## Non-perturbative methods for low-energy hadron physics

## J. Ruiz de Elvira

#### Helmholtz-Institut für Strahlen- und Kernphysik, Bonn University

#### JLab postdoc position interview, January 11th 2016









▲□▶ ▲圖▶ ▲圖▶ ▲圖

## **Biographical presentation**

J. Ruiz de Elvira

Non-perturbative methods for low-energy hadron physics

January 11th 2016 2

## Biography

- Born in Madrid, Spain on March 6th, 1984
- 2002-2007: 5 year degree in Physics Universidad Complutense de Madrid (UCM)
   2006-2007 Erasmus student in Lund University
- 2007-2008: MSc in Fundamental Physics at UCM
- 2008-2012: PhD in Theoretical Physics, UCM

Title: "Study of the **properties** and **nature** of the lightest **scalar mesons** and their relation to the spontaneous **chiral symmetry breaking**"

Supervisor: J. R. Peláez

Awarded the 2013 Extraordinary Doctorate Prize

- 2013: postdoc at IFIC (Valencia) with Prof. J. Nieves and A. Pich
- 2013-2016: postdoc at HISKP (Bonn) with Prof. B. Kubis and U.-G. Meißner
- 2015: awarded the Dr. Klaus Erkelenz Prize

## **Teaching Assistant**

• 2010-2011: Degree in Physics, UCM

Calculus I

Calculus II

• 2013-2016: Master in Physics, Bonn University

Advanced Quantum Physics

General Relativity

Advanced Quantum Field Theory

Seminars on Advanced Topics in Quantum Field Theory



J. Ruiz de Elvira

Non-perturbative methods for low-energy hadron physics

January 11th 2016 5

-

## Running coupling of QCD



Asymptotic freedom

Ĺ

$$eta_{QCD} = \mu rac{\partial}{\partial \mu} g \ = -\left(rac{11N_c}{3} - rac{2N_f}{3}
ight) rac{g^3}{16\pi^2} + \mathcal{O}(g^5)$$

Gross, Politzer, Wilczek 1973 (Nobel prize 2004)

- QCD strongly coupled at low energies
  - $\Rightarrow$  Perturbation theory fails
  - ⇒ Need non-perturbative methods

Bethke et al. 2012

## Non-perturbative methods for low-energy Hadron Physics

● Effective field theories: symmetries, separation of scales → ChPT, UChPT, ChEFT, *★*EFT, H*π*EFT, NREFT ····

Oispersion relations: analyticity (≃ causality), unitarity (≃ probability conservation), crossing symmetry → Cauchy's theorem, analytic structure

Lattice: Monte-Carlo simulation

 $\hookrightarrow$  solve discretized version of QCD numerically







- **Dispersive** methods for low-energy  $\pi\pi$  and  $\pi N$  scattering
- Non-ordinary nature of the lightest scalar mesons
- Chiral symmetry restoration
- Large-N<sub>c</sub> QCD for mesons and baryons

## Dispersive methods for low-energy $\pi\pi$ and $\pi N$ scattering

## Motivation

- More observables than unknown constants
  - → test of ChPT and the spontaneous chiral symmetry breaking
- Spectroscopy of light scalars
- Many hadronic processes of interest end with two or three pions
  - $\hookrightarrow \pi\pi$  rescattering thus relevant for final state interactions

## Difficulties

- Data sets are incompatible in many regions
  - $\hookrightarrow$  dominated by systematics
- Many analysis suffer from strong model dependencies



CERN-Munich  $\pi\pi$  analyses of the same experiment

Grayer et al. (1974)

## Model independent dispersive description of $\pi\pi$ scattering

## Dispersive analysis of low-energy $\pi\pi$ scattering: results

**Experimental** fit up to  $\sqrt{s} = 1.42$  GeV imposing **dispersive** constraints  $\rightarrow$  once- and twice-subtracted **Roy** equations

#### Example: the S0-wave



García Martin, Kaminski, Peláez, JRE, Yndurain [PRD83 (2011)]

Long-standing dip vs non-dip controversy for the S0-wave inelasticity Pennington, Bugg, Zou, Achasov....



 $\hookrightarrow$  **non-dip** scenario **rejected** by dispersion relations

- Dispersive determination of the f<sub>0</sub>(500) and f<sub>0</sub>(980) pole parameters
  - $\hookrightarrow$  triggered the PDG 2012 revision
- Analytic continuation through Padé approximants
- Normality requirements for the data selection
  - $\hookrightarrow$  required for the  $\chi^2$ -fit method

García-Martin, Kaminski, Peláez, JRE [PRL 107 (2011)]

Masjuan, JRE, Sanz-Cillero [PRD90 (2014)]

Navarro, Ruiz-Arriola, JRE [PRD91 (2015)]

## Motivation

- Test ChPT in the baryon sector
- Input for NN interactions
   → extraction of the LECs



- $\hookrightarrow$  fixes the scalar coupling of the nucleon  $\rightarrow$  dark matter searches
- Nucleon form factor

   → proton radius puzzle



## Aim

- Precision extraction of *πN* scattering lengths from hadronic atoms
- Roy-equation constraints: analyticity, unitarity, crossing symmetry

## Dispersive analysis of low-energy $\pi N$ scattering: results

• *πN* s-channel phase shifts

• *πN* t-channel partial waves



Hoferichter, JRE, Kubis, Meißner, accepted in Phys. Rept.

• Determination of the sigma term:

 $\sigma_{\pi N} = (59.1 \pm 3.5) \, \text{MeV}$ 

 $\hookrightarrow \sigma_{\pi N}$  depends **linearly** on the scattering lengths

$$\sigma_{\pi N} = 59.1 + \sum_{l_s} c_{l_s} \Delta a_{0+}^{l_s}$$

Hoferichter, JRE, Kubis, Meißner, [PRL 115 (2015)]

#### Matching to ChPT

|                                                                              | NLO                                                                                               | N <sup>2</sup> LO                                                          | N <sup>3</sup> LO                                                                                 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| $c_1 [GeV^{-1}]$<br>$c_2 [GeV^{-1}]$<br>$c_3 [GeV^{-1}]$<br>$c_4 [GeV^{-1}]$ | $\begin{array}{c} -0.74 \pm 0.02 \\ 1.81 \pm 0.03 \\ -3.61 \pm 0.05 \\ 2.17 \pm 0.03 \end{array}$ | $-1.07 \pm 0.02$<br>$3.20 \pm 0.03$<br>$-5.32 \pm 0.05$<br>$3.56 \pm 0.03$ | $\begin{array}{c} -1.11 \pm 0.03 \\ 3.13 \pm 0.03 \\ -5.61 \pm 0.06 \\ 4.26 \pm 0.04 \end{array}$ |

- Study of the chiral convergence
  - $\hookrightarrow$  loop diagrams with  $\Delta$  degrees of freedom at N^3LO spoil the convergence

Hoferichter, JRE, Kubis, Meißner, [PRL 115 (2015)]

## **Ongoing results**

- Dispersive determination of △(1232) pole parameters
- Matching to ChPT with explicit ∆'s
  - $\hookrightarrow$  Large-N<sub>c</sub> constraints on  $\triangle$  LECs
- $\pi\pi$ -continuum contribution to the nucleon form factors
  - $\hookrightarrow$  update of Höhler spectral functions, including also isospin breaking

criticism by Lee et al. 2015

## Non-ordinary nature of the lightest scalar mesons

## Motivation

- Responsible for the attractive part of the nucleon-nucleon interaction
- They have vacuum quantum numbers
  - $\hookrightarrow$  relevant for the spontaneous chiral symmetry breaking
- The lightest glueball expected to be a scalar meson

## Still subject to debate

- Many resonances, some very wide and difficult to observe
- Not clear how to fit them in SU(3) multiplets
- Spectroscopic classification:  $\bar{q}q$ , glueballs, meson molecules, · · ·

### UChPT + non-perturbative methods to clarify their nature

## Main results



• UChPT at large  $N_c$  predicts a non- $\bar{q}q$  nature for the lightest scalars Oset, Oller, Peláez, Nieves, Arriola

• Local duality constraints the nature of the scalars mesons

 $\hookrightarrow$  subdominant  $\bar{q}q$  component for the  $f_0(500)$  required to ensure local duality

Peláez, Pennington, JRE, Wilson [PRD 84]

- Extension to U(3) with resonance saturation
  - $\hookrightarrow$  including spectral-function sum rules
- Bayesian interpretation of the large N<sub>c</sub> short distance constraints
  - $\hookrightarrow$  fixes the scale where the N<sub>c</sub> scaling is applied

Guo , Oller, JRE [PLB712 (2012), PRD86 (2012)] traints

Ledwig, Nieves, Pich, Ruiz-Arriola, JRE [PRD90 (2014)]

## **Ongoing results**

- Full meson-meson analysis in U(3) with LECs
- Composition of the f<sub>0</sub>(500) in terms of quarks and gluons

$$|\sigma\rangle = \alpha_1 |(\bar{q}q)^2\rangle + \alpha_2 |\bar{q}q\rangle + \alpha_3 |gg\rangle + \cdots$$

 $\triangleright$  toy model: Fock expansion for the  $f_0(500)$  meson in terms of three QCD states

$$H_{ij} = M_j + \frac{\Gamma_i}{2} = \mu \left( a_{ij} + iN_c^{\beta_i} b_{ji} \right), \quad H_{ij} = H_{ji} = \mu N_c^{\beta_j} \left( a_{ij} + ib_{ij} \right), \quad P = \log \frac{\max |h_{ij}|}{\min |h_{ij}|}$$

 $\hookrightarrow \text{ contour plot of } P$   $\xrightarrow{\mu_{q}} \text{ natural solutions dominated by the } |(\bar{q}q)^2\rangle \text{ component}$   $\square P$ 

Llanes-Estrada, Peláez, JRE in progress

Guo, JRE in progress

## Chiral symmetry restoration

- Contribution of the  $f_0(500)$  to the chiral symmetry restoration
  - $\hookrightarrow$  the  $f_0(500)$  and I = 2 channels contribution cancel Nicola, Peláez, JRE [PRD82 (2010), PRD87 (2013)]
- Chiral symmetry restoration by degeneration of chiral partners
  - ▷ pseudo-scalar susceptibility proportional to the quark condensate  $\chi_P^{ChPT}(T) = \frac{\langle \bar{q}q \rangle_T}{m_a}$
  - $\hookrightarrow$  relation satisfied in the lattice
  - > scalar susceptibility and the quark condensate in ChPT, UChPT and the lattice



Nicola, JRE [PRD88 (2013)]

Extension to SU(3) in all channels and in the presence of the U(1)<sub>A</sub> anomaly Nicola, JRE in progress

## Large-*N*<sub>c</sub> QCD for Mesons and Baryons

## Large-N<sub>c</sub> QCD for mesons

Motivation: nature of non-ordinary meson

- Scaling of masses, decay widths and couplings of different QCD configurations
- Broad mesons in the large N<sub>c</sub> limit?

Cohen, Llanes-Estrada, Peláez, JRE [PRD90 (2014)]

## Large-N<sub>c</sub> QCD for baryons

• Large  $N_c$  relations between  $\pi N$  and  $\pi \Delta$  LECs

in preparation

## And that's it, so far

# Spare slides

- $\pi\pi \to \pi\pi \Rightarrow$  fully crossing symmetric in Mandelstam variables *s*, *t*, and  $u = 4M_{\pi} s t$
- Start from twice-subtracted fixed-t DRs of the generic form

$$T^{l}(s,t) = c(t) + \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \left[ \frac{s^{2}}{(s'-s)} - \frac{u^{2}}{(s'-u)} \right] \operatorname{Im} T^{l}(s',t)$$

- Subtraction functions c(t) are determined via crossing symmetry
  - $\hookrightarrow$  functions of the I=0,2 scattering lengths:  $a_0^0$  and  $a_0^2$
- PW-expansion of these DRs yields the Roy-equations

$$t_{J}^{l}(s) = ST_{J}^{l}(s) + \sum_{J'=0}^{\infty} (2J'+1) \sum_{I'=0,1,2} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{II'}(s',s) \operatorname{Im} t_{J'}^{I'}(s')$$

•  $K_{JJ'}^{II'}(s', s) \equiv$  kernels  $\Rightarrow$  analytically known

J. Ruiz de Elvira

[Roy (1971)]

- Roy-equations rigorously valid for a finite energy range
  - $\Rightarrow$  introduce a matching point  $s_m$
- only partial waves with  $J \leq J_{max}$  are solved
- assume isospin limit
- Input
  - High-energy region:  $\operatorname{Im} t_{IJ}(s)$  for  $s \ge s_m$  and for all J
  - Higher partial waves:  $\operatorname{Im} t_{IJ}(s)$  for  $J > J_{\max}$  and for all s
- Output
  - Self-consistent solution for  $\delta_{IJ}(s)$  for  $J \leq J_{max}$  and  $s_{th} \leq s \leq s_m$
  - · Constraints on subtraction constants

글 > - 4 글 >

## Hadronic atoms: constraints for $\pi N$

- πH/πD: bound state of π<sup>-</sup> and p/d, spectrum sensitive to threshold πN amplitude
- Combined analysis of  $\pi H$  and  $\pi D$ :  $a_0^+ \equiv a^+ = (7.5 \pm 3.1) \cdot 10^{-3} M_\pi^{-1}$   $a_0^- \equiv a^- = (86.0 \pm 0.9) \cdot 10^{-3} M_\pi^{-1}$ 
  - $\hookrightarrow$  Large  $a^+$  suggests a large  $\sigma_{\pi N}$ ,
- But: a<sup>+</sup> very sensitive to isospin breaking, PWA based on π<sup>±</sup>p channels
   → use instead

$$\frac{a_{\pi-\rho}^{}+a_{\pi+\rho}^{}}{2}=(-0.9\pm1.4)\cdot10^{-3}M_{\pi}^{-1}$$

- Isospin breaking in  $\sigma_{\pi N}$  could be important
- We revisit the Cheng-Dashen low-energy theorem



## Results for the sigma-term

$$\sigma_{\pi N} = F_{\pi}^2 \left( d_{00}^+ + 2M_{\pi}^2 d_{01}^+ \right) + \Delta_D - \Delta_\sigma - \Delta_R$$

subthreshold parameters output of the Roy-Steiner equations

 $d_{00}^{+} = -1.36(3)M_{\pi}^{-1} \qquad [\text{KH:} -1.46(10)M_{\pi}^{-1}]$  $d_{01}^{+} = 1.16(2)M_{\pi}^{-3} \qquad [\text{KH:} 1.14(2)M_{\pi}^{-3}]$ 

- $\Delta_D \Delta_\sigma = -(1.8 \pm 0.2) \text{ MeV}$  [MH at al. 2012],  $|\Delta_R| \lesssim 2 \text{ MeV}$
- Isospin breaking in the CD theorem shifts  $\sigma_{\pi N}$  by +3.0 MeV
- Final results:

 $\sigma_{\pi \textit{N}} = (59.1 \pm 1.9_{
m RS} \pm 3.0_{
m LET})~{
m MeV}$ =(59.1  $\pm$  3.5) MeV

•  $\sigma_{\pi N}$  depends linearly on the scattering lengths

$$\sigma_{\pi N} = 59.1 + \sum_{l_s} c_{l_s} \Delta a_{0+}^{l_s}$$

- KH input  $\Rightarrow \sigma_{\pi N} = 46 \text{ MeV}$ 
  - $\hookrightarrow$  to be compared with  $\sigma_{\pi N} = 45 \text{ MeV}$
- compare also  $\sigma_{\pi N} \sim (64 \pm 8)$  MeV

[Gasser, Leutwyler, Socher, Sainio 1988]

[Pavan et al. 2002]

[MH, JRE, Kubis, Meißner]

[Bernard, Kaiser, Meißner 1996]

• Recent lattice determination of  $\sigma_{\pi N}$  from the BMW collaboration among others

 $\sigma_{\pi N} = 38(3)(3)$ MeV

[Durr. et al. 2015]

• The linear dependence of  $\sigma_{\pi N}$  on the scattering lengths introduces an additional constraint



• Fully inconsistent with the hadronic atom phenomenology

• Relate  $\sigma_{\pi N}$  to strangeness content of the nucleon:

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \frac{\langle N | \bar{u} u + \bar{d} d - 2\bar{s} s | N \rangle}{1 - y} = \frac{\sigma_0}{1 - y}, \quad y \equiv \frac{2 \langle N | \bar{s} s | N \rangle}{\langle N | \bar{u} u + \bar{d} d | N \rangle}$$

 $(m_s - m) \left( \bar{u}u + \bar{d}d - 2\bar{s}s \right) \subset \mathcal{L}_{QCD}$  produces SU(3) mass splittings:

$$\sigma_{\pi N} = \frac{\sigma_0}{1-y}, \quad \sigma_0 = \frac{\hat{m}}{m_{\rm S} - \hat{m}} \left(m_{\Xi} + m_{\Sigma} - 2m_N\right) \sim 26 \, {\rm MeV}$$

- Higher-order corrections:  $\sigma_0 \rightarrow (36 \pm 7) \text{ MeV}$
- Potentially large effects
  - $\triangleright$  from the decuplet
  - ▷ from relativistic corrections (EOMS vs. heavy-baryon)
  - $\hookrightarrow$  may increase to  $\sigma_0 = (58 \pm 8)$  MeV

#### • Conclusion:

- $ho \sigma_{\pi N} = (59.1 \pm 3.5)$  MeV not incompatible with small y
- $\triangleright$  chiral convergence of  $\sigma_0$  (hence  $\langle N | \bar{s}s | N \rangle$ ) very doubtful

Borasoy, Meißner 1997

## Chiral low-energy constants

|                                             | NLO                               | N <sup>2</sup> LO | N <sup>3</sup> LO |
|---------------------------------------------|-----------------------------------|-------------------|-------------------|
| c <sub>1</sub> [GeV <sup>-1</sup> ]         | $-0.74\pm0.02$                    | $-1.07\pm0.02$    | $-1.11 \pm 0.03$  |
| c <sub>2</sub> [GeV <sup>-1</sup> ]         | $1.81\pm0.03$                     | $3.20\pm0.03$     | $3.13\pm0.03$     |
| c <sub>3</sub> [GeV <sup>−1</sup> ]         | $-3.61\pm0.05$                    | $-5.32\pm0.05$    | $-5.61\pm0.06$    |
| c₄ [GeV <sup>−1</sup> ]                     | $\textbf{2.17} \pm \textbf{0.03}$ | $3.56\pm0.03$     | $4.26\pm0.04$     |
| $ar{d}_1 + ar{d}_2  [ { m GeV}^{-2}]$       |                                   | $1.04\pm0.06$     | $7.42\pm0.08$     |
| $\bar{d}_3$ [GeV $^{-2}$ ]                  | _                                 | $-0.48\pm0.02$    | $-10.46\pm0.10$   |
| <i>d</i> ₅ [GeV <sup>−2</sup> ]             | _                                 | $0.14 \pm 0.05$   | $0.59\pm0.05$     |
| $ar{d}_{14} - ar{d}_{15}  [ { m GeV}^{-2}]$ | —                                 | $-1.90\pm0.06$    | $-12.18\pm0.12$   |
| ē₁₄ [GeV <sup>-3</sup> ]                    | _                                 | _                 | $0.89 \pm 0.04$   |
| ē <sub>15</sub> [GeV <sup>-3</sup> ]        | —                                 | _                 | $-0.97\pm0.06$    |
| ē <sub>16</sub> [GeV <sup>-3</sup> ]        | —                                 | —                 | $-2.61 \pm 0.03$  |
| ē <sub>17</sub> [GeV <sup>-3</sup> ]        | —                                 | _                 | $0.01\pm0.06$     |
| ē <sub>18</sub> [GeV <sup>-3</sup> ]        | —                                 | _                 | $-4.20\pm0.05$    |

- Subthreshold errors tiny, chiral expansion dominates uncertainty
- $\bar{d}_i$  at N<sup>3</sup>LO increase by an order of magnitude

 $\hookrightarrow$  due to terms proportional to  $g_A^2(c_3 - c_4) = -16 \text{ GeV}^{-1}$ 

- $\hookrightarrow$  mimic loop diagrams with  $\Delta$  degrees of freedom
- What's going on with chiral convergence?
  - $\hookrightarrow$  look at convergence of threshold parameters with LECs fixed at subthreshold point

|                                                 | NLO   | N <sup>2</sup> LO | N <sup>3</sup> LO | RS             |
|-------------------------------------------------|-------|-------------------|-------------------|----------------|
| $a_{0+}^+ [10^{-3} M_{\pi}^{-1}]$               | -23.8 | 0.2               | -7.9              | $-0.9 \pm 1.4$ |
| $a_{0+}^{-}$ [10 <sup>-3</sup> $M_{\pi}^{-1}$ ] | 79.4  | 92.9              | 59.4              | $85.4\pm0.9$   |
| $a_{1+}^+$ [10 <sup>-3</sup> $M_{\pi}^{-3}$ ]   | 102.6 | 121.2             | 131.8             | $131.2\pm1.7$  |
| $a_{1+}^{-}$ [10 <sup>-3</sup> $M_{\pi}^{-3}$ ] | -65.2 | -75.3             | -89.0             | $-80.3\pm1.1$  |
| $a_{1-}^+$ [10 <sup>-3</sup> $M_{\pi}^{-3}$ ]   | -45.0 | -47.0             | -72.7             | $-50.9\pm1.9$  |
| $a_{1-}^{-}$ [10 <sup>-3</sup> $M_{\pi}^{-3}$ ] | -11.2 | -2.8              | -22.6             | $-9.9\pm1.2$   |
| $b_{0+}^+ [10^{-3} M_{\pi}^{-3}]$               | -70.4 | -23.3             | -44.9             | $-45.0\pm1.0$  |
| $b_{0+}^{-}$ [10 <sup>-3</sup> $M_{\pi}^{-3}$ ] | 20.6  | 23.3              | -64.7             | $4.9\pm0.8$    |

- N<sup>3</sup>LO results bad due to large Delta loops
- Conclusion: lessons for few-nucleon applications
  - either include the ∆ to reduce the size of the loop corrections or use LECs from subthreshold kinematics

error estimates: consider chiral convergence of a given observable, difficult to assign a global chiral error to LECs

B > 4 B >

work in progress

## The "ruler plot" vs. ChPT

Lattice QCD simulations can be performed at different quark/pion masses

Pion mass dependence of  $m_N$  up to NNNLO in ChPT, using

Input from Roy–Steiner solution



 $\hookrightarrow$  range of convergence of the chiral expansion is very limited

 $\hookrightarrow$  huge cancellation amongst terms to produce a linear behavior

## Chiral symmetry restoration: the role of the $f_0(500)$

## Contribution of the $f_0(500)$ to the chiral symmetry restoration

- Influence in the quark condensate and in the scalar susceptibility
  - $\hookrightarrow$  the  $f_0(500)$  and scalar l = 2 channels contribution cancel



Nicola, Peláez, JRE [PRD82 (2010), PRD87 (2013)]

**CAVEAT** for Hadron Resonance Gas models which include the  $f_0(500)$  and not the I = 2 channel

## Chiral symmetry restoration: degeneration of chiral partners

## Chiral symmetry restoration by degeneration of chiral partners

Pseudo-scalar susceptibility proportional to the quark condensate in SU(2) ChPT

$$\chi_P^{ChPT}(T) = \frac{\langle \bar{q}q \rangle_T}{m_q}$$

- $\hookrightarrow$  relation satisfied in the lattice
- Scalar susceptibility and the quark condensate in ChPT, UChPT and the lattice



Nicola, JRE [PRD88 (2013)]

• Extension to SU(3) in all channels and in the presence of the U(1)<sub>A</sub> anomaly

Nicola, JRE in progress

#### Motivation: nature of non-ordinary meson

• Scaling of masses, decay widths and couplings of different QCD configurations

> states with fixed number of constituents

|                         | qq           | $\pi\pi$                             | gg                                   | T <sub>0</sub> (qqāā)                |
|-------------------------|--------------|--------------------------------------|--------------------------------------|--------------------------------------|
| qq                      | <i>O</i> (1) | $O\left(\frac{1}{\sqrt{N_c}}\right)$ | $O\left(\frac{1}{\sqrt{N_c}}\right)$ | <i>O</i> (1)                         |
| $\pi\pi$                |              | <i>O</i> (1)                         | $O\left(\frac{1}{N_{C}}\right)$      | $O\left(\frac{1}{\sqrt{N_c}}\right)$ |
| gg                      |              |                                      | <i>O</i> (1)                         | $O\left(\frac{1}{\sqrt{N_c}}\right)$ |
| $T_0(qq\bar{q}\bar{q})$ |              |                                      |                                      | O(1)                                 |

 $\triangleright$  the **polyquark**  $(N_c - 1)q - (N_c - 1)\bar{q}$ 

|           | qq                                                       | gg                                             | $\pi\pi$                                        | $T(qq\bar{q}\bar{q})$                           | $(N_{C} - 1)\pi$   |
|-----------|----------------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------|
| $N_f = 1$ | $(N_{C}-1)!! \left(\frac{c}{N_{C}}\right)^{(N_{C}-4)/2}$ | $N_C!! \left(\frac{c}{N_C}\right)^{(N_C-2)/2}$ | $N_C !! \left(\frac{c}{N_C}\right)^{(N_C-4)/2}$ | $N_C !! \left(\frac{c}{N_C}\right)^{(N_C-3)/2}$ | c <sup>N</sup> c-1 |

• Broad mesons in the large N<sub>c</sub> limit?

Cohen, Llanes-Estrada, Peláez, JRE [PRD90 (2014)]

4 B K 4 B K