Lorentz Covariance and Positivity Constraints in the Modeling of Generalized Parton Distributions

Theory Center Seminar | Hervé MOUTARDE

Feb. 22nd, 2016
Motivation.
Study nucleon structure to shed new light on nonperturbative QCD.

Perturbative QCD

Asymptotic freedom

Nonperturbative QCD

Perturbative AND nonperturbative QCD at work

- Define **universal** objects describing 3D nucleon structure: **Generalized Parton Distributions (GPD).**
- Relate GPDs to measurements using **factorization:** **Virtual Compton Scattering (DVCS, TCS),** **Deeply Virtual Meson production (DVMP).**
- Get **experimental knowledge** of nucleon structure.
Covariant and Positive GPD Models

Introduction

Correlation of the **longitudinal momentum** and the **transverse position** of a parton in a hadron.

DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

\[R_\perp = \sum_i x_i r_{\perp i} \]

Transverse center of momentum
Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond.

- Correlation of the \textbf{longitudinal momentum} and the \textbf{transverse position} of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

\[e^-, \gamma^*, Q^2, x + \xi, x - \xi, \gamma, F_i(x, t) \]

Transverse center of momentum \(R_\perp \)
\[R_\perp = \sum_i x_i r_{\perp i} \]

Impact parameter \(b_\perp \)
Covariant and Positive GPD Models

Introduction

Status
- Experimental access
- Towards 3D images

Framework
- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

Wave function
- Radon transform
- Covariant extension
- Inverse Radon
- Example

PARTONS
- Computing chain
- Examples
- Team

Conclusion

Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond.

- Correlation of the **longitudinal momentum** and the **transverse position** of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

DVCS
\[e^-, \gamma^*, Q^2 \]
\[\gamma \rightarrow e^- + xP^+ \]
\[p + \xi \rightarrow x - \xi \]
\[R_\perp = \sum_i x_i r_{\perp i} \]

Impact parameter \(b_\perp \)
Longitudinal momentum \(xP^+ \)
Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond.

- Correlation of the **longitudinal momentum** and the **transverse position** of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

Transverse center of momentum \(R_\perp \)

\[
R_\perp = \sum_i x_i r_{\perp i}
\]

Impact parameter \(b_\perp \)

\[-1 < x < +1 \]

\[-1 < \xi < +1 \]

Longitudinal momentum \(xP^+ \)

- **24** GPDs \(F^i(x, \xi, t, \mu_F) \) for each parton type \(i = g, u, d, \ldots \) for leading and sub-leading twists.
Towards hadron tomography. GPDs as a scalpel-like probe of hadron structure.

1. **Phenomenology status**: relevance and need for parameterizations.

2. **Theoretical framework**: definition and existing constraints.

3. **GPDs from Light Front Wave Functions**: a promising computing strategy.

4. **The PARTONS platform**: a GPD toolkit.

How can we make this picture? What do we learn from it?

Notes

- **Phenomenology status**: relevance and need for parameterizations.
- **Theoretical framework**: definition and existing constraints.
- **GPDs from Light Front Wave Functions**: a promising computing strategy.
- **The PARTONS platform**: a GPD toolkit.
Phenomenology status
Covariant and Positive GPD Models

Introduction

Status

Experimental access
Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

Exclusive processes of current interest (1/2).
Factorization and universality.

DVCS
\[e^-(p) + \gamma^*(Q^2) \rightarrow e^-(p_1) + \gamma(x) \]
\[x + \xi \rightarrow x - \xi \]

Generalized Parton Distributions
\[b_y \rightarrow b_x \]
nucleon

\[Q^2 \]

\[\gamma^* \]
Exclusive processes of current interest (1/2).

Factorization and universality.

Covariant and Positive GPD Models

Introduction

Status

Experimental access
Towards 3D images

Framework

Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function

Radon transform
Covariant extension
Inverse Radon
Example

PARTONS

Computing chain
Examples
Team

Conclusion
Exclusive processes of current interest (1/2).
Factorization and universality.
Exclusive processes of current interest (1/2).

Factorization and universality.

Covariant and Positive GPD Models

Introduction

Status

Experimental access

Towards 3D images

Framework

Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Overlap

PARTONS
Computing chain
Examples
Team

Conclusion

DVCS

\[e^- e^- \gamma^* Q^2 \gamma \rightarrow x + \xi \rightarrow x - \xi \]

Perturbative

Nonperturbative

DVMP

\[e^- \gamma^* Q^2 \rightarrow x + \xi \rightarrow x - \xi \]

Perturbative

Nonperturbative

Generalized Parton Distributions

\[\gamma^* Q^2 \rightarrow b_y \rightarrow \text{nucleon} \]

TCS

\[e^+ \gamma \rightarrow x + \xi \rightarrow x - \xi \]

Perturbative

Nonperturbative

H. Moutarde | Jefferson Lab | 6 / 41
Exclusive processes of current interest (1/2).
Factorization and universality.

Covariant and Positive GPD Models

Introduction

Status

Experimental access
Towards 3D images

Framework

Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function

Radon transform
Covariant extension
Inverse Radon

PARTONS

Computing chain
Examples
Team

Conclusion
Exclusive processes of current interest (1/2).
Factorization and universality.

Covariant and Positive GPD Models

Introduction
Status
Experimental access
Towards 3D images
Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap
Wave function
Radon transform
Covariant extension
Inverse Radon
Example
PARTONS
Computing chain
Examples
Team
Conclusion

DVCS
Perturbative
\(e^{-} \gamma^{*} Q^2 \gamma \)
factorization
\(x + \xi \)
\(x - \xi \)
\(p \)
\(p \)
t

Generalized Parton Distributions

\(Q^2 \)
\(\gamma^{*} \)

nucleon

DVMP
Perturbative
\(e^{-} \gamma^{*} Q^2 \pi, \rho, \ldots \)
factorization
\(x + \xi \)
\(x - \xi \)
\(p \)
\(p \)
t

TCS
Perturbative
\(e^{+} \gamma \gamma^{*} Q^2 e^{-} \)
factorization
\(x + \xi \)
\(x - \xi \)
\(p \)
\(p \)
t

H. Moutarde | Jefferson Lab | 6 / 41
Bjorken regime : large Q^2 and fixed $x B \simeq 2 \xi / (1 + \xi)$

- Partonic interpretation relies on factorization theorems.
- All-order proofs for DVCS, TCS and some DVMP.
- GPDs depend on a (arbitrary) factorization scale μ_F.
- Consistency requires the study of different channels.

- GPDs enter DVCS through Compton Form Factors:

$$ F(\xi, t, Q^2) = \int_{-1}^{1} dx \ C \left(x, \xi, \alpha_S(\mu_F), \frac{Q}{\mu_F} \right) F(x, \xi, t, \mu_F) $$

for a given GPD F.

- CFF F is a complex function.
Summary of first extractions.
Feasibility of twist-2 analysis of existing data.

- **Dominance** of twist-2 and **validity** of a GPD analysis of DVCS data.

- ImH **best determined**. Large uncertainties on ReH.

- However sizable **higher twist contamination** for DVCS measurements?

- Already some indications about the **invalidity** of the H-dominance hypothesis with **unpolarized data**.
Imaging the nucleon. How?
Extracting GPDs is not enough... Need to extrapolate!

1. Experimental data fits

\[\Delta \sigma \ [\text{pb.GeV}^{-4}] \]
\[\langle x_B \rangle = 0.5 \]
\[\langle Q^2 \rangle = 6.3 \text{ GeV}^2 \]
\[\langle -t \rangle = 0.735 \text{ GeV}^2 \]

2. GPD extraction

\[f(x, t; z=0.2, Q^2=4) \]

3. Nucleon imaging

Images from Guidal et al., Rept. Prog. Phys. 76 (2013) 066202

Sidebar 2.2: The First 3D Pictures of the Nucleon

A computed tomography (CT) scan can help physicians pinpoint minute cancer tumors, diagnose tiny broken bones, and spot the early signs of osteoporosis.

Now physicists are using the principles behind the procedure to peer at the inner workings of the proton. This breakthrough is made possible by a relatively new concept in nuclear physics called generalized parton distributions.

An intense beam of high-energy electrons can be used...
Imaging the nucleon. How?
Extracting GPDs is not enough...Need to extrapolate!

1. **Extract** $H(x, \xi, t, \mu_F^{\text{ref}})$ from experimental data.

2. **Extrapolate** to vanishing skewness $H(x, 0, t, \mu_F^{\text{ref}})$.

3. **Extrapolate** $H(x, 0, t, \mu_F^{\text{ref}})$ up to infinite t.

4. **Compute** 2D Fourier transform in transverse plane:

 $$H(x, b_\perp) = \int_0^{+\infty} \frac{d\Delta_\perp}{2\pi} \Delta_\perp J_0(b_\perp \Delta_\perp) \ H(x, 0, -\Delta^2_\perp)$$

5. **Propagate** uncertainties.

6. **Control** extrapolations with an accuracy matching that of experimental data with **sound** GPD models.
Theoretical framework
Spin-0 Generalized Parton Distribution.
Definition and simple properties.

\[H^q_{\pi}(x, \xi, t) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q} \left(-\frac{z}{2}\right) \gamma^+ q \left(\frac{z}{2}\right) \right| \pi, P - \frac{\Delta}{2} \right\rangle_{z^+ = 0, z_\perp = 0} \]

with \(t = \Delta^2 \) and \(\xi = -\Delta^+/(2P^+) \).

References

Spin-0 Generalized Parton Distribution.
Definition and simple properties.

\[
H^q_\pi(x, \xi, t) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}\left(\frac{-z}{2}\right) \gamma^+ q\left(\frac{z}{2}\right) \right| \pi, P - \frac{\Delta}{2} \right\rangle_{z^+ = 0, z^- = 0}
\]

with \(t = \Delta^2 \) and \(\xi = -\Delta^+/(2P^+) \).

References

PDF forward limit
Form factor sum rule

\[
\int_{-1}^{+1} dx \, H^q(x, \xi, t) = F_1^q(t)
\]
Spin-0 Generalized Parton Distribution. Definition and simple properties.

\[H^q_{\pi}(x, \xi, t) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^+ q \left(\frac{z}{2} \right) \right| \pi, P - \frac{\Delta}{2} \right\rangle \]

with \(t = \Delta^2 \) and \(\xi = -\Delta^+/(2P^+) \).

References

- PDF forward limit
- Form factor sum rule
- \(H^q \) is an even function of \(\xi \) from time-reversal invariance.
Spin-0 Generalized Parton Distribution.
Definition and simple properties.

\[H^q_{\pi}(x, \xi, t) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^+ q \left(\frac{z}{2} \right) \right| \pi, P - \frac{\Delta}{2} \right\rangle \]

with \(t = \Delta^2 \) and \(\xi = -\Delta^+/(2P^+) \).

References

- PDF forward limit
- Form factor sum rule
- \(H^q \) is an even function of \(\xi \) from time-reversal invariance.
- \(H^q \) is real from hermiticity and time-reversal invariance.
Spin-0 Generalized Parton Distribution.
Not so simple properties.

- **Polynomiality**

\[\int_{-1}^{+1} dx x^n H^q(x, \xi, t) = \text{polynomial in } \xi \]
Covariant and Positive GPD Models

Introduction

Status

Experimental access
Towards 3D images

Framework

Definition

Polynomiality
Double Distributions
Positivity
Overlap

Wave function

Radon transform
Covariant extension
Inverse Radon
Example

PARTONS

Computing chain
Examples
Team

Conclusion

Spin-0 Generalized Parton Distribution.
Not so simple properties.

Polynomiality

Lorentz covariance

Spin-0 Generalized Parton Distribution.
Not so simple properties.
Polynomiality

\[H^q(x, \xi, t) \leq \sqrt{q \left(\frac{x + \xi}{1 + \xi} \right) q \left(\frac{x - \xi}{1 - \xi} \right)} \]

Positivity

Lorentz covariance
Spin-0 Generalized Parton Distribution.
Not so simple properties.

Covariant and Positive GPD Models

Introduction

Status
Experimental access
Towards 3D images

Framework

Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

Spin-0 Generalized Parton Distribution.
Not so simple properties.

Polynomiality

Positivity

Lorentz covariance

Positivity of Hilbert space norm

H. Moutarde | Jefferson Lab | 12 / 41
Spin-0 Generalized Parton Distribution.
Not so simple properties.

- **Polynomiality**

- **Positivity**

L^q has support $x \in [-1, +1]$.

Lorentz covariance

Positivity of Hilbert space norm

Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

Wave function
- Radon transform
- Covariant extension
- Inverse Radon
- Example

PARTONS
- Computing chain
- Examples
- Team

Conclusion
Spin-0 Generalized Parton Distribution.
Not so simple properties.

- **Polynomiality**

- **Positivity**

L^q has support $x \in [-1, +1]$.

Lorentz covariance

Positivity of Hilbert space norm

Relativistic quantum mechanics

- **Covariant and Positive GPD Models**

- **Introduction**

- **Status**
 - Experimental access
 - Towards 3D images

- **Framework**
 - Definition
 - Polynomiality
 - Double Distributions
 - Positivity
 - Overlap

- **Wave function**
 - Radon transform
 - Covariant extension
 - Inverse Radon
 - Example

- **PARTONS**
 - Computing chain
 - Examples
 - Team

- **Conclusion**
Spin-0 Generalized Parton Distribution.
Not so simple properties.

- **Polynomiality**
 - Lorentz covariance

- **Positivity**
 - Positivity of Hilbert space norm

- H^q has support $x \in [-1, +1]$.

- **Soft pion theorem** (pion target)
 $$H^q(x, \xi = 1, t = 0) = \frac{1}{2} \phi_\pi^q \left(\frac{1 + x}{2} \right)$$

- Experimental access
 - Towards 3D images

- Definition
 - Polynomiality
 - Double Distributions
 - Positivity
 - Overlap

- Wave function
 - Radon transform
 - Covariant extension
 - Inverse Radon
 - Example

- PARTONS
 - Computing chain
 - Examples
 - Team

- Conclusion
Spin-0 Generalized Parton Distribution.
Not so simple properties.

- **Polynomiality**
 - Lorentz covariance
- **Positivity**
 - Positivity of Hilbert space norm
 - H^q has support $x \in [-1, +1]$.
 - Relativistic quantum mechanics
- **Soft pion theorem** (pion target)
 - Dynamical chiral symmetry breaking
Spin-0 Generalized Parton Distribution.
Not so simple properties.

- **Polynomiality**
 - Lorentz covariance

- **Positivity**
 - Positivity of Hilbert space norm
 - Relativistic quantum mechanics
 - Soft pion theorem (pion target)
 - Dynamical chiral symmetry breaking

How can we implement *a priori* these theoretical constraints?

- There is no known GPD parameterization relying only on first principles.
- In the following, focus on **polynomiality** and **positivity**.
Polynomiality.
Mixed constraint from Lorentz invariance and discrete symmetries.

- Express Mellin moments of GPDs as matrix elements:
 \[
 \int_{-1}^{+1} dx x^m H^q(x, \xi, t) = \frac{1}{2(P^+)^{m+1}} \left\langle P + \frac{\Delta}{2} \bigg| \bar{q}(0) \gamma^+(i \not{D}^+)^m q(0) \bigg| P - \frac{\Delta}{2} \right\rangle
 \]

- Identify the Lorentz structure of the matrix element:
 linear combination of \((P^+)^{m+1-k}(\Delta^+)^k\) for \(0 \leq k \leq m+1\)

- Remember definition of skewness \(\Delta^+ = -2\xi P^+\).

- Select even powers to implement time reversal.

- Obtain polynomiality condition:
 \[
 \int_{-1}^{1} dx x^m H^q(x, \xi, t) = \sum_{i=0}^{m} (2\xi)^i C_{mi}^q(t) + (2\xi)^{m+1} C_{mm+1}^q(t) .
 \]
Double Distributions.
A convenient tool to encode GPD properties.

Define Double Distributions F^q and G^q as matrix elements of *twist-2 quark operators*:

\[
\left\langle P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^{\mu} i D^{\mu_1} \ldots i D^{\mu_m} q(0) \right| P - \frac{\Delta}{2} \right\rangle = \sum_{k=0}^{m} \binom{m}{k}
\]

\[
\left[F^q_{mk}(t) 2 P^{\mu} - G^q_{mk}(t) \Delta^{\mu} \right] P^{\mu_1} \ldots P^{\mu_{m-k}} \left(-\frac{\Delta}{2} \right)^{\mu_{m-k+1}} \ldots \left(-\frac{\Delta}{2} \right)^{\mu_m}
\]

with

\[
F^q_{mk} = \int_{\Omega_{DD}} d\beta d\alpha \, \alpha^k \beta^{m-k} F^q(\beta, \alpha)
\]

\[
G^q_{mk} = \int_{\Omega_{DD}} d\beta d\alpha \, \alpha^k \beta^{m-k} G^q(\beta, \alpha)
\]

Double Distributions.
Relation to Generalized Parton Distributions.

- **Representation of GPD:**

\[H^q(x, \xi, t) = \int_{\Omega_{DD}} d\beta d\alpha \, \delta(x - \beta - \alpha \xi) \left(F^q(\beta, \alpha, t) + \xi G^q(\beta, \alpha, t) \right) \]

- **Support property:** \(x \in [-1, +1] \).
- **Discrete symmetries:** \(F^q \) is \(\alpha \)-even and \(G^q \) is \(\alpha \)-odd.
- **Gauge:** any representation \((F^q, G^q)\) can be recast in one representation with a single DD \(f^q \):

\[H^q(x, \xi, t) = x \int_{\Omega_{DD}} d\beta d\alpha \, f^q_{BMKS}(\beta, \alpha, t) \delta(x - \beta - \alpha \xi) \]

\[H^q(x, \xi, t) = (1 - x) \int_{\Omega_{DD}} d\beta d\alpha \, f^q_{P}(\beta, \alpha, t) \delta(x - \beta - \alpha \xi) \]

Choose $F^q(\beta, \alpha) = 3\beta \theta(\beta)$ and $G^q(\beta, \alpha) = 3\alpha \theta(\beta)$:

$$H^q(x, \xi) = 3x \int_\Omega d\beta d\alpha \delta(x - \beta - \alpha \xi)$$

- Simple analytic expressions for the GPD:

$$H(x, \xi) = \begin{cases}
6x(1 - x) & \text{if } 0 < |\xi| < x < 1, \\
\frac{x(1 - \xi^2)}{1 - \xi^2} & \text{if } -|\xi| < x < |\xi| < 1.
\end{cases}$$
Compute first Mellin moments.

<table>
<thead>
<tr>
<th>n</th>
<th>$\int_{-\xi}^{+\xi} dx x^n H(x, \xi)$</th>
<th>$\int_{+\xi}^{+1} dx x^n H(x, \xi)$</th>
<th>$\int_{-\xi}^{-1} dx x^n H(x, \xi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{1+\xi-2\xi^2}{1+\xi}$</td>
<td>$\frac{2\xi^2}{1+\xi}$</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1+\xi+\xi^2-3\xi^3}{2(1+\xi)}$</td>
<td>$\frac{2\xi^3}{1+\xi}$</td>
<td>$\frac{1+\xi^2}{2}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{3(1-\xi)(1+2\xi+3\xi^2+4\xi^3)}{10(1+\xi)}$</td>
<td>$\frac{6\xi^4}{5(1+\xi)}$</td>
<td>$\frac{3(1+\xi^2)}{10}$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1+\xi+\xi^2+\xi^3+\xi^4-5\xi^5}{5(1+\xi)}$</td>
<td>$\frac{6\xi^5}{5(1+\xi)}$</td>
<td>$\frac{1+\xi^2+\xi^4}{5}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1+\xi+\xi^2+\xi^3+\xi^4+\xi^5-6\xi^6}{7(1+\xi)}$</td>
<td>$\frac{6\xi^6}{7(1+\xi)}$</td>
<td>$\frac{1+\xi^2+\xi^4}{7}$</td>
</tr>
</tbody>
</table>

- Expressions get more complicated as n increases... But they always yield polynomials!

H. Moutarde Jefferson Lab 16 / 41
Positivity. A consequence of the positivity of the norm in a Hilbert space.

- Identify the matrix element defining a GPD as an inner product of two different states.
- Apply Cauchy-Schwartz inequality, and identify PDFs at specific kinematic points, e.g.:

\[
|H^q(x, \xi, t)| \leq \sqrt{\frac{1}{1 - \xi^2}} q \left(\frac{x + \xi}{1 + \xi} \right) q \left(\frac{x - \xi}{1 - \xi} \right)
\]

- This procedures yields infinitely many inequalities stable under LO evolution.

- The overlap representation guarantees a priori the fulfillment of positivity constraints.
Overlap representation.
A first-principle connection with Light Front Wave Functions.

- Decompose an hadronic state \(|H; P, \lambda\rangle\) in a Fock basis:

 \[
 |H; P, \lambda\rangle = \sum_{N, \beta} \int [dx dk_\perp] N \psi_N^{(\beta, \lambda)}(x_1, k_\perp 1, \ldots, x_N, k_\perp N) |\beta, k_1, \ldots, k_N\rangle
 \]

- Derive an expression for the pion GPD in the DGLAP region \(\xi \leq x \leq 1\):

 \[
 H^q(x, \xi, t) \propto \sum_{\beta, j} \int [d\tilde{x} d\tilde{k}_\perp] \delta_j(q\delta(x-\tilde{x}_j)(\psi_N^{(\beta, \lambda)})^*(\tilde{x}', \tilde{k}_\perp)\psi_N^{(\beta, \lambda)}(\tilde{x}, \tilde{k}_\perp)
 \]

 with \(\tilde{x}, \tilde{k}_\perp \) (resp. \(\tilde{x}', \tilde{k}_\perp' \)) generically denoting incoming (resp. outgoing) parton kinematics.

- Similar expression in the ERBL region \(-\xi \leq x \leq \xi\), but with overlap of \(N\)- and \((N+2)\)-body LFWFs.
Overlap representation.
Advantages and drawbacks.

- Physical picture.
- Positivity relations are fulfilled by construction.
- Implementation of symmetries of N-body problems.

What is not obvious anymore

What is not obvious to see from the wave function representation is however the continuity of GPDs at $x = \pm \xi$ and the polynomiality condition. In these cases both the DGLAP and the ERBL regions must cooperate to lead to the required properties, and this implies nontrivial relations between the wave functions for the different Fock states relevant in the two regions. An ad hoc Ansatz for the wave functions would almost certainly lead to GPDs that violate the above requirements.

GPDs from Light Front Wave Functions
The Radon transform.
Definition and properties.

\[\mathcal{R}f(s, \phi) = \int_{-\infty}^{+\infty} d\beta d\alpha \ f(\beta, \alpha) \delta(s - \beta \cos \phi - \alpha \sin \phi) \]

For \(s > 0 \) and \(\phi \in [0, 2\pi] \):

\[\mathcal{R}f(-s, \phi) = \mathcal{R}f(s, \phi \pm \pi) \]

Relation to GPDs:

\[x = \frac{s}{\cos \phi} \text{ and } \xi = \tan \phi \]

Relation between GPD and DD in Belistky et al. gauge

\[\frac{\sqrt{1 + \xi^2}}{x} H(x, \xi) = \mathcal{R}f_{\text{BMKS}}(s, \phi), \]

H. Moutarde | Jefferson Lab | 21 / 41
The Radon transform.
Definition and properties.

\[\mathcal{R}f(s, \phi) = \int_{-\infty}^{+\infty} d\beta d\alpha f(\beta, \alpha) \delta(s - \beta \cos \phi - \alpha \sin \phi) \]

and:

\[\mathcal{R}f(-s, \phi) = \mathcal{R}f(s, \phi \pm \pi) \]

Relation to GPDs:

\[x = \frac{s}{\cos \phi} \text{ and } \xi = \tan \phi \]

Relation between GPD and DD in Pobylitsa gauge:

\[\sqrt{1 + \xi^2} \frac{H(x, \xi)}{1 - x} = \mathcal{R}f_P(s, \phi) \]
The Mellin moments of a Radon transform are **homogeneous polynomials** in \(\omega = (\sin \phi, \cos \phi) \).

The converse is also true:

Theorem (Hertle, 1983)

Let \(g(s, \omega) \) an even compactly-supported distribution. Then \(g \) is itself the Radon transform of a compactly-supported distribution if and only if the **Ludwig-Helgason consistency condition** hold:

1. \(g \) is \(C^\infty \) in \(\omega \),
2. \(\int ds s^m g(s, \omega) \) is a homogeneous polynomial of degree \(m \) for all integer \(m \geq 0 \).

Double Distributions and the Radon transform are the **natural solution** of the polynomiality condition.
Implementing Lorentz covariance.
Extend an overlap in the DGLAP region to the whole GPD domain.

\[
\Omega_{DD}(|\alpha| + |\beta| \leq 1) \Rightarrow \begin{cases}
(x, \xi) \in \text{DGLAP} & \iff |s| \geq |\sin \phi| , \\
(x, \xi) \in \text{ERBL} & \iff |s| \leq |\sin \phi| .
\end{cases}
\]

\[
\beta = (x - \xi)/(1 + \xi) \\
\alpha = \frac{1}{\xi}(x - \beta) \\
\beta = (x - \xi)/(1 - \xi) \\
\beta = (x + \xi)/(1 + \xi)
\]

Each point \((\beta, \alpha)\) with \(\beta \neq 0\) contributes to both DGLAP and ERBL regions.
For any model of LFWF, one has to address the following three questions:

1. Does the extension exist?
2. If it exists, is it unique?
3. How can we compute this extension?
Ill-posedness in the sense of Hadamard.
A first glimpse at the inverse Radon transform.

- Numerical evaluation *almost unavoidable* (polar vs cartesian coordinates).
- Ill-posedness by *lack of continuity*.
- The *unlimited* Radon inverse problem is *midly* ill-posed while the *limited* one is *severely* ill-posed.
Theorem

Let f be a compactly-supported locally summable function defined on \mathbb{R}^2 and $\mathcal{R}f$ its Radon transform. Let $(s_0, \omega_0) \in \mathbb{R} \times S^1$ and U_0 an open neighborhood of ω_0 such that:

$$\text{for all } s > s_0 \text{ and } \omega \in U_0 \quad \mathcal{R}f(s, \omega) = 0.$$

Then $f(\mathcal{R}) = 0$ on the half-plane $\langle \mathcal{R} | \omega_0 \rangle > s_0$ of \mathbb{R}^2.

Consider a GPD H being zero on the DGLAP region.

- Take ϕ_0 and s_0 s.t. $\cos \phi_0 \neq 0$ and $|s_0| > |\sin \phi_0|$.
- Neighborhood U_0 of ϕ_0 s.t. $\forall \phi \in U_0$ $|\sin \phi| < |s_0|$.
- The underlying DD f has a zero Radon transform for all $\phi \in U_0$ and $s > s_0$ (DGLAP).
- Then $f(\beta, \alpha) = 0$ for all $(\beta, \alpha) \in \Omega_{\text{DD}}$ with $\beta \neq 0$.
- Extension unique up to adding a D-term: $\delta(\beta)D(\alpha)$.
Computation of the extension.
Numerical evaluation of the inverse Radon transform (1/3).

A discretized problem

Consider \(N + 1 \) Hilbert spaces \(H, H_1, \ldots, H_N \), and a family of continuous surjective operators \(R_n : H \to H_n \) for \(1 \leq n \leq N \). Being given \(g_1 \in H_1, \ldots, g_n \in H_n \), we search \(f \) solving the following system of equations:

\[
R_n f = g_n \quad \text{for } 1 \leq n \leq N
\]

Fully discrete case

Assume \(f \) piecewise-constant with values \(f_m \) for \(1 \leq m \leq M \). For a collection of lines \((L_n)_{1 \leq n \leq N} \) crossing \(\Omega_{\text{DD}} \), the Radon transform writes:

\[
g_n = R f = \int_{L_n} f = \sum_{m=1}^{M} f_m \times \text{Measure}(L_n \cap C_m) \quad \text{for } 1 \leq n \leq N
\]
Computation of the extension.
Numerical evaluation of the inverse Radon transform (2/3).

Kaczmarz algorithm

Denote P_n the orthogonal projection on the affine subspace $R_n f = g_n$. Starting from $f^0 \in H$, the sequence defined iteratively by:

$$f^{k+1} = P_N P_{N-1} \ldots P_1 f^k$$

converges to the solution of the system.

The convergence is exponential if the projections are randomly ordered.

Computation of the extension.
Numerical evaluation of the inverse Radon transform (2/3).

\[f^\lambda = P_4 P_3 P_2 P_1 \phi \]

\[f = P_4 P_3 P_2 P_1 f^\lambda \]

\[P_2 P_1 f^\lambda \]

\[P_3 P_2 P_1 f^\lambda \]

\[P_1 \phi \]

\[K_1 \]

\[K_2 \]

\[K_3 \]

\[K_4 \]
And if the input data are inconsistent?

- Instead of solving $g = \mathcal{R}f$, find f such that $\|g - \mathcal{R}f\|_2$ is minimum.
- The solution always exists.
- The input data are inconsistent if $\|g - \mathcal{R}f\|_2 > 0$.
Relaxed Kaczmarz algorithm

Let $\omega \in]0, 2[$ and:

$$P_n^\omega = (1 - \omega) \text{Id}_H + \omega P_n \quad \text{for } 1 \leq n \leq N$$

Write:

$$RR^\dagger = (R_i R_j^\dagger)_{1 \leq i, j \leq N} = D + L + L^\dagger$$

where D is diagonal, and L is lower-triangular with zeros on the diagonal.
Theorem

Let $0 < \omega < 2$. For $f \in \text{Ran} \ R^\dagger$ (e.g. $f = 0$), the Kaczmarz method with relaxation converges to the unique solution $f^\omega \in \text{Ran} \ R^\dagger$.

\[R^\dagger (D + \omega L)^{-1} (g - Rf^\omega) = 0, \]

where the matrix D and L appear in the decomposition of RR^\dagger.

If $g = Rf$ has a solution, then f^ω is its solution of minimal norm. Otherwise:

\[f^\omega = f^{\text{MP}} + O(\omega), \]

where f^{MP} is the minimizer in H of:

\[\langle g - Rf | g - Rf \rangle_D. \]

The inner product being defined by:

\[\langle h | k \rangle_D = \langle D^{-1} h | k \rangle. \]
Test on a 1D example.
Recovering a PDF from the knowledge of its Mellin moments.

A pion valence PDF-like example

Aim: reconstruct the PDF \(q(x) = 30x^2(1 - x)^2 \) from the knowledge of its first 30 Mellin moments.

- Piecewise-constant PDF: 20 values.
- Input: 30 Mellin moments.
- Unrelaxed method \(\omega = 1 \).
- 10000 iterations.

Extensive testing in progress
- Various inputs: PDFs and LFWFs.
- Numerical noise and numerical techniques.
PARTONS Project

PARtonic Tomography Of Nucleon Software
Computing chain design.
Differential studies: physical models and numerical methods.

Covariant and Positive GPD Models

Introduction

Status
Experimental access
Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

Experimental data and phenomenology
Full processes

Computation of amplitudes
Small distance contributions

First principles and fundamental parameters
Large distance contributions
Computing chain design.
Differential studies: physical models and numerical methods.

Covariant and Positive GPD Models

Introduction

Status
Experimental access
Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

Experimental data and phenomenology

Full processes

Computation of amplitudes

Small distance contributions

First principles and fundamental parameters

Large distance contributions
Covariant and Positive GPD Models

Introduction

Status

Experimental access
Towards 3D images

Framework

Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function

Radon transform
Covariant extension
Inverse Radon
Example

PARTONS

Computing chain

Examples
Team

Conclusion

Computing chain design.
Differential studies: physical models and numerical methods.

Experimental data and phenomenology

Computation of amplitudes

First principles and fundamental parameters

Evolution

GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at μ_F^{ref}

DVCS

TCS

DVMP

DVCS

TCS

DVMP

DVCS

TCS

DVMP
Computing chain design.
Differential studies: physical models and numerical methods.

Covariant and Positive GPD Models

Introduction

Status
Experimental access
Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

Experimental data and phenomenology

Computation of amplitudes

First principles and fundamental parameters

GPD at $\mu \neq \mu_F^{\text{ref}}$

Evolution

- Many observables.
- Kinematic reach.
Computing chain design.
Differential studies: physical models and numerical methods.

Covariant and Positive GPD Models

- **Introduction**
 - Experimental access
 - Towards 3D images

- **Framework**
 - Definition
 - Polynomiality
 - Double Distributions
 - Positivity
 - Overlap

- **Wave function**
 - Radon transform
 - Covariant extension
 - Inverse Radon
 - Example

- **PARTONS**
 - Computing chain
 - Examples
 - Team

- **Conclusion**

Experimental data and phenomenology
Need for modularity

Computation of amplitudes

- **DVCS**
- **TCS**
- **DVMP**

First principles and fundamental parameters

- **GPD at** $\mu \neq \mu_F^{\text{ref}}$
- **Evolution**

- **GPD at** μ_F^ref

- Many observables.
- Kinematic reach.

- Perturbative approximations.
- Physical models.
- Fits.
- Numerical methods.
- Accuracy and speed.
Computing chain design.
Differential studies: physical models and numerical methods.

Experimental data and phenomenology
Need for modularity
Computation of amplitudes
First principles and fundamental parameters

- Many observables.
- Kinematic reach.
- Perturbative approximations.
- Physical models.
- Fits.
- Numerical methods.
- Accuracy and speed.

Covariant and Positive GPD Models

Introduction
Status
Experimental access
Towards 3D images
Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap
Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Evolution
GPD at $\mu \neq \mu_{\text{ref}}$

GPD at μ_{ref}
Computing chain design.
Differential studies: physical models and numerical methods.

Covariant and Positive GPD Models

Introduction

Status
- Experimental access
- Towards 3D images

Framework
- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

Wave function
- Radon transform
- Covariant extension
- Inverse Radon
- Example

PARTONS
- Computing chain

Experimental data and phenomenology

Need for modularity

Computation of amplitudes

First principles and fundamental parameters

- Many observables.
- Kinematic reach.

- Perturbative approximations.
- Physical models.
- Fits.
- Numerical methods.
- Accuracy and speed.

GPD at \(\mu \neq \mu_F^{\text{ref}} \)

Evolution

GPD at \(\mu_F^{\text{ref}} \)

DVCS

TCS

DVMP

DVCS

TCS

DVMP

Examples

Team

Conclusion
Computing chain design.
Differential studies: physical models and numerical methods.

Covariant and Positive GPD Models

Introduction

Status
Experimental access
Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

Experimental data and phenomenology
Need for modularity
Computation of amplitudes

First principles and fundamental parameters

- Many observables.
- Kinematic reach.

- Perturbative approximations.
- Physical models.
- Fits.
- Numerical methods.
- Accuracy and speed.

DVCS
TCS
DVMP

GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at μ_F^{ref}
Computing chain design.
Differential studies: physical models and numerical methods.

Covariant and Positive GPD Models

Introduction

Status
Experimental access
Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

Experimental data and phenomenology
Need for modularity
Computation of amplitudes

Many observables.
Kinematic reach.

Perturbative approximations.
Physical models.
Fits.
Numerical methods.
Accuracy and speed.

First principles and fundamental parameters

DVCS
TCS
DVMP

GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at μ_F^{ref}

Evolution
Status.
Currently: integration, tests, validation.

Covariant and Positive GPD Models

Introduction

Status
Experimental access
Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

3 stages:

1. Design.
2. Integration and validation.
3. Production.

Flexible software architecture.

1 new physical development = 1 new module.

Aggregate knowledge and know-how. Do not reinvent the wheel!

What can be automated will be automated.

Get ready for 12 GeV!
Modularity.
Inheritance, standardized inputs and outputs.

Covariant and Positive GPD Models

Introduction

Status
Experimental access
Towards 3D images

Framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function
Radon transform
Covariant extension
Inverse Radon
Example

PARTONS
Computing chain
Examples
Team

Conclusion

- Steps of logic sequence in parent class.
- Model description and related mathematical methods in daughter class.
GPD computing made simple.
Each line of code corresponds to a physical hypothesis.

```cpp
// Lots of includes
#include <src/Partons.h>
...

// Retrieve GPD service
GPDService* pGPDService = ServiceObjectRegistry::getGPDService();
// Load GPD module with the BaseModuleFactory
GPDModule* pGK11Model = ModuleObjectFactory::newGPDModule(GK11Model::classId);
// Create a GPDKinematic(x, xi, t, MuF, MuR)
GPDKinematic gpdKinematic(0.1, xBToXi(0.001), 0.3, 8., 8.);
// Compute data and store results
GPDResult gpdResult = pGPDService->computeGPDModelRestrictedByGPDType(gpdKinematic, pGK11Model, GPDType::ALL);
// Print results
std::cout << gpdResult.toString() << std::endl;

delete pGK11Model;
pGK11Model = 0;
```

H. Moutarde | Jefferson Lab | 35 / 41
GPD computing automated.
Each line of code corresponds to a physical hypothesis.

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<scenario id="01" date="" description="Example: computation of one GPD model (GK11) without evolution">
    <!-- Select type of computation -->
    <task service="GPDService" method="computeGPDModel" >
        <!-- Specify kinematics -->
        <GPDKinematic>
            <param name="x" value="0.1" />
            <param name="xi" value="1.00050025" />
            <param name="t" value="-0.3" />
            <param name="MuF2" value="8" />
            <param name="MuR2" value="8" />
        </GPDKinematic>
        <!-- Choose GPD model and set parameters -->
        <GPDModule>
            <param name="id" value="GK11Model" />
        </GPDModule>
    </task>
</scenario>
```

H. Moutarde | Jefferson Lab | 36 / 41
Covariant and Positive GPD Models

Introduction

Status

Experimental access
Towards 3D images

Framework

Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function

Radon transform
Covariant extension
Inverse Radon
Example

PARTONS

Computing chain

Examples

Team

Conclusion

GPD computing automated.
Each line of code corresponds to a physical hypothesis.

computeOneGPD.xml

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<scenario id="01" date="" description="Example: computation of one GPD model (GK11) without evolution">
  <!-- Select type of computation -->
  <task service="GPDService" method="computeGPDModel">
    <!-- Specify kinematics -->
    <GPDKinematic>
      <param name="x" value="0.1"/>
      <param name="xi" value="1.00050025"/>
      <param name="t" value="-0.3"/>
      <param name="MuF2" value="8"/>
      <param name="MuR2" value="8"/>
    </GPDKinematic>
    <!-- Choose GPD model and set parameters -->
    <GPDModule>
      <param name="id" value="GK11Model"/>
    </GPDModule>
  </task>
</scenario>
```

\[
\begin{align*}
H^u &= 0.822557 \\
H^u(+) &= 0.165636 \\
H^u(-) &= 1.47948 \\
H^d &= 0.421431 \\
H^d(+) &= 0.0805182 \\
H^d(-) &= 0.762344 \\
H^s &= 0.00883408 \\
H^s(+) &= 0.0176682 \\
H^s(-) &= 0 \\
H^g &= 0.385611 \\
\end{align*}
\]

and \(E, \tilde{H}, \tilde{E} \).
Covariant and Positive GPD Models

Introduction

Status

Experimental access
Towards 3D images

Framework

Definition
Polynomiality
Double Distributions
Positivity
Overlap

Wave function

Radon transform
Covariant extension
Inverse Radon
Example

PARTONS

Computing chain

Examples

Team

Conclusion

computeOneCFF.xml

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<scenario id="03" date="" description="Example: computation of one convol coeff function model (DVCSCFF) with GPD model (GK11)"
<task service="DVCSConvolCoeffFunctionService" method="computeWithGPDModel"
    <DVCSConvolCoeffFunctionKinematic>
        <param name="xi" value="0.5" />
        <param name="t" value="-0.1346" />
        <param name="Q2" value="1.5557" />
        <param name="MuF2" value="4" />
        <param name="MuR2" value="4" />
    </DVCSConvolCoeffFunctionKinematic>
    <GPDModule>
        <param name="id" value="GK11Model" />
    </GPDModule>
    <DVCSConvolCoeffFunctionModule>
        <param name="id" value="DVSCSFFModel" />
        <param name="qcd_order_type" value="LO" />
    </DVCSConvolCoeffFunctionModule>
</task>
</scenario>
```

H. Moutarde | Jefferson Lab | 37 / 41
CFF computing automated.
Each line of code corresponds to a physical hypothesis.

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<scenario id="03" date="" description="Example: computation of one convol coeff function model (DVCSCFF) with GPD model (GK11)"
<task service="DVCSConvolCoeffFunctionService" method="computeWithGPDModel"
<DVCSConvolCoeffFunctionKinematic>
<param name="xi" value="0.5" />
<param name="t" value="-0.1346" />
<param name="Q2" value="1.5557" />
<param name="MuF2" value="4" />
<param name="MuR2" value="4" />
</DVCSConvolCoeffFunctionKinematic>
<GPDModule>
<param name="id" value="GK11Model" />
</GPDModule>
</DVCSConvolCoeffFunctionService>

\[ \mathcal{H} = 1.47722 + 1.76698 i \]
\[ \mathcal{E} = 0.12279 + 0.512312 i \]
\[ \tilde{\mathcal{H}} = 1.54911 + 0.953728 i \]
\[ \tilde{\mathcal{E}} = 18.8776 + 3.75275 i \]
```

H. Moutarde | Jefferson Lab | 37 / 41
Multidisciplinary development team

Berthou (Irfu) Binosi (ECT*) Chouika (Irfu) Guidal (IPNO) Mezrag (ANL) Moutarde (Irfu) Sabatié (Irfu) Sznajder (IPNO) Wagner (NCBJ)

IPN et LPT (Orsay), Irfu (Saclay) and CPhT (Polytechnique)
Experimental data analysis Perturbative QCD
World data fits GPD modeling
Conclusion
Conclusions and prospects.
Positivity and polynomiality constraints consistently implemented.

- Last decade demonstrated maturity of GPD phenomenology.
- **Challenging constraints** expected from Jefferson Lab in the valence region.
- **Systematic** procedure to construct GPD models from any "reasonable" Ansatz of LFWFs.
- Characterization of the existence and **uniqueness** of the extension from the DGLAP to the ERBL region.
- Development of the platform PARTONS for **phenemonology** and **theory** purposes.
- Numerical tests *in progress.*