# JLab <br> Theory center Seminar 

## 20 April, 2016

## Tera-photon exchange corrections <br> in elastic lepton-proton interaction

Oleksandr Tomalak
Johannes Gutenberg University,
Mainz, Germany

## Outline



## $1 \gamma$ approximation


crossing symmetric variable
momentum transfer
photon-proton vertex

$$
\Gamma^{\mu}\left(Q^{2}\right)=\gamma^{\mu} F_{D}\left(Q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{P}\left(Q^{2}\right)
$$

Dirac and Pauli form factors

$$
\begin{aligned}
& \nu=\frac{s-u}{4} \\
& \begin{array}{l}
s=(p+k)^{2} \\
u=\left(k-p^{\prime}\right)^{2}
\end{array} \\
& Q^{2}=-\left(k-k^{\prime}\right)^{2}
\end{aligned}
$$

l-p amplitude

$$
T=\frac{e^{2}}{Q^{2}}\left(\bar{u}\left(k^{\prime}, h^{\prime}\right) \gamma_{\mu} u(k, h)\right) \cdot\left(\bar{N}\left(p^{\prime}, \lambda^{\prime}\right) \Gamma^{\mu}\left(Q^{2}\right) N(p, \lambda)\right)
$$

## Form factors in $1 \gamma$ approximation

Sachs electric and magnetic form factors

$$
G_{E}=F_{D}-\tau F_{P}, \quad G_{M}=F_{D}+F_{P}
$$

kinematic variables

$$
\tau=\frac{Q^{2}}{4 M^{2}}, \quad \epsilon=\frac{\nu^{2}-\tau(1+\tau)}{\nu^{2}+\tau(1+\tau)}
$$

Rosenbluth separation

$$
\frac{\mathrm{d} \sigma^{\mathrm{unpol}}}{\mathrm{~d} \Omega} \sim \sigma_{R}=\tau\left(G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)\right)
$$



## Form factors in $1 \gamma$ approximation

Sachs electric and magnetic form factors

$$
G_{E}=F_{D}-\tau F_{P}, \quad G_{M}=F_{D}+F_{P}
$$

Polarization transfer

$$
\vec{e}+p-\mathrm{e}+\overrightarrow{\mathrm{p}} \quad \rightarrow \quad \text { realized in } 2000
$$



$$
\begin{gathered}
P_{T} \sim G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right) \\
P_{L} \sim G_{M}^{2}\left(Q^{2}\right)
\end{gathered}
$$

$$
\frac{P_{T}}{P_{L}} \sim \frac{G_{E}\left(Q^{2}\right)}{G_{M}\left(Q^{2}\right)}
$$

## Proton form factors puzzle



Rosenbluth separation SLAC, JLab (Hall A, C)

## Proton form factors puzzle



## Beam normal spin asymmetry

Vanishing in $1 \gamma$ approximation


D. Androic et al. (2011)

Clear evidence of $2 \gamma$

## Form factors and size

form factor in atoms and nuclei
Fourier transform of charge distribution



How accurate do we know the proton size?

## Proton charge radius

electric charge radius

$$
<r_{E}^{2}>\equiv-\left.\frac{1}{6} \frac{\mathrm{~d} G_{E}\left(Q^{2}\right)}{\mathrm{d} Q^{2}}\right|_{Q^{2}=0}
$$

- ep elastic scattering

$$
r_{E}=0.879 \pm 0.008 \mathrm{fm}
$$


J. C. Bernauer et al. (2014)

## Proton form factors and size

 hydrogen spectroscopy

S state has finite wave function at origin
$\mu \mathrm{H}$ is sensitive to charge distribution

## Proton charge radius

electric charge radius

$$
<r_{E}^{2}>\equiv-\left.\frac{1}{6} \frac{\mathrm{~d} G_{E}\left(Q^{2}\right)}{\mathrm{d} Q^{2}}\right|_{Q^{2}=0}
$$

- ep elastic scattering

$$
r_{E}=0.879 \pm 0.008 \mathrm{fm}
$$


J. C. Bernauer et al. (2014)

- atomic spectroscopy

$$
\Delta E_{\mathrm{nS}} \sim m_{r}^{3}<r_{E}^{2}>
$$

H, D spectroscopy
$r_{E}=0.8758 \pm 0.0077 \mathrm{fm}$ CODATA 2010


## Proton radius puzzle

electric charge radius

$$
<r_{E}^{2}>\equiv-\left.\frac{1}{6} \frac{\mathrm{~d} G_{E}\left(Q^{2}\right)}{\mathrm{d} Q^{2}}\right|_{Q^{2}=0}
$$

- ep elastic scattering

$$
r_{E}=0.879 \pm 0.008 \mathrm{fm}
$$

J. C. Bernauer et al. (2014)

- atomic spectroscopy


$$
\Delta E_{\mathrm{nS}} \sim m_{r}^{3}<r_{E}^{2}>
$$

H, D spectroscopy
$r_{E}=0.8758 \pm 0.0077 \mathrm{fm}$ CODATA 2010
$\mu \mathrm{H}$ Lamb shift

$$
r_{E}=0.8409 \pm \underset{\text { CREMA }(2010,2013)}{0.0004} \mathrm{fm}
$$

Muonic
Hydrogen
$7 \sigma$ difference!

## $\mu \mathrm{H}$ Lamb shift and $2 \gamma$



## $\mu \mathrm{H}$ Lamb shift and $2 \gamma$



## $\mu H$ HFS and $2 \gamma$

forthcoming
1S-HFS measurement in $\mu \mathrm{H}$
with 1 ppm accuracy
A. Antognini (BVR47@PSI 2016)


Impressive 1 ppm accuracy requires improvement on $2 \gamma$

## Scattering experiments and $2 \gamma$



dominant uncertainty in Lamb shift
$2 \gamma$ is not fully accounted in scattering experiments

$$
\sigma^{\exp } \equiv \sigma_{1 \gamma}\left(1+\delta_{\mathrm{rad}}+\delta_{\mathrm{soft}}+\delta_{2 \gamma}\right)
$$

charge radius only slightly depends on $2 \gamma$ magnetic radius significantly depends on $2 \gamma$

## Scattering experiments and $2 \gamma$



dominant uncertainty in Lamb shift
$2 \gamma$ is not fully accounted in scattering experiments

$$
\sigma^{\exp } \equiv \sigma_{1 \gamma}\left(1+\delta_{\text {rad }}+\delta_{\text {soft }}+\delta_{2 \gamma}\right)
$$

charge radius only slightly depends on $2 \gamma$ magnetic radius significantly depends on $2 \gamma$
J. C. Bernauer et al. (2014)
$\mu$ p elastic scattering is planned by MUSE@PSI(2017-18)
$2 \gamma$ correction in MUSE ?

$$
\begin{aligned}
& \mathrm{k}^{\prime}=\mathrm{k}=(\mathrm{m}, 0,0,0) \\
& \mathrm{p}^{\prime}=\mathrm{p}=(\mathrm{M}, 0,0,0)
\end{aligned}
$$


forward scattering at zero energy (atomic correction)

## Lamb shift $2 \gamma$ correction. Forward VVCS



Shift of S energy level $2 \gamma$ correction

$$
\Delta E_{\mathrm{nS}}^{2 \gamma} \sim f_{+}\left|\psi_{n}(0)\right|^{2}
$$

$f_{+}$- unpolarized $2 \gamma$ amplitude
$2 \gamma$ blob - forward virtual Compton scattering
photon energy

$$
\nu_{\gamma}=\frac{p \cdot q}{M}
$$ photon virtuality

$Q^{2}=-q^{2}$
Forward VVCS tensor

$$
M^{\mu \nu}=M_{\mathrm{S}}^{\mu \nu}+M_{\mathrm{A}}^{\mu \nu}
$$

$M_{\mathrm{S}}^{\mu \nu} \sim \mathrm{T}_{1}\left(\nu_{\gamma}, Q^{2}\right), \mathrm{T}_{2}\left(\nu_{\gamma}, Q^{2}\right)$
$M_{\mathrm{A}}^{\mu \nu} \sim \mathrm{S}_{1}\left(\nu_{\gamma}, Q^{2}\right), \mathrm{S}_{2}\left(\nu_{\gamma}, Q^{2}\right)$
spin-independent amplitudes spin-dependent amplitudes

## Forward VVCS. Dispersion relations



## Optical theorem

relates Compton amplitudes
to proton structure functions
$\operatorname{Im} \mathrm{T}_{1} \sim F_{1} \quad \operatorname{Im} \mathrm{~T}_{2} \sim F_{2} \quad \operatorname{Im} \mathrm{~S}_{1} \sim g_{1} \quad \operatorname{Im} \mathrm{~S}_{2} \sim g_{2}$

Fixed- $Q^{2}$ dispersion relations

Dis. rel. for amplitude $T_{1}$ requires subtraction function

Unsubtracted disp. rel. works for

$$
\begin{gathered}
\mathrm{T}_{1}^{\text {subt }}\left(0, Q^{2}\right) \equiv \mathrm{T}_{1}\left(0, Q^{2}\right)-\mathrm{T}_{1}^{\text {Born }}\left(0, Q^{2}\right) \\
\mathrm{T}_{2}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \nu_{\gamma} \mathrm{S}_{2}
\end{gathered}
$$

## Empirical estimate of subtraction function

High-energy behavior of $\mathrm{T}_{1}$ in Regge theory

$$
\begin{aligned}
& \mathrm{T}_{1}^{\mathrm{R}}\left(\nu_{\gamma}, Q^{2}\right) \sim \sum_{\alpha_{0}>0} \frac{\gamma_{\alpha_{0}}\left(Q^{2}\right)}{\sin \pi \alpha_{0}}\left\{\left(\nu_{0}-\nu_{\gamma}-i \varepsilon\right)^{\alpha_{0}}+\left(\nu_{0}+\nu_{\gamma}-i \varepsilon\right)^{\alpha_{0}}\right\} \\
& \quad+\sum_{\alpha_{0}>1} \frac{\alpha_{0} \nu_{0} \gamma_{\alpha_{0}}\left(Q^{2}\right)}{\sin \pi\left(\alpha_{0}-1\right)}\left\{\left(\nu_{0}-\nu_{\gamma}-i \varepsilon\right)^{\alpha_{0}-1}+\left(\nu_{0}+\nu_{\gamma}-i \varepsilon\right)^{\alpha_{0}-1}\right\}
\end{aligned}
$$

G. Gasser, H. Leutwyler et al. $(1974,2015)$ M. Gorchtein et al. (2013) I. Caprini (2016)

Evaluate dispersion relation for $\mathrm{T}_{1}\left(\nu_{\gamma}, Q^{2}\right)-\mathrm{T}_{1}^{\mathrm{R}}\left(\nu_{\gamma}, Q^{2}\right)$

$$
\mathrm{T}_{1}^{\text {subt }}\left(0, Q^{2}\right)=\mathrm{T}_{1}^{\mathrm{R}}\left(0, Q^{2}\right)+\frac{\alpha}{M} F_{D}^{2}\left(Q^{2}\right)+\frac{2 \alpha}{M} \int_{\nu_{\mathrm{thr}}}^{\infty} \frac{F_{1}\left(\nu_{\gamma}, Q^{2}\right)-F_{1}^{R}\left(\nu_{\gamma}, Q^{2}\right)}{\nu_{\gamma}} \mathrm{d} \nu_{\gamma}
$$

## Empirical estimate of subtraction function

High-energy behavior of $\mathrm{T}_{1}$ in Regge theory

$$
\begin{aligned}
& \mathrm{T}_{1}^{\mathrm{R}}\left(\nu_{\gamma}, Q^{2}\right) \sim \sum_{\alpha_{0}>0} \frac{\gamma_{\alpha_{0}}\left(Q^{2}\right)}{\sin \pi \alpha_{0}}\left\{\left(\nu_{0}-\nu_{\gamma}-i \varepsilon\right)^{\alpha_{0}}+\left(\nu_{0}+\nu_{\gamma}-i \varepsilon\right)^{\alpha_{0}}\right\} \\
& \quad+\sum_{\alpha_{0}>1} \frac{\alpha_{0} \nu_{0} \gamma_{\alpha_{0}}\left(Q^{2}\right)}{\sin \pi\left(\alpha_{0}-1\right)}\left\{\left(\nu_{0}-\nu_{\gamma}-i \varepsilon\right)^{\alpha_{0}-1}+\left(\nu_{0}+\nu_{\gamma}-i \varepsilon\right)^{\alpha_{0}-1}\right\}
\end{aligned}
$$

G. Gasser, H. Leutwyler et al. $(1974,2015)$ M. Gorchtein et al. (2013) I. Caprini (2016)

Evaluate dispersion relation for $\mathrm{T}_{1}\left(\nu_{\gamma}, Q^{2}\right)-\mathrm{T}_{1}^{\mathrm{R}}\left(\nu_{\gamma}, Q^{2}\right)$

$$
\mathrm{T}_{1}^{\text {subt }}\left(0, Q^{2}\right)=\mathrm{T}_{1}^{\mathrm{R}}\left(0, Q^{2}\right)+\frac{\alpha}{M} F_{D}^{2}\left(Q^{2}\right)+\frac{2 \alpha}{M} \int_{\nu_{\mathrm{thr}}}^{\infty} \frac{F_{1}\left(\nu_{\gamma}, Q^{2}\right)-F_{1}^{R}\left(\nu_{\gamma}, Q^{2}\right)}{\nu_{\gamma}} \mathrm{d} \nu_{\gamma}
$$

Donnachie-Landshoff and Bosted-Christy fits at low Q ${ }^{2}$


Forthcoming JLab data will improve fits around $\mathrm{W}^{2} \sim 10 \mathrm{GeV}^{2}$

## Empirical estimate of subtraction function

Empirical result

theoretical predictions
expected low- $Q^{2}$ behavior

$$
\mathrm{T}_{1}^{\text {subt }}\left(0, Q^{2}\right)=\beta_{M} Q^{2}+O\left(Q^{4}\right)
$$

satisfied within $1.5 \sigma$
O. Tomalak and M. Vanderhaeghen (2016)

## Empirical estimate of subtraction function

Empirical result

empirical estimate connected to p.d.g. value of magnetic polarizability

$$
\Delta E_{2 \mathrm{~S}}^{\mathrm{subt}}(\mu H) \approx 2.3 \pm 1.3 \mu \mathrm{eV}
$$

slightly smaller than Birse et al.

$$
\Delta E_{2 \mathrm{~S}}^{\text {subt }}(\mu H) \approx 4.2 \pm 1.0 \mu \mathrm{eV}
$$

vs. theoretical predictions
expected low- $Q^{2}$ behavior

$$
\mathrm{T}_{1}^{\text {subt }}\left(0, Q^{2}\right)=\beta_{M} Q^{2}+O\left(Q^{4}\right)
$$

satisfied within $1.5 \sigma$
O. Tomalak and M. Vanderhaeghen (2016)

$$
\beta\left(Q^{2}\right) \equiv \frac{\mathrm{T}_{1}^{\text {subt }}\left(0, Q^{2}\right)}{Q^{2}}
$$



$$
\begin{aligned}
& \mathrm{k}^{\prime}=\mathrm{k} \\
& \mathrm{p}^{\prime}=\mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& k^{\prime} \neq k \\
& p^{\prime} \neq p
\end{aligned}
$$


forward scattering

non-forward scattering

## Structure amplitudes



Electron scattering is described by 3 structure amplitudes

$$
T^{\text {non-flip }} \sim \mathcal{G}_{M}\left(\nu, Q^{2}\right), \mathcal{F}_{2}\left(\nu, Q^{2}\right), \mathcal{F}_{3}\left(\nu, Q^{2}\right)
$$

P.A.M. Guichon and M. Vanderhaeghen (2003)

Muon scattering requires lepton helicity-flip amplitudes
$m_{l} \neq 0$

$$
T^{\text {flip }} \sim \mathcal{F}_{4}\left(\nu, Q^{2}\right), \mathcal{F}_{5}\left(\nu, Q^{2}\right), \mathcal{F}_{6}\left(\nu, Q^{2}\right)
$$

## $2 \gamma$ correction to cross-section

Leading $2 \gamma$ contribution to cross section - interference term

$\delta_{2 \gamma}=\frac{2}{G_{M}^{2}+\frac{\varepsilon}{\tau_{P}} G_{E}^{2}}\left\{G_{M} \Re \mathcal{G}_{1}^{2 \gamma}+\frac{\varepsilon}{\tau_{P}} G_{E} \Re \mathcal{G}_{2}^{2 \gamma}+\frac{1-\varepsilon}{1-\varepsilon_{0}}\left(\frac{\varepsilon_{0}}{\tau_{P}} \frac{\nu}{M^{2}} G_{E} \Re \mathcal{G}_{4}^{2 \gamma}-G_{M} \Re \mathcal{G}_{3}^{2 \gamma}\right)\right\}$
O. Tomalak and M. Vanderhaeghen (2014)

$$
\tau=\frac{Q^{2}}{4 M^{2}} \quad \begin{gathered}
\mathcal{G}_{1}=\mathcal{G}_{M}+\frac{\nu}{M^{2}} \mathcal{F}_{3}+\frac{m^{2}}{M^{2}} \mathcal{F}_{5} \\
\mathcal{G}_{2}=\mathcal{G}_{M}-(1-\tau) \mathcal{F}_{2}+\frac{\nu}{M^{2}} \mathcal{F}_{3} \\
\mathcal{G}_{3}=\frac{\nu}{M^{2}} \mathcal{F}_{3}+\frac{m^{2}}{M^{2}} \mathcal{F}_{5} \\
\mathcal{G}_{4}=\mathcal{F}_{4}+\frac{\nu}{M^{2}(1+\tau)} \mathcal{F}_{5}
\end{gathered}
$$

$$
\varepsilon_{0}=\frac{2 m^{2}}{Q^{2}}
$$

$$
\begin{aligned}
& k^{\prime} \neq k \\
& p^{\prime} \neq p
\end{aligned}
$$


non-forward scattering proton state

## Box diagram model

The one-photon exchange on-shell vertex

$$
\Gamma^{\mu}\left(Q^{2}\right)=\gamma^{\mu} F_{D}\left(Q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{P}\left(Q^{2}\right)
$$

P. G. Blunden, W. Melnitchouk, and J. A. Tjon (2003)


Point-like couplings


$$
F_{D} \quad F_{P}
$$

Dirac and Pauli form factors

IR divergencies are subtracted
L.C. Maximon and J. A. Tjon (2000)

$$
F_{D}\left(Q^{2}\right)=1 \quad F_{P}\left(Q^{2}\right)=\mu_{P}-1
$$

Dipole FFs for $G_{M}, G_{E}$

## Box diagram model

The one-photon exchange on-shell vertex

$$
\Gamma^{\mu}\left(Q^{2}\right)=\gamma^{\mu} F_{D}\left(Q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{P}\left(Q^{2}\right)
$$



Point-like couplings

$$
F_{D}\left(Q^{2}\right)=1 \quad F_{P}\left(Q^{2}\right)=\mu_{P}-1
$$

Dipole FFs for $G_{M}, G_{E}$

## $2 \gamma$ in ep elastic scattering

box diagram model vs. unsubtr. dis. rel.



## $2 \gamma$ in ep elastic scattering

box diagram model vs. unsubtr. dis. rel.



unsubtracted vs. subtracted disp. rel.


Proton only partially accounts for $2 \gamma$ at low $\varepsilon$ and large $\mathrm{Q}^{2}$

## CLAS data and $2 \gamma$

box diagram model vs. subtracted dis. rel.



$$
\begin{gathered}
2 \gamma \text { data from } \\
\text { etp/ep cross section ratio } \\
R=\frac{\sigma\left(e^{+} p\right)}{\sigma\left(e^{-} p\right)} \approx 1-2 \delta_{2 \gamma}
\end{gathered}
$$


data points compatible with zero

## CLAS data

in agreement with $2 \gamma$ fit

$$
\begin{aligned}
& \mathrm{k}^{\prime}=\mathrm{k} \\
& \mathrm{p}^{\prime}=\mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& k^{\prime} \neq k \\
& p^{\prime} \neq p
\end{aligned}
$$


forward scattering

near-forward scattering
account for inelastic $2 \gamma$

## Low- $Q^{2}$ inelastic $2 \gamma$ correction ( $e^{-} p$ )



## Low- $Q^{2}$ inelastic $2 \gamma$ correction ( $e^{-} p$ )

comparison with low $\mathrm{Q}^{2}$ measurements


CLAS data in agreement with Born + inelastic $2 \gamma$

VEPP-3 data in agreement with Born $2 \gamma$ only

## MUSE estimates ( $\mu \mathrm{p}$ )

proton box diagram model + inelastic $2 \gamma$


O. T. and M. Vanderhaeghen $(2014,2016)$

## MUSE estimates ( $\mu$-p)

proton box diagram model + inelastic $2 \gamma$

expected muon over electron ratio

K. Mesick talk (PAVI 2014), MUSE TDR (2016)

O. T. and M. Vanderhaeghen $(2014,2016)$ small inelastic $2 \gamma$

small $2 \gamma$ uncertainty

MUSE experiment
can test $\mathrm{r}_{\mathrm{E}}$ extraction

$$
\begin{aligned}
& \mathrm{k}^{\prime} \neq \mathrm{k} \\
& \mathrm{p}^{\prime} \neq \mathrm{p}
\end{aligned}
$$


near-forward scattering
elastic + inelastic

non-forward scattering disp. rel.

$$
X=p+\pi N
$$

## $\pi \mathrm{N}$ in dispersive framework ( $\mathrm{e}^{-} \mathrm{p}$ )



Unitarity relations


Pion electroproduction amplitudes are taken from MAID

## $\pi \mathrm{N}$ in dispersive framework ( $\mathrm{e}^{-} \mathrm{p}$ )

unsubtracted disp. rel.


## $\pi \mathrm{N}$ in dispersive framework ( $\mathrm{e}^{-} \mathrm{p}$ )

unsubtracted disp. rel.


## Conclusions

- Forward limit of $2 \gamma$ in lp scattering
- Proton T1 subtraction function estimated from data
- Subtracted disp. rel. formalism for ep scattering
- Theoretical estimates for $2 \gamma$ (ep and $\mu \mathrm{p}$ )
- First estimates for $\pi \mathrm{N}$ channel in disp. rel.


## Outlook

- Application to forthcoming high-precision HFS exp.
- Extraction of magnetic radius accounting for $2 \gamma$
- Comparison with VEPP-3, CLAS, OLYMPUS


## Thanks for your attention !!!

## Fixed- $Q^{2}$ dispersion relation framework

$f(z)$
analyticity
$\square$

$$
\Re \mathcal{F}(\nu)=\frac{2 \nu}{\pi} \mathcal{P} \int_{\nu_{\text {min }}}^{\infty} \frac{\Im \mathcal{F}\left(\nu^{\prime}+i 0\right)}{\nu^{\prime 2}-\nu^{2}} d \nu^{\prime}
$$

amplitudes: imaginary parts

on-shell one-photon amplitudes
exp. data/phenomenology
unitarity
$2 \gamma$ corrections

cross section correction
$\square$

## Mandelstam plot (ep)



Proton intermediate state is outside physical region Analytical continuation for arbitrary FFs parametrization is found

## Hadronic model vs. dispersion relations

- Imaginary parts are the same
- Real parts are the same for

$$
\mathrm{F}_{\mathrm{D}} \mathrm{~F}_{\mathrm{P}} \text { amplitudes }
$$

$\mathrm{F}_{\mathrm{P}} \mathrm{F}_{\mathrm{P}}$ amplitudes
all $\mathrm{F}_{\mathrm{D}} \mathrm{F}_{\mathrm{D}}$ amplitudes

$$
\begin{array}{llllll}
\mathcal{G}_{M} & \mathcal{F}_{2} & \mathcal{F}_{3} & \mathcal{F}_{5} & \mathcal{F}_{2} & \mathcal{G}_{M}+\frac{\nu}{M^{2}} \mathcal{F}_{3}
\end{array} \mathcal{F}_{5}
$$

Fixed-Q ${ }^{2}$ subtracted dispersion relation works for all amplitudes

- Calculation based on DR for ep scattering
- for amplitudes $\mathcal{G}_{1}, \mathcal{G}_{2}$ unsubtracted DR can be used
- for amplitude $\mathcal{F}_{3}$ subtracted DR should be used
- subtraction point $\Re \mathcal{F}_{3}^{F_{P} F_{P}}\left(\nu_{0}, Q^{2}\right)$ fixed from $\delta_{2 \gamma}\left(\nu_{0}, Q^{2}\right)$ data


## $\mathrm{T}_{1}$ subtraction function TPE correction

Subtraction function contributes only to $\mathcal{F}_{4}$ amplitude

$$
\delta_{2 \gamma, 0}^{\text {subt }} \approx-\frac{Q^{2} m^{2}}{\omega} \int_{0}^{\infty} f\left(x, \frac{Q^{2}}{m^{2}}\right) \beta\left(\frac{Q^{2}(x-1)}{4}\right) \mathrm{d} x
$$

In the limit of small electron mass TPE correction vanishes


## Valid only for small $Q^{2}$

For enhanced at HE function

$$
\delta_{2 \gamma, 0}^{s u b t} \approx-\frac{3 Q^{2} m^{2}}{2 \pi \omega} \int_{0}^{\infty} \beta\left(\tilde{Q}^{2}\right) \frac{\mathrm{d} \tilde{Q}^{2}}{\tilde{Q}^{2}}
$$

## $\pi \mathrm{N}$ TPE contribution in dispersive framework (ep)

subtracted DR

account of $\mathrm{P}_{33}$ channel decreases uncertainty with subtracted DR

## Proton form factors problem

Polarization transfer JLab (Hall A, C)


Rosenbluth separation SLAC, JLab (Hall A, C)
$\diamond$ Andivahis et al. (1994)
Christy et al. (2004)

- Quattan et al. (2005)

GEpI Jones et al. (2000) Punjabi et al. (2005)

GEpII Gayou et al. (2002)
GEpIII Puckett et al. (2010)
GEp2 $\gamma$ Mexiane et al. (2011)
fit Gayou et al. (2002)

V. Punjabi et al. (2015)

A possible explanation - two-photon exchange

