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Running coupling of QCD

pp –> jets (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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April 2012

Lattice QCD (NNLO)

Z pole fit (N3LO)

τ decays (N3LO)

Bethke et al. 2012.

Asymptotic freedom

βQCD = µ
∂

∂µ
g

= −
(

11Nc

3
− 2Nf

3

)
g3

16π2
+O(g5)

Gross, Politzer, Wilczek 1973 (Nobel prize 2004)

QCD strongly coupled at low energies

⇒ Perturbation theory fails

⇒ Need non-perturbative methods
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Non-perturbative methods for low-energy Hadron Physics

1 Effective field theories: symmetries, separation of scales

↪→ ChPT, UChPT, ChEFT, 6πEFT, HπEFT, NREFT · · ·

2 Dispersion relations: analyticity (' causality),

unitarity (' probability conservation), crossing symmetry

↪→ Cauchy’s theorem, analytic structure

3 Lattice: Monte-Carlo simulation

↪→ solve discretized version of QCD numerically
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Research

Dispersive methods for low-energy ππ and πN scattering

Non-ordinary nature of the lightest scalar mesons

Chiral symmetry restoration

Large-Nc QCD for mesons and baryons
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Dispersive methods for low-energy ππ and πN scattering
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Dispersive analysis of low-energy ππ scattering

Motivation

More observables than unknown constants

↪→ test of ChPT and the spontaneous chiral symmetry breaking

Spectroscopy of light scalars

Many hadronic processes of interest end with two or three pions

↪→ ππ rescattering thus relevant for final state interactions

Difficulties

Data sets are incompatible in many regions

↪→ dominated by systematics

Many analysis suffer from strong model
dependencies

CERN-Munich ππ analyses of the same experiment

Grayer et al. (1974)

Model independent dispersive description of ππ scattering
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Dispersive analysis of low-energy ππ scattering: results

Experimental fit up to
√

s = 1.42 GeV imposing dispersive constraints
↪→ once- and twice-subtracted Roy equations Roy (1971)

Example: the S0-wave
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Dispersive analysis of low-energy ππ: applications

Long-standing dip vs non-dip controversy for the S0-wave inelasticity Pennington, Bugg, Zou, Achasov,...
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↪→ non-dip scenario rejected by dispersion relations

Dispersive determination of the f0(500) and f0(980) pole parameters

↪→ triggered the PDG 2012 revision García-Martin, Kaminski, Peláez, JRE [PRL 107 (2011)]

Analytic continuation through Padé approximants Masjuan, JRE, Sanz-Cillero [PRD90 (2014)]

Normality requirements for the data selection

↪→ required for the χ2-fit method Navarro, Ruiz-Arriola, JRE [PRD91 (2015)]
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Dispersive analysis of low-energy πN scattering

Motivation

Test ChPT in the baryon sector

Input for NN interactions
↪→ extraction of the LECs

Determination of the σπN

↪→ fixes the scalar coupling of the nucleon→ dark matter searches

Nucleon form factor
↪→ proton radius puzzle

π

π

N

N̄

Jµ
em

Aim
Precision extraction of πN scattering lengths from hadronic atoms

Roy-equation constraints: analyticity, unitarity, crossing symmetry
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Dispersive analysis of low-energy πN scattering: results

πN s-channel phase shifts
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Hoferichter, JRE, Kubis, Meißner, accepted in Phys. Rept.
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Dispersive analysis of low-energy πN scattering: applications

Determination of the sigma term:

σπN = (59.1± 3.5) MeV

↪→ σπN depends linearly on the scattering lengths

σπN = 59.1 +
∑

Is

cIs ∆aIs
0+

Hoferichter, JRE, Kubis, Meißner, [PRL 115 (2015)]

Matching to ChPT

NLO N2LO N3LO

c1 [ GeV−1] −0.74± 0.02 −1.07± 0.02 −1.11± 0.03
c2 [ GeV−1] 1.81± 0.03 3.20± 0.03 3.13± 0.03
c3 [ GeV−1] −3.61± 0.05 −5.32± 0.05 −5.61± 0.06
c4 [ GeV−1] 2.17± 0.03 3.56± 0.03 4.26± 0.04

Study of the chiral convergence

↪→ loop diagrams with ∆ degrees of freedom at N3LO spoil the convergence
Hoferichter, JRE, Kubis, Meißner, [PRL 115 (2015)]
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Dispersive analysis of low-energy πN scattering: outlook

Ongoing results

Dispersive determination of ∆(1232) pole parameters

Matching to ChPT with explicit ∆’s

↪→ Large-Nc constraints on ∆ LECs

ππ-continuum contribution to the nucleon form factors

↪→ update of Höhler spectral functions, including also isospin breaking
criticism by Lee et al. 2015
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Non-ordinary nature of the lightest scalar mesons
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Non-ordinary nature of the lightest scalar mesons

Motivation

Responsible for the attractive part of the nucleon-nucleon interaction

They have vacuum quantum numbers

↪→ relevant for the spontaneous chiral symmetry breaking

The lightest glueball expected to be a scalar meson

Still subject to debate

Many resonances, some very wide and difficult to observe

Not clear how to fit them in SU(3) multiplets

Spectroscopic classification: q̄q, glueballs, meson molecules, · · ·

UChPT + non-perturbative methods to clarify their nature
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Non-ordinary nature of the lightest scalar mesons: results

Main results

UChPT at large Nc predicts a non-q̄q nature for the lightest scalars Oset, Oller, Peláez, Nieves, Arriola
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Local duality constraints the nature of the scalars mesons

↪→ subdominant q̄q component for the f0(500) required to ensure local duality
Peláez, Pennington, JRE, Wilson [PRD 84]

Extension to U(3) with resonance saturation

↪→ including spectral-function sum rules Guo , Oller, JRE [PLB712 (2012), PRD86 (2012)]

Bayesian interpretation of the large Nc short distance constraints

↪→ fixes the scale where the Nc scaling is applied Ledwig, Nieves, Pich, Ruiz-Arriola, JRE [PRD90 (2014)]
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Non-ordinary nature of the lightest scalar mesons: outlook

Ongoing results

Full meson-meson analysis in U(3) with LECs Guo, JRE in progress

Composition of the f0(500) in terms of quarks and gluons

|σ〉 = α1|(q̄q)2〉+ α2|q̄q〉+ α3|gg〉+ · · ·

B toy model: Fock expansion for the f0(500) meson in terms of three QCD states

Hii = Mi +
Γi

2
= µ

(
aii + iN

βi
c bii

)
, Hij = Hji = µN

βij
c

(
aij + ibij

)
, P = log

max |hij |

min |hij |

↪→ contour plot of P
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↪→ natural solutions dominated by the |(q̄q)2〉 component Llanes-Estrada, Peláez, JRE in progress
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Chiral symmetry restoration
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Chiral symmetry restoration

Contribution of the f0(500) to the chiral symmetry restoration

↪→ the f0(500) and I = 2 channels contribution cancel Nicola, Peláez, JRE [PRD82 (2010), PRD87 (2013)]

Chiral symmetry restoration by degeneration of chiral partners

B pseudo-scalar susceptibility proportional to the quark condensate χChPT
P (T ) =

〈q̄q〉T
mq

↪→ relation satisfied in the lattice

B scalar susceptibility and the quark condensate in ChPT, UChPT and the lattice
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Nicola, JRE [PRD88 (2013)]

Extension to SU(3) in all channels and in the presence of the U(1)A anomaly Nicola, JRE in progress
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Large-Nc QCD for Mesons and Baryons
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Large-Nc QCD for mesons and baryons

Large-Nc QCD for mesons

Motivation: nature of non-ordinary meson

Scaling of masses, decay widths and couplings of different QCD configurations

Broad mesons in the large Nc limit? Cohen, Llanes-Estrada, Peláez, JRE [PRD90 (2014)]

Large-Nc QCD for baryons

Large Nc relations between πN and π∆ LECs in preparation
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And that’s it, so far
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Spare slides
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Roy-equations for ππ

ππ → ππ⇒ fully crossing symmetric in Mandelstam variables s, t , and u = 4Mπ − s − t

Start from twice-subtracted fixed-t DRs of the generic form

T I (s, t) = c(t) +
1

π

∫ ∞
4m2
π

ds′

s′2

[
s2

(s′ − s)
−

u2

(s′ − u)

]
ImT I (s′, t)

Subtraction functions c(t) are determined via crossing symmetry

↪→ functions of the I=0,2 scattering lengths: a0
0 and a2

0

PW-expansion of these DRs yields the Roy-equations [Roy (1971)]

t I
J (s) = ST I

J (s) +
∞∑

J′=0

(2J′ + 1)
∑

I′=0,1,2

∫ ∞
4m2
π

ds′K II′
JJ′ (s′, s)Im t I′

J′ (s′)

K II′
JJ′ (s′, s) ≡ kernels⇒ analytically known
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Roy-equations: flow information

Roy-equations rigorously valid for a finite energy range
⇒ introduce a matching point sm

only partial waves with J ≤ Jmax are solved

assume isospin limit
Input

High-energy region: ImtIJ (s) for s ≥ sm and for all J
Higher partial waves: ImtIJ (s) for J > Jmax and for all s

Output
Self-consistent solution for δIJ (s) for J ≤ Jmax and sth ≤ s ≤ sm

Constraints on subtraction constants
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Hadronic atoms: constraints for πN

πH/πD: bound state of π− and p/d,
spectrum sensitive to threshold πN amplitude

Combined analysis of πH and πD:
a+
0 ≡ a+ = (7.5 ± 3.1) · 10−3M−1

π

a−0 ≡ a− = (86.0 ± 0.9) · 10−3M−1
π

↪→ Large a+ suggests a large σπN ,

But: a+ very sensitive to isospin breaking, PWA
based on π±p channels
↪→ use instead

a
π−p + a

π+p

2
= (−0.9 ± 1.4) · 10−3M−1

π

Isospin breaking in σπN could be important

We revisit the Cheng-Dashen low-energy
theorem
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[Baru et al. 2011]

3s 3p 3d

2s 2p

1s

}
Γ1s

ǫ1s

ã+ = a+ + 1
1+Mπ/mp

{M2
π−m2

π0
πF2
π

c1 − 2αf1

}
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Results for the sigma-term

σπN = F 2
π

(
d+

00 + 2M2
πd+

01

)
+ ∆D −∆σ −∆R

subthreshold parameters output of the Roy–Steiner equations

d+
00 = −1.36(3)M−1

π [KH: −1.46(10)M−1
π ]

d+
01 = 1.16(2)M−3

π [KH: 1.14(2)M−3
π ]

∆D −∆σ = −(1.8± 0.2) MeV [MH at al. 2012], |∆R | . 2 MeV [Bernard, Kaiser, Meißner 1996]

Isospin breaking in the CD theorem shifts σπN by +3.0 MeV

Final results:
σπN = (59.1± 1.9RS ± 3.0LET) MeV=(59.1± 3.5) MeV

[MH, JRE, Kubis, Meißner]
σπN depends linearly on the scattering lengths

σπN = 59.1 +
∑

Is

cIs ∆aIs
0+

KH input⇒ σπN = 46 MeV

↪→ to be compared with σπN = 45 MeV [Gasser, Leutwyler, Socher, Sainio 1988]

compare also σπN ∼ (64± 8) MeV [Pavan et al. 2002]
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Comparison with lattice σπN results

Recent lattice determination of σπN from the BMW collaboration among others

σπN = 38(3)(3)MeV [Durr. et al. 2015]

The linear dependence of σπN on the scattering lengths introduces an additional constraint
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Fully inconsistent with the hadronic atom phenomenology
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Nucleon strangeness

Relate σπN to strangeness content of the nucleon:

σπN =
m̂

2mN

〈N|ūu + d̄d − 2s̄s|N〉

1 − y
=

σ0

1 − y
, y ≡

2〈N|s̄s|N〉

〈N|ūu + d̄d|N〉

(ms −m)
(
ūu + d̄d − 2s̄s

)
⊂ LQCD produces SU(3) mass splittings:

σπN =
σ0

1 − y
, σ0 =

m̂

ms − m̂

(
mΞ + mΣ − 2mN

)
∼ 26 MeV

Higher-order corrections: σ0 → (36± 7) MeV Borasoy, Meißner 1997

Potentially large effects

B from the decuplet

B from relativistic corrections (EOMS vs. heavy-baryon)

↪→ may increase to σ0 = (58± 8) MeV

Conclusion:

B σπN = (59.1± 3.5) MeV not incompatible with small y

B chiral convergence of σ0 (hence 〈N|s̄s|N〉) very doubtful
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Chiral low-energy constants

NLO N2LO N3LO

c1 [ GeV−1] −0.74± 0.02 −1.07± 0.02 −1.11± 0.03
c2 [ GeV−1] 1.81± 0.03 3.20± 0.03 3.13± 0.03
c3 [ GeV−1] −3.61± 0.05 −5.32± 0.05 −5.61± 0.06
c4 [ GeV−1] 2.17± 0.03 3.56± 0.03 4.26± 0.04

d̄1 + d̄2 [ GeV−2] — −1.04± 0.06 −17.42± 0.08

d̄3 [ GeV−2] — −0.48± 0.02 −10.46± 0.10

d̄5 [ GeV−2] — 0.14± 0.05 0.59± 0.05
d̄14 − d̄15 [ GeV−2] — −1.90± 0.06 −12.18± 0.12

ē14 [ GeV−3] — — 0.89± 0.04
ē15 [ GeV−3] — — −0.97± 0.06
ē16 [ GeV−3] — — −2.61± 0.03
ē17 [ GeV−3] — — 0.01± 0.06
ē18 [ GeV−3] — — −4.20± 0.05

Subthreshold errors tiny, chiral expansion dominates uncertainty

d̄i at N3LO increase by an order of magnitude

↪→ due to terms proportional to g2
A(c3 − c4) = −16 GeV−1

↪→ mimic loop diagrams with ∆ degrees of freedom

What’s going on with chiral convergence?

↪→ look at convergence of threshold parameters with LECs fixed at subthreshold point
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Convergence of the chiral series

NLO N2LO N3LO RS

a+
0+

[10−3M−1
π ] −23.8 0.2 −7.9 −0.9 ± 1.4

a−0+
[10−3M−1

π ] 79.4 92.9 59.4 85.4 ± 0.9

a+
1+

[10−3M−3
π ] 102.6 121.2 131.8 131.2 ± 1.7

a−1+
[10−3M−3

π ] −65.2 −75.3 −89.0 −80.3 ± 1.1

a+
1− [10−3M−3

π ] −45.0 −47.0 −72.7 −50.9 ± 1.9

a−1− [10−3M−3
π ] −11.2 −2.8 −22.6 −9.9 ± 1.2

b+
0+

[10−3M−3
π ] −70.4 −23.3 −44.9 −45.0 ± 1.0

b−0+
[10−3M−3

π ] 20.6 23.3 −64.7 4.9 ± 0.8

N3LO results bad due to large Delta loops
Conclusion: lessons for few-nucleon applications

1 either include the ∆ to reduce the size of the loop corrections work in progress

or use LECs from subthreshold kinematics
2 error estimates: consider chiral convergence of a given observable, difficult to assign a global chiral

error to LECs
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The “ruler plot” vs. ChPT

Lattice QCD simulations can be performed at different quark/pion masses

Pion mass dependence of mN up to NNNLO in ChPT, using

Input from Roy–Steiner solution
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1
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1.2

1.3

Mπ [GeV]

m
N

[G
eV

]

Ruler approximation

LHCP 2008
χQCD 2012

ETMC 2014

thanks to A. Walker-Loud for providing the lattice data

↪→ range of convergence of the chiral expansion is very limited

↪→ huge cancellation amongst terms to produce a linear behavior
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Chiral symmetry restoration: the role of the f0(500)

Contribution of the f0(500) to the chiral symmetry restoration

Influence in the quark condensate and in the scalar susceptibility

↪→ the f0(500) and scalar I = 2 channels contribution cancel

∆00
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SUH2L UnitarizedChPT
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Nicola, Peláez, JRE [PRD82 (2010), PRD87 (2013)]

CAVEAT for Hadron Resonance Gas models which include the f0(500) and not the I = 2 channel
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Chiral symmetry restoration: degeneration of chiral partners

Chiral symmetry restoration by degeneration of chiral partners

Pseudo-scalar susceptibility proportional to the quark condensate in SU(2) ChPT

χ
ChPT
P (T ) =

〈q̄q〉T
mq

↪→ relation satisfied in the lattice

Scalar susceptibility and the quark condensate in ChPT, UChPT and the lattice
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Nicola, JRE [PRD88 (2013)]

Extension to SU(3) in all channels and in the presence of the U(1)A anomaly
Nicola, JRE in progress
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Large-Nc QCD for mesons

Motivation: nature of non-ordinary meson

Scaling of masses, decay widths and couplings of different QCD configurations

B states with fixed number of constituents
qq̄ ππ gg T0(qqq̄q̄)

qq̄ O(1) O
(

1√
Nc

)
O
(

1√
Nc

)
O(1)

ππ O(1) O
(

1
Nc

)
O
(

1√
Nc

)
gg O(1) O

(
1√
Nc

)
T0(qqq̄q̄) O(1)

B the polyquark (Nc − 1)q − (Nc − 1)q̄

qq̄ gg ππ T (qqq̄q̄) (Nc − 1)π

Nf = 1 (Nc − 1)!!
(

c
Nc

)(Nc−4)/2
Nc !!

(
c

Nc

)(Nc−2)/2
Nc !!

(
c

Nc

)(Nc−4)/2
Nc !!

(
c

Nc

)(Nc−3)/2
cNc−1

Broad mesons in the large Nc limit?
Cohen, Llanes-Estrada, Peláez, JRE [PRD90 (2014)]
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