Effective nuclear theories and lattice QCD

Johannes Kirscher

A derivation of nuclear physics from the Standard Model.

A derivation of nuclear physics from the Standard Model.

Motivation:

A derivation of nuclear physics from the Standard Model.

Motivation:

Consistent understanding of nature;

A derivation of nuclear physics from the Standard Model.

Motivation:

- Consistent understanding of nature;
- Analysis/exploration/discovery of new phenomena;

A derivation of nuclear physics from the Standard Model.

Motivation:

- Consistent understanding of nature;
- Analysis/exploration/discovery of new phenomena;
- Stability of the universe with respect to variations in fundamental constants.

NUCLEAR THEORY AS A COMBINATION OF EFTS.

The theory of strong interactions, QCD.

QCD SOLUTION IN DISCRETIZED SPACE TIME.

LATTICE NUCLEI FOR VARIOUS PION MASSES.

 m_{π} dependence of two nucleons (I).

m_{π} dependence of two nucleons (II).

χ EFT as an effective theory of QCD for mesons and nuclei.

$EFT(\pi) = EFT(\pi)$ for $m_{\pi} > 140$ MeV.

$EFT(\pi) = EFT(\pi)$ for $m_{\pi} > 140$ MeV.

EFT = loop and vertex expansion.

$$V = \overset{\circ}{C}_{0,s} \hat{P}^{(^{1}S_{0})} + \overset{\circ}{C}_{0,t} \hat{P}^{(^{3}S_{1})} + \overset{\circ}{D}_{(*)}$$

$$V = V_{LO} + \left(\mathring{C}_{2,s} + \mathring{C}_{2,s}^{q^2} \right) \hat{P}^{(1S_0)} + \left(\mathring{C}_{2,t} + \mathring{C}_{2,t}^{q^2} \right) \hat{P}^{(3S_1)} + \mathring{D}_{(*)} \hat{P}^{(S)} + \mathring{C}_{pp} \hat{P}_{pp}^{(1S_0)} + \frac{\epsilon^2}{4|r|}$$

EFT = LOOP AND VERTEX EXPANSION.

EFT = LOOP AND VERTEX EXPANSION.

EFT = LOOP and vertex expansion.

EFT = loop and vertex expansion.

The Phillips 3-nucleon characteristicum.

The Phillips 3-nucleon characteristicum.

The Phillips 3-nucleon characteristicum.

The TJON 4-NUCLEON CHARACTERISTICUM.

The future.

m_{π} dependence of other nuclear characteristics:

- 5 and 6 nucleons and reactions;
- Electro-weak interactions (moments and decays);
- Emergence of *strange* nuclei.
- Nuclei under extreme conditions (magnetic and gravitational fields close to neutron stars).
- Refinement of multi-nucleon EFTs for physical and large pion masses.

THE FUTURE.

٦·

- m_{π} dependence of other nuclear characteristics:
 - 5 and 6 nucleons and reactions;
 - · Electro-weak interactions (moments and decays);
 - Emergence of *strange* nuclei.
- Nuclei under extreme conditions (magnetic and gravitational fields close to neutron stars).
- Refinement of multi-nucleon EFTs for physical and large pion masses.

THE FUTURE.

٦·

- m_{π} dependence of other nuclear characteristics:
 - 5 and 6 nucleons and reactions;
 - · Electro-weak interactions (moments and decays);
 - Emergence of *strange* nuclei.
- Nuclei under extreme conditions (magnetic and gravitational fields close to neutron stars).
- Refinement of multi-nucleon EFTs for physical and large pion masses.

THE FUTURE.

٦·

- m_{π} dependence of other nuclear characteristics:
 - 5 and 6 nucleons and reactions;
 - · Electro-weak interactions (moments and decays);
 - Emergence of *strange* nuclei.
- Nuclei under extreme conditions (magnetic and gravitational fields close to neutron stars).
- Refinement of multi-nucleon EFTs for physical and large pion masses.