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o

Perturbative AND nonperturbative QCD at work

m Define universal objects describing 3D nucleon structure:
Generalized Parton Distributions (GPD).

m Relate GPDs to measurements using factorization:
Virtual Compton Scattering (DVCS, TCS),
Deeply Virtual Meson production (DVMP).

m Get experimental knowledge of nucleon structure.
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Anatomy of hadrons.

Cea GPDs, 3D hadron imaging, and beyond.
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond.

m Correlation of the longitudinal momentum and the
transverse position of a parton in a hadron.

m DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

DVCS e Transverse center
- of momentum R
eare: 0% b, Ri =) Xy
' factorization pp XP+
x+¢& x—¢& ~ R, mpact
parameter b
D s D _l<f< 41 Longitudinal
,,,,,,,,,,, 5t momentum xPT

4

m 24 GPDs Fi(x, &, t, uF) for each parton type i = g, u, d, ...
for leading and sub-leading twists.
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Towards hadron tomography.

GPDs as a scalpel-like probe of hadron structure.

Covariant and Phenomenology status: relevance and need for

Posiiive oPD parameterizations.

| . Theoretical framework: definition and existing

ntroduction

Status constraints.

Experimental access

Tovards 30 images GPDs from Light Front Wave Functions: a promising
Framework .

omer computing strategy.

Polynomiality

Double Distributions The PARTONS platform: a GPD toolkit.

Positivity

Overlap

Wave function

How can we make this picture? What do we learn from it?

Covariant extension —

Inverse Radon q(x,b.)

Example

Radon transform
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Team
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Exclusive processes of present interest (2/2).

Factorization and universality.

Covariant and
Positive GPD
Models

Bjorken regime : large @* and fixed xB ~ 2¢/(1 + €)

m Partonic interpretation relies on factorization theorems.
m All-order proofs for DVCS, TCS and some DVMP.

m GPDs depend on a (arbitrary) factorization scale pur.

Introduction

Status

m Consistency requires the study of different channels.
m GPDs enter DVCS through Compton Form Factors :
, L Q
]:(5~ t, Q2> = / dxC <Xa £, QS(:U’F)v /1F> F(Xv &t /LF)

Example —1 g
PARTONS
Computing chan for a given GPD F.
Team m CFF F is a complex function.
Conclusion
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Summary of first extractions.

Feasibility of twist-2 analysis of existing data.

m Dominance of twist-2 and validity of a GPD analysis of
DVCS data.

m /mH best determined. Large uncertainties on ReH.

m However sizable higher twist contamination for DVCS
measurements?

m Already some indications about the invalidity of the
H-dominance hypothesis with unpolarized data.
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Imaging the nucleon. How?
Extracting GPDs is not enough..Need to extrapolate!

Wl 1. Experimental data fits 2. GPD extraction

Positive GPD

Models 03 Ao [pbAGeV’Q] Hi 502,04 )

Introduction

Status

Experimental access @y =
Towards 3D images (~t) = 0.735 Gev?

[ 30 80 120 180 240 300 360

deg] TN
Definition > o

Framework

Polynomiality

SRS 3. N ucleon imaging
Positivity
Overlap |

Images from Guidal et al.,

Wave function Rept. Prog. Phys. 76 (2013) 066202 | The 2015 Long Range Plan for Nuclear Science

Radon transform

Covariant extension Sidebar 2.2: The First 3D Pictures of the Nucleon
I Rad
nverse Radon A computed tomography (CT) scan can help physicians

pinpoint minute cancer tumors, diagnose tiny broken
bones, and spot the early signs of osteoporosis.
PARTONS Now physicists are using the principles behind the
Computing chain procedure to peer at the inner workings of the proton.
This breakthrough is made possible by a relatively new

Example

Examples N n
concept in nuclear physics called generalized parton
Team distributions.
Conclusion An intense beam of high-energy electrons can be used b, [fm] b, [fm]
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Imaging the nucleon. How?
Extracting GPDs is not enough..Need to extrapolate!

B Extract H(x, ¢, t, i¢f) from experimental data.
Extrapolate to vanishing skewness H(x, 0, t, umf)
Extrapolate H(x, 0, t, ;LrF‘*f) up to infinite t.

Compute 2D Fourier transform in transverse plane:
+o00 dAL )
H(x, b)) = ; o A Jo(brAL) H(x,0,—A7%)

Propagate uncertainties.

[@ Control extrapolations with an accuracy matching that of
experimental data with sound GPD models.
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Spin-0 Generalized Parton Distribution.

Cea Definition and simple properties.

Covariant and ng (X7 g./ t) =

Positive GPD

Models 1 dz— ixPt 2 A _ V4 V4
e s Sfa(D o0
5/ on € mET 9 Tg) 7 9

Introduction z| =0

Status with t = A2 and E = —A+/(2P+)'

Experimental access

Towards 3D images

Framework
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References

Polynomiality
Double Distributions

Miller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

Positivity

Overlap

Wave function

Radon transform

Covariant extension

tnverse Radon m PDF forward limit

Example

o H(x,0,0) = q(x)
Examples
Team

Conclusion
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Status

e With =A% and £ = —AT/(2PT).

Towards 3D images

Introduction

Framework

References

Miller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)
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|
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- Spin-0 Generalized Parton Distribution.
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References
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Spin-0 Generalized Parton Distribution.
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Introduction

Status

Miiller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

Ecample m PDF forward limit

PARTONS m Form factor sum rule

Computing chain

Examples m H9is an even function of ¢ from time-reversal invariance.
Team

Conelusi m HY is real from hermiticity and time-reversal invariance.
onclusion
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Spin-0 Generalized Parton Distribution.
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Spin-0 Generalized Parton Distribution.

Not so simple properties.

Polynomiality

Positivity

HI(x,&,t) <

Lorentz covariance

X+ x—§
1+¢)9\1 ¢

q
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Spin-0 Generalized Parton Distribution.

Not so simple properties.

m Polynomiality

m Positivity

Lorentz covariance

Positivity of Hilbert space norm
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Relativistic quantum mechanics

H. Moutarde | Jefferson Lab | 12 /41



Covariant and
Positive GPD
Models

Introduction

Status
Experimental access

Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity

Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon

Example

PARTONS
Computing chain
Examples

Team

Conclusion

Spin-0 Generalized Parton Distribution.

Not so simple properties.

Polynomiality
Lorentz covariance
Positivity
Positivity of Hilbert space norm
H? has support x € [—1,+1].
Relativistic quantum mechanics
Soft pion theorem (pion target)
14 x
q
£ ()

1
Hq(X7£:17t:0): 5
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Spin-0 Generalized Parton Distribution.

Not so simple properties.
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Spin-0 Generalized Parton Distribution.

Not so simple properties.

m Polynomiality

Lorentz covariance
m Positivity

Positivity of Hilbert space norm

m H9 has support x € [—1,+1].
Relativistic quantum mechanics
m Soft pion theorem (pion target)

Dynamical chiral symmetry breaking

How can we implement a priori these theoretical constraints?

m There is no known GPD parameterization relying only on
first principles.

m In the following, focus on polynomiality and positivity.
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Polynomiality.

Mixed constraint from Lorentz invariance and discrete symmetries.

m Express Mellin moments of GPDs as matrix elements:

+1
/ dxx"HI(x, &, t)
1

1 A

— g (P3| a0 (T a0 [P )

Identify the Lorentz structure of the matrix element:

linear combination of (PT)™1=K(AT)k for 0 < k < m+1

m Remember definition of skewness AT = —2¢PT.
m Select even powers to implement time reversal.
m Obtain polynomiality condition:
1 m
[ domhag, 8 = 3020 €01+ (20 Chn (9
-1 =0

even
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Double Distributions.

Cea A convenient tool to encode GPD properties.

Covariant and m Define Double Distributions F? and G9 as matrix elements
Positive GPD .
Models of twist-2 quark operators:

| A I & A E
ISnt:':udsuctlon <P + 2’ E](O)’Y{“I D/l/l L ID/Im}q(O) 'P — 2> — Z <r;:>
k=0

xperimental access A Lom—k+1 A ,Ufm}
-3) - (3)

Towards 3D images

with
Fi, = / dBda o™ F(3, a)
Qpp

¢ = / dBda a8 kG5, o)
PARTONS /pp
Cormng Miller et al., Fortschr. Phys. 42, 101 (1994)
Toan Radyushkin, Phys. Rev. D59, 014030 (1999)
Conclusion

Radyushkin, Phys-Lett: B449, 81 (1999)
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Double Distributions.

Cea Relation to Generalized Parton Distributions.

Covariant and m Representation of GPD:
Positive GPD
Models

HI(x, &, t)—/g‘2 d/?dad(x—[)’—ozf)(Fq(ﬁ,oz, t)+ G5, a, t))

Introduction

Status m Support property: x € [—1,+1].

Experimental access . . . .

Towards 30 images m Discrete symmetries: F9 is a-even and GY is a-odd.
Framework

m Gauge: any representation (F9, G9) can be recast in one
representation with a single DD £:

Overlap Hq(X7 5, t) = X/ dﬂda fg)l\'IKS (/87 «, t)(S(X o /8 o (Y£>
Wave function Qpp

e Belitsky et al., Phys. Rev. D64, 116002 (2001)
e HI(x,&,t) = (1 — x) dBda (8, o, )d(x — B — af)
PARTONS Qpp

o Pobylitsa, Phys. Rev. D67, 034009 (2003)
C:n'"dusion Miiller, Few Body Syst. 55, 317 (2014)
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Double Distributions.

Cea Lorentz covariance by example.

Covariant and
Positive GPD
Models

o m Choose F(8,a) = 380(B) ad G%(8, ) = 3af(6):

Status

- Hi(x,€) = 3x / dfdad(x—F - at)
JQ

Framework

m Simple analytic expressions for the GPD:

Positivity

Overlap 6 X( 1 )
Wave function H(X7 5) -

52
S (x+ 1€])
H(x, &) = if —[§l <x<|¢] <1
1€[(1+ [€])

PARTONS

Computing chain

if0< ¢ <x<1,

Examples
Team

Conclusion
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Double Distributions.

Lorentz covariance by example.

m Compute first Mellin moments

Covariant and

Positive GPD + +1
“Modets N (Lf dxx"H(x, €) f dxx"H(x, €) .Lg dxx"H(x, £)

Introduction 0 1+§72§2 252 1
Status 1+£ 1+£
Experimental access
Towards 3D images 1 1+€+$2 *363 263 1+€2
Framework 2(1+£) 1+§ 2
Definition
Polynomiality
Double Distibuions 5 3(1—€) (14264362 4+483) 6¢4 3(14£2)
o 0(T+) 50+ 0
Wave function . . - - -
R v 3 14+6+£24-¢34¢4—5¢° 6£° 14+&2+¢
Covariant extension 5(1—‘,—5) 5(1—‘,—5) 5
Inverse Radon
Example

1+E4+E2 €3 4+£4465—66° 6¢° 1+¢2+¢
PARTONS e Rray —_—
S EER)) 7L 7
o m Expressions get more complicated as n increases... But
Conclusion they always yield polynomials!
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Positivity.

Cea A consequence of the positivity of the nom in a Hilbert space.

Covariant and
Positive GPD

Models m |dentify the matrix element defining a GPD as an inner
product of two different states.

Introduction

e m Apply Cauchy-Schwartz inequality, and identify PDFs at
Exprimentl s specific kinematic points, e.g.:

Framework

Definition 1 X+ £ X — 5

Polynomiality Hq X t <

Double Distributions ‘ ( 75’ )| - 1— 52 q 1 +€ q 1— g

Positivity

Wave function m This procedures yields infinitely many inequalities stable
o i under LO evolution.

P Pobylitsa, Phys. Rev. D66, 094002 (2002)
iAprogN,s . m The overlap representation guarantees a priori the

Examples

fulfillment of positivity constraints.

Team
Conclusion
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Overlap representation.

Cea A first-principle connection with Light Front Wave Functions.

Covariant and

Positive GPD m Decompose an hadronic state |H; P, \) in a Fock basis:

Models
Introduction ‘H* P7 )\> - Z /[dXko_}N/l/)/(\fJ\) (X17 kJ_la <oy XN kJ_/V) ‘Bv k17 ey kN>
Status N,B -
S m Derive an expression for the pion GPD in the DGLAP
Framevork region £ < x < 1:
:JI::lne Dis":ryibmions ‘ - 11 — AN a1 A) i~ 1
o (x, €, 1) oc Y / [dxk Jndq0 (x—3) (05 ) (K K)o (kL)
Overlap 3.

Wave function
with X, k| (resp. %Rl) generically denoting incoming
(resp. outgoing) parton kinematics.

Example

PARTONS. Diehl et al., Nucl. Phys. B596, 33 (2001)
e m Similar expression in the ERBL region —¢ < x < ¢, but

with overlap of N- and (N + 2)-body LFWFs.
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Overlap representation.

Advantages and drawbacks.

m Physical picture.
m Positivity relations are fulfilled by construction.
m Implementation of symmetries of N-body problems.

What is not obvious anymore

What is not obvious to see from the wave function
representation is however the continuity of GPDs at x = £¢
and the polynomiality condition. In these cases both the
DGLAP and the ERBL regions must cooperate to lead to the
required properties, and this implies nontrivial relations
between the wave functions for the different Fock states
relevant in the two regions. An ad hoc Ansatz for the wave
functions would almost certainly lead to GPDs that violate
the above requirements.

Diehl, Phys. Rept. 388, 41 (2003)

o’
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The Radon transform.

Definition and properties.

a For s > 0 and ¢ € [0, 27]:

Rf(s, ¢) = /+OO dpda (B, )d(s—f cos p—asin @)

— 0o

and:

Rfi—s, ¢) = Rf(s,¢ + )

ZANK
Relation to GPDs:

s
X = and £ =tan¢
cos ¢ ‘

R

Relation between GPD and DD in Belistky et al. gauge

1+£2H(
X

X, 5) - RfBl\flKS(% ¢) )
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and:

Rfi—s, ¢) = Rf(s,¢ + )

ZANK
Relation to GPDs:

s
X = and £ =tan¢
cos ¢ ‘

R

Relation between GPD and DD in Pobylitsa gauge

2
%—i_fo(Xa 5) — RfP(S'/ ¢> )
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The range of the Radon transform.

The polynomiality property a.k.a. the Ludwig-Helgason condition.

m The Mellin moments of a Radon transform are
homogeneous polynomials in w = (sin ¢, cos ¢).
m The converse is also true:

Theorem (Hertle, 1983)

Let g(s,w) an even compactly-supported distribution. Then g
is itself the Radon transform of a compactly-supported

distribution if and only if the Ludwig-Helgason consistency
condition hold:

(i) gis C* inw,

(i) [ dss™g(s,w) is a homogeneous polynomial of degree m for all
integer m > 0.

m Double Distributions and the Radon transform are the
natural solution of the polynomiality condition.
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Implementing Lorentz covariance.
Cea Extend an overlap in the DGLAP region to the whole GPD domain.

el DGLAP and ERBL regions

Positive GPD

Models (x,§) € DGLAP < |s| > |sing|,
Introduction (X7 5) S ERBL <~ ’S’ S ’Sin ¢‘ .
Status

W B=(x—8/1-¢ Each point (B,a)
B with 8#0

‘ contributes
Ox (x+8/0+8  to both DGLAP and
) ERBL regions.

v

Example

PARTONS

Computing chain

Qop (o] + |8

Team

= (x+9/01+9)

Conclusion
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Implementing Lorentz covariance.
Extend an overlap in the DGLAP region to the whole GPD domain.

For any model of LFWF, one has to address the following
three questions:

Does the extension exist?
If it exists, is it unique?

How can we compute this extension?
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lll-posedness in the sense of Hadamard.

A first glimpse at the inverse Radon transform.

m Numerical evaluation almost unavoidable (polar vs
cartesian coordinates).

m lll-posedness by lack of continuity.

m The unlimited Radon inverse problem is midly ill-posed
while the limited one is severely ill-posed.

-

15 = B
08

b 4
05 N 0.6

a of 4
os | i 04

a b 4
02

15 B
2 I I I o

-2 -1.5 1 15 2
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CQa Implementing Lorentz covariance.

Uniqueness of the extension.

Covariant and Theorem
Positive GPD

Models Let f be a compactly-supported locally summable function
defined on R? and Rf its Radon transform.

. Let (sp,wp) € R x S' and Uy an open neighborhood of wq such
tatus
Experimental access tha t..

Towards 3D images

Introduction

foralls> sy andw € Uy Rf(s,w) =0.

Framework

Definition

Then f(R) = 0 on the half-plane (X |wy) > sy of R2.

vt Consider a GPD H being zero on the DGLAP region.

Wave function m Take ¢g and sy s.t. cos g # 0 and |sg| > | sin ¢].

Cotis m Neighborhood U of ¢g s.t. Vo € Uy |sin ¢| < |sp].
Eot m The underlying DD f has a zero Radon transform for all
PARTONS ¢ € Up and s > sy (DGLAP).

s Then f(53,a) = 0 for all (8,a) € Qpp with 3 # 0.
Conelusion m Extension unique up to adding a D-term: §(5)D(«).
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (1/3).

A discretized problem

Consider N+ 1 Hilbert spaces H, Hi, .., Hy, and a family of
continuous surjective operators R, : H— H, for 1 < n < .
Being given g1 € Hi, .., gn € H,, we search fsolving the
following system of equations:

R.f=g, forl<n<N

Fully discrete case

Assume f piecewise-constant with values f,, for 1 < m < M.

For a collection of lines (L,)1<p<n crossing pp, the Radon
transform writes:

M
gn=Rf= / = Z fm X Measure(L,NCp) for1<n<N

n m=1

<
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (2/3).

Kaczmarz algorithm

Denote P, the orthogonal projection on the affine subspace
R.f= g,. Starting from £ € H, the sequence defined

. el :
iteratively by P PPy .. P
converges to the solution of the system.

The convergence is exponential if the projections are randomly
ordered.

Strohmer and Vershynin, Jour. Four. Analysis and Appl. 15,
437 (2009)

’
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (2/3).

—pP D D D

AT 31T 21 11
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (3/3).

And if the input data are inconsistent?

m Instead of solving g = Rf, find fsuch that ||g— Rf|2 is
minimum.

m The solution always exists.

m The input data are inconsistent if ||g — Rf]j2 > 0.
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (3/3).

Relaxed Kaczmarz algorithm

Let w €]0,2[ and:
Py =(1-w)ldy+wP, forl1<n<N

Write:

where D is diagonal, and L is lower-triangular with zeros on the

diagonal.

RRT = (RI'R_/T')1§I'7J'§N = D—|— L + L]L
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (3/3).

Theorem

Let 0 <w < 2. For £ € Ran R (e.g. 2 =0), the Kaczmarz

method with relaxation converges to the unique solution
f* € Ran R' of:

RI(D+wl) Y (g— RF)=0,
where the matrix D and L appear in the decomposition of RR'.
If g = Rf has a solution, then f is its solution of minimal
norm. Otherwise: F = fup+ Ow) |
where fyp is the minimizer in H of:
(g—Rflg—=RMNp ,

the inner product being defined by:

(hlk)p = (D"hIK) .
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Test on a 1D example.

Recovering a PDF from the knowledge of its Mellin moments.

A pion valence PDF-like example

Aim: reconstruct the PDF q(x) = 30x%(1 — x)? from the
knowledge of its first 30 Mellin moments.

 Recontruction — Terget PDF m Piecewise-constant PDF: 20

values.
m Input: 30 Mellin moments.
m Unrelaxed method w = 1.

m 10000 iterations.

Example

PARTONS
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Examples

Team

Conclusion

0.2 04 0.6 08 10

m Extensive testing in progress
m Various inputs: PDFs and LFWFs.
m Numerical noise and numerical techniques.
H. Moutarde | Jefferson Lab | 30 / 41
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Computing chain design.

Cea Differential studies: physical models and numerical methods.
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Status
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Computing chain design.

Differential studies: physical models and numerical methods.

Experimental
data and
phenomenology

Computation
of amplitudes

First
principles and
fundamental
parameters

Full processes

Small distance
contributions

Large distance
contributions
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Computing chain design.

Differential studies: physical models and numerical methods.

Experimental
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Computing chain design.

Differential studies: physical models and numerical methods.

= Many
observables.
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m Kinematic reach.

. )
Experimental G
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Computing chain design.
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Status.

Currently: integration, tests, validation.

m 3 stages:

Design.
Integration and validation.
Production.

Flexible software architecture.
B. Berthou et al., PARTONS: a computing platform for
the phenomenology of Generalized Parton Distributions

to appear in Eur. Phys. J. C.

1 new physical development = 1 new module.

Aggregate knowledge and know-how. Do not reinvent the
wheel!

What can be automated will be automated.

Get ready for 12 GeV!
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Framework ‘
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Double Distributions
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Wave function
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Inverse Radon

Example
PARTONS m Steps of logic sequence in parent class.
Computing chain . . . .
Examples m Model description and related mathematical methods in
Team

' daughter class.
Conclusion
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© ® N oA W N R

P el
w N = o

14
15
16

18
19

GPD computing made simple.

Each line of code corresponds to a physical hypothesis.

gpdExample()
// Lots of includes
#include <src/Partons.h>

// Retrieve GPD service

GPDService* pGPDService = ServiceObjectRegistry::getGPDService();

// Load GPD module with the BaseModuleFactory

GPDModule* pGK11Model = ModuleObjectFactory::newGPDModule(
GK11Model::classld);

// Create a GPDKinematic(x, xi, t, MuF, MuR)

GPDKinematic gpdKinematic(0.1, xBToXi(0.001), —0.3, 8., 8.);

// Compute data and store results

GPDResult gpdResult = pGPDService—>

computeGPDModelRestrictedByGPD Type(gpdKinematic, pGK11Model,
GPDType::ALL);

// Print results

std :: cout << gpdResult.toString() << std::endl;

delete pGK11Model,
pGK11Model = 0;
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11
12
13
14
15
16

18
19

GPD computing automated.

Each line of code corresponds to a physical hypothesis.

computeOneGPD.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>

<scenario id="01" date="" description="Example,: computation of one GPD
.model (GK11) without_evolution">
<!—— Select type of computation ——>
<task service="GPDService" method="computeGPDModel" >
<!—— Specify kinematics ——>
<GPDKinematic>
<param name="x" value="0.1" />
<param name="xi" value="1.00050025" />
<param name="t" value="-0.3" />
<param name="MuF2" value="8" />
<param name="MuR2" value="8" />
< /GPDKinematic>
<!—— Choose GPD model and set parameters ——>
<GPDModule>
<param name="id" value="GK11Model" />
</GPDModule>
< /task>

< /scenario>
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GPD computing automated.

Cea Each line of code corresponds to a physical hypothesis.

Covarant and computeOneGPP—— =
ositive —
Models 1 <7?xml version="1.0" encoding="UTF-8" stand H" = 0.822557
2 <scenario id="01" date="" description="Exam| [HU(+) — 0.165636 P
) del  (GK11) without evolution"> _
Introduct umodely u u u(—) _
niroduction 3 <!—— Select type of computation —— H = 1.47948
Status 4 <task service="GPDService" method=
Experimental access . . .
a0 5 <! SPeC|fy .kmema‘ucs >| Hd — 0.421431
6 <GPDKinematic> d
F:f_me""c’rk 7 <param name="x" val H +) = 0.0805182
efinition
Polynamisity 8 <param name="xi"va  pd(-) — (762344
Double Distributions 9 <param name="t" val ’
Positiity 10 <param name="MuF2"
Ouertap 11 <param name="MuR2" Hs = 0.00883408
Wave function 1 </GPDKinematic> .
S _
w3 <1-— Choose GPD model and|  H**) = 0.0176682
Inverse Radon 14 <GPDModule> HS(—) — O
Example 15 <param name="1id" va
PARTONS 16 </GPDModu|e>
Computing chain 17 < /task> H& = 0.385611
Examples 18 < /scenario> T
8 </see and E, H, E, ..
Conclusion
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CFF computing automated.

Each line of code corresponds to a physical hypothesis.

computeOneCFF.xml

<7xml version="1.0" encoding="UTF-8" standalone="yes" 7>
<scenario id="03" date="" description="Example,: computation of one
convol, ,coeff function model, (DVCSCFF) with, GPD model, (GK11)">
<task service="DVCSConvolCoeffFunctionService" method="
computeWithGPDModel"
<DVCSConvolCoeffFunctionKinematic>
<param name="xi" value="0.5" />
<param name="t" value="-0.1346" />
<param name="Q2" value="1.5557" />
<param name="MuF2" value="4" />
<param name="MuR2" value="4" />
< /DVCSConvolCoeffFunctionKinematic>
<GPDModule>
<param name="1id" value="GK11Model" />
</GPDModule>
<DVCSConvolCoeffFunctionModule>
<param name="id" value="DVCSCFFModel" />
<param name="qcd_order_type" value="L0" />
< /DVCSConvolCoeffFunctionModule>
< /task>
< /scenario>
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CFF computing automated.

Each line of code corresponds to a physical hypothesis.

computeOneCFF.xml

<7xml version="1.0" encoding="UTF-8" standalone="yes" 7>

<scenario id="03" date="" description="Example,: computation of one

convol, ,coeff function model, (DVCSCFF) with, GPD model, (GK11)">
<task service="DVCSConvolCoeffFunctionService" method="

computeWithGPDModel"

<DVCSConvolCoeffFunctionKinematic>
<param name="xi" value="0.5" />
<param name="t" value="-0.1346" />
<param name="Q2" value="1.5557" />
<param name="MuF2" value="4" />
<param name="MuR2" value="4" />
< /DVCSConvolCoeffFunctionKinematic>
<GPDModule>
<param name="1id" value="GK11Model" />
</GPDModule>
<DVCSConvol i
<pard H = 1.47722 + 1.76698 i
Joves <pary £ = 0.12279 4 0.512312; |/>
< /DVCSConvol ~ i
</task> H — 154911 + 0953728 I
</scenario> £ =18.8776 + 3.75275 i
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Members and areas of expertise

Network of developers, upstream contributors and users

fe

CEA - Saclay

Berthou Binosi

(Irfu) (ECT*)

Lab
s e
IPN et LPT (Orsay), Irfu (Saclay) and CPhT (Polytechnique)
Experimental data analysis Perturbative QCD
World data fits GPD modeling

Multidisciplinary development team

SNREE: B

Chouika Guidal Mezrag Moutarde Sabatié Sznajder Wagner

(Irfu) (IPNO)  (ANL) (Irfu) (Irfu) (IPNO)  (NCBJ)

5 Jefferson
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Conclusions and prospects.

Positivity and polynomiality constraints consistently implemented.

Last decade demonstrated maturity of GPD
phenomenology.

Challenging constraints expected from Jefferson Lab in
the valence region.

Systematic procedure to construct GPD models from any
"reasonable” Ansatz of LFWFs.

Characterization of the existence and uniqueness of the
extension from the DGLAP to the ERBL region.

Development of the platform PARTONS for
phenemonology and theory purposes.

Numerical tests in progress.
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