2.5	-26.5

Phenomenological determinations (dispersion relations+data)

[1] K. Pachucki, Phys. Rev. A 60 (1999).
[2] A. P. Martynenko, Phys. Atom. Nucl. 69 (2006).
[3] D. Nevado and A. Pineda, Phys. Rev. C 77 (2008).
[4] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, (2011).

J. M. Alarcón (HISKP Bonn)

[5] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, (2012).
[6] M. Gorchtein, F. J. LLanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87 (2013).
[7] J. M. Alarcón, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014).
[8] C. Peset and A. Pineda Eur. Phys. J. A 51 (2015).

• The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\text{pol})}$ [Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014)].

(µeV)	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
$\Delta E_{2S}^{(\mathrm{pol})}$	-12(2)	-11.5	-18.5	-7.4(2.4)	-8.5(1.1)	-15.3(5.6)	-8.2 ^{+2.0} -2.5	-26.5

Phenomenological determinations (dispersion relations+data)

[1] K. Pachucki, Phys. Rev. A 60 (1999).
[2] A. P. Martynenko, Phys. Atom. Nucl. 69 (2006).
[3] D. Nevado and A. Pineda, Phys. Rev. C 77 (2008).
[4] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, (2011).

J. M. Alarcón (HISKP Bonn)

[5] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, (2012).
[6] M. Gorchtein, F. J. LLanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87 (2013).
[7] J. M. Alarcón, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014).
[8] C. Peset and A. Pineda Eur. Phys. J. A 51 (2015).

||/|8

• The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\text{pol})}$ [Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014)].

(µeV)	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
$\Delta E_{2S}^{(\mathrm{pol})}$	-12(2)	-11.5	-18.5	-7.4(2.4)	-8.5(1.1)	-15.3(5.6)	-8.2 ^{+2.0} -2.5	-26.5

Phenomenological determinations (dispersion relations+data)

[1] K. Pachucki, Phys. Rev. A 60 (1999).
[2] A. P. Martynenko, Phys. Atom. Nucl. 69 (2006).
[3] D. Nevado and A. Pineda, Phys. Rev. C 77 (2008).
[4] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, (2011).

J. M. Alarcón (HISKP Bonn)

[5] M. C. Birse and J.A. McGovern, Eur. Phys. J.A 48, (2012).
[6] M. Gorchtein, F. J. LLanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87 (2013).
[7] J. M. Alarcón, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014).
[8] C. Peset and A. Pineda Eur. Phys. J.A 51 (2015).

Nuclear Lattice Effective Field Theory

• Lattice techniques to study nuclear many-body problems with chiral EFT.

• Lattice techniques to study nuclear many-body problems with chiral EFT.

• 2N forces is crucial in studies of many-body nuclear interactions with chiral EFT:

• Lattice techniques to study nuclear many-body problems with chiral EFT.

• 2N forces is crucial in studies of many-body nuclear interactions with chiral EFT:

- Lattice techniques to study nuclear many-body problems with chiral EFT.
- 2N forces is crucial in studies of many-body nuclear interactions with chiral EFT:
 - Determination of NN LECs.

- Lattice techniques to study nuclear many-body problems with chiral EFT.
- 2N forces is crucial in studies of many-body nuclear interactions with chiral EFT:
 - Determination of NN LECs.
 - Study of the uncertainties.

- Lattice techniques to study nuclear many-body problems with chiral EFT.
- 2N forces is crucial in studies of many-body nuclear interactions with chiral EFT:
 - Determination of NN LECs.
 - Study of the uncertainties.

Future Projects

• Provide spatial picture of the charge and magnetic density of the baryon octet and densities of the decuplet.

• Provide spatial picture of the charge and magnetic density of the baryon octet and densities of the decuplet.

• Chiral EFT provides predictions for the peripheral region b~1/M $_{\pi}$.

• Provide spatial picture of the charge and magnetic density of the baryon octet and densities of the decuplet.

- Chiral EFT provides predictions for the peripheral region b~1/M $_{\pi}$.
- Extend the work of [Granados & Weiss, JHEP 1401 (2014)] to the octet and decuplet.

• Provide spatial picture of the charge and magnetic density of the baryon octet and densities of the decuplet.

• Chiral EFT provides predictions for the peripheral region b~1/M $_{\pi}$.

• Extend the work of [Granados & Weiss, JHEP 1401 (2014)] to the octet and

decuplet.

• Provide spatial picture of the charge and magnetic density of the baryon octet and densities of the decuplet.

• Chiral EFT provides predictions for the peripheral region b~1/M $_{\pi}$.

• Extend the work of [Granados & Weiss, JHEP 1401 (2014)] to the octet and

decuplet.

• Check the large-Nc relations in chiral EFT.

• Provide spatial picture of the charge and magnetic density of the baryon octet and densities of the decuplet.

• Chiral EFT provides predictions for the peripheral region b~1/M $_{\pi}$.

• Extend the work of [Granados & Weiss, JHEP 1401 (2014)] to the octet and

decuplet.

• Check the large-Nc relations in chiral EFT.

• We saw that different formulations with Δ are subdominant in Nc.

• Provide spatial picture of the charge and magnetic density of the baryon octet and densities of the decuplet.

• Chiral EFT provides predictions for the peripheral region b~1/M $_{\pi}$.

• Extend the work of [Granados & Weiss, JHEP 1401 (2014)] to the octet and

decuplet.

• Check the large-Nc relations in chiral EFT.

We saw that different formulations with Δ are subdominant in Nc.
 They do not modify the correct Nc scaling.

Summary and Conclusions

Summary and Conclusions

• Chiral EFT with baryons is an excellent tool to investigate fundamental hadronic interactions involving nucleons on QCD grounds.

•πN

- ullet Good description of modern scattering data below the Δ peak.
- Agreement with dispersive extractions.
- Extraction of important quantities from phenomenology ($\sigma_{\pi N}$)
- Forward doubly virtual Compton scattering
- Nuclear Lattice EFT
 - Fundamental piece in *ab initio* many-body nuclear calculations.
- Further improvements possible including spin-flavor symmetry.

FIN

Polarizabilities

- Relativistic baryon chiral EFT with electromagnetic probes:
 - Scalar and spin VVCS Polarizabilities.
- Scalar Polarizabilites:

Polarizabilities

 Some interesting moments: $\Gamma_1(Q^2) = \int_0^{x_0} dx \ g_1(x, Q^2)$ $\bar{d}_2(Q^2) = \int_0^{x_0} dx \, x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)]$ \overline{d}_2^p 0.00 0.012 0.010 -0.020.008 -0.040.006 -0.060.004 -0.080.002 PROPERTY. 0.000 -0.100.20 0.25 0.30 0.20 0.25 0.10 0.15 0.05 0.10 0.15 0.30 0.00 0.05 Q^2 (GeV²) Q^2 (GeV²) Γ_1^{p-n} \overline{d}_2^n 0.08 0.012 0.010 0.06 0.008 0.04 0.006 0.004 0.02 0.002 0.00 0.000 0.15 0.20 0.25 0.30 0.05 0.00 0.10 0.10 0.15 0.20 0.25 0.30 0.05 Q^2 (GeV²) Q^2 (GeV²)

