### JLab Theory Center Semínar

20 April, 2016

Two-photon exchange corrections in elastic lepton-proton interaction

**Oleksandr** Tomalak

Johannes Gutenberg University,

Mainz, Germany

## Outline

forward virtual Compton scattering



## 1y approximation



photon-proton vertex

$$\Gamma^{\mu}(Q^2) = \gamma^{\mu} F_D(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_P(Q^2)$$

Dirac and Pauli form factors

crossing symmetric variable

momentum transfer

$$\nu = \frac{s-u}{4} \qquad s = (p+k)^2$$
$$u = (k-p')^2$$

$$Q^2 = -(k - k')$$

l-p amplitude

 $T = \frac{e^2}{Q^2} \left( \bar{u} \left( k', h' \right) \gamma_{\mu} u \left( k, h \right) \right) \cdot \left( \bar{N} \left( p', \lambda' \right) \Gamma^{\mu}(Q^2) N \left( p, \lambda \right) \right)$ 

### Form factors in 1y approximation

Sachs electric and magnetic form factors

$$G_E = F_D - \tau F_P, \qquad G_M = F_D + F_P$$

kinematic variables

 $G_M^2(Q^2$ 

0.0



Rosenbluth slope is sensitive to corrections beyond 18

3

0.6

0.8

1.0

Qattan et al. (2005)

0.4

0.2

## Form factors in 1y approximation

Sachs electric and magnetic form factors

$$G_E = F_D - \tau F_P, \qquad G_M = F_D + F_P$$

**Polarization transfer** 



### Proton form factors puzzle



#### Rosenbluth separation SLAC, JLab (Hall A, C)

### Proton form factors puzzle



### Beam normal spin asymmetry

#### Vanishing in 1% approximation



D. Androic et al. (2011)

Clear evidence of 28

### Form factors and size form factor in atoms and nuclei Fourier transform of charge distribution





How accurate do we know the proton size ?



# Proton charge radius



### Proton form factors and size

hydrogen spectroscopy



S state has finite wave function at origin

 $\mu H$  is sensitive to charge distribution

# Proton charge radius



# Proton radius puzzle



## µH Lamb shift and 2y



# µH Lamb shift and 2y



### µH HFS and 2y

forthcoming 1S-HFS measurement in  $\mu$ H with 1 ppm accuracy

> uncertainty balance X=p  $X=\pi N,\ldots$  $G_E, G_M$  $g_1, g_2$ p

A. Antognini (BVR47@PSI 2016)



|                       | 10 <sup>3</sup> Δ | relative<br>uncertainty |
|-----------------------|-------------------|-------------------------|
| X=p                   | -6.51             | 140 ppm                 |
| X=πN,(polarizability) | 0.373             | 92 ppm                  |
| total                 | -6.137            | 168 ppm                 |

Impressive 1 ppm accuracy requires improvement on 28

### Scattering experiments and 2y



28 is not fully accounted in scattering experiments

 $\sigma^{\rm exp} \equiv \sigma_{1\gamma} (1 + \delta_{\rm rad} + \delta_{\rm soft} + \delta_{2\gamma})$ 

charge radius only slightly depends on 28 magnetic radius significantly depends on 28

J. C. Bernauer et al. (2014)

### Scattering experiments and 2y



28 is not fully accounted in scattering experiments

 $\sigma^{\rm exp} \equiv \sigma_{1\gamma} (1 + \delta_{\rm rad} + \delta_{\rm soft} + \delta_{2\gamma})$ 

charge radius only slightly depends on 28 magnetic radius significantly depends on 28

J. C. Bernauer et al. (2014)

µp elastic scattering is planned by MUSE@PSI(2017-18)
2γ correction in MUSE ?

k'=k=(m,0,0,0) p'=p=(M,0,0,0)



forward scattering at zero energy (atomic correction)

## Lamb shift 2y correction. Forward VVCS



Shift of S energy level 2% correction

 $\Delta E_{\rm nS}^{2\gamma} \sim f_+ |\psi_n(0)|^2$ 

 $f_+$  - unpolarized 2 $\chi$  amplitude

2y blob - forward virtual Compton scattering

photon energy

$$\nu_{\gamma} = \frac{p \cdot q}{M}$$

photon virtuality Q

$$^{2} = -q^{2}$$

Forward VVCS tensor

 $M^{\mu\nu} = M_{\rm S}^{\mu\nu} + M_{\rm A}^{\mu\nu}$ 

 $M_{\mathrm{S}}^{\mu\nu} \sim \mathrm{T}_{1}(\nu_{\gamma}, Q^{2}), \mathrm{T}_{2}(\nu_{\gamma}, Q^{2})$  $M_{\mathrm{A}}^{\mu\nu} \sim \mathrm{S}_{1}(\nu_{\gamma}, Q^{2}), \mathrm{S}_{2}(\nu_{\gamma}, Q^{2})$ 

spin-independent amplitudes

spin-dependent amplitudes

## Forward VVCS. Dispersion relations



Optical theorem relates Compton amplitudes to proton structure functions

 $\operatorname{Im} \mathbf{T}_1 \sim F_1 \qquad \operatorname{Im} \mathbf{T}_2 \sim F_2 \qquad \operatorname{Im} \mathbf{S}_1 \sim g_1 \qquad \operatorname{Im} \mathbf{S}_2 \sim g_2$ 

#### Fixed-Q<sup>2</sup> dispersion relations

Dis. rel. for amplitude T<sub>1</sub> requires subtraction function Unsubtracted disp. rel. works for

$$\begin{split} \mathrm{T}_{1}^{\mathrm{subt}}(0,Q^{2}) &\equiv \mathrm{T}_{1}(0,Q^{2}) - \mathrm{T}_{1}^{\mathrm{Born}}(0,Q^{2}) \\ \mathrm{T}_{2}, \ \mathrm{S}_{1}, \ \mathrm{S}_{2}, \ \nu_{\gamma}\mathrm{S}_{2} \end{split}$$

High-energy behavior of T<sub>1</sub> in Regge theory

 $\begin{aligned} \mathbf{T}_{1}^{\mathrm{R}}(\nu_{\gamma},Q^{2}) &\sim \sum_{\alpha_{0}>0} \frac{\gamma_{\alpha_{0}}(Q^{2})}{\sin\pi\alpha_{0}} \left\{ \left(\nu_{0}-\nu_{\gamma}-i\varepsilon\right)^{\alpha_{0}} + \left(\nu_{0}+\nu_{\gamma}-i\varepsilon\right)^{\alpha_{0}} \right\} \\ &+ \sum_{\alpha_{0}>1} \frac{\alpha_{0}\nu_{0}\gamma_{\alpha_{0}}(Q^{2})}{\sin\pi(\alpha_{0}-1)} \left\{ \left(\nu_{0}-\nu_{\gamma}-i\varepsilon\right)^{\alpha_{0}-1} + \left(\nu_{0}+\nu_{\gamma}-i\varepsilon\right)^{\alpha_{0}-1} \right\} \end{aligned}$ 

G. Gasser, H. Leutwyler et al. (1974, 2015) M. Gorchtein et al. (2013) I. Caprini (2016)

Evaluate dispersion relation for  $T_1(\nu_{\gamma}, Q^2) - T_1^R(\nu_{\gamma}, Q^2)$  $T_1^{\text{subt}}(0, Q^2) = T_1^R(0, Q^2) + \frac{\alpha}{M} F_D^2(Q^2) + \frac{2\alpha}{M} \int_{\nu_{\text{thr}}}^{\infty} \frac{F_1(\nu_{\gamma}, Q^2) - F_1^R(\nu_{\gamma}, Q^2)}{\nu_{\gamma}} d\nu_{\gamma}$ 

High-energy behavior of T<sub>1</sub> in Regge theory

$$\Gamma_{1}^{\mathrm{R}}(\nu_{\gamma}, Q^{2}) \sim \sum_{\alpha_{0}>0} \frac{\gamma_{\alpha_{0}}(Q^{2})}{\sin \pi \alpha_{0}} \left\{ (\nu_{0} - \nu_{\gamma} - i\varepsilon)^{\alpha_{0}} + (\nu_{0} + \nu_{\gamma} - i\varepsilon)^{\alpha_{0}} \right\}$$

$$+ \sum_{\alpha_{0}>1} \frac{\alpha_{0}\nu_{0}\gamma_{\alpha_{0}}(Q^{2})}{\sin \pi (\alpha_{0}-1)} \left\{ (\nu_{0} - \nu_{\gamma} - i\varepsilon)^{\alpha_{0}-1} + (\nu_{0} + \nu_{\gamma} - i\varepsilon)^{\alpha_{0}-1} \right\}$$

G. Gasser, H. Leutwyler et al. (1974, 2015) M. Gorchtein et al. (2013) I. Caprini (2016)

Evaluate dispersion relation for  $T_1(\nu_\gamma, Q^2) - T_1^R(\nu_\gamma, Q^2)$  $T_1^{\text{subt}}(0, Q^2) = T_1^R(0, Q^2) + \frac{\alpha}{M} F_D^2(Q^2) + \frac{2\alpha}{M} \int_{\nu_{\text{thr}}}^{\infty} \frac{F_1(\nu_\gamma, Q^2) - F_1^R(\nu_\gamma, Q^2)}{\nu_\gamma} d\nu_\gamma$ 

#### Donnachie-Landshoff and Bosted-Christy fits at low Q<sup>2</sup>



Forthcoming JLab data will improve fits around W<sup>2</sup>~10 GeV<sup>2</sup>

Empirical result

lt vs.

**S**.

theoretical predictions



expected low-Q<sup>2</sup> behavior  $T_1^{subt}(0, Q^2) = \beta_M Q^2 + O(Q^4)$ 

satisfied within  $1.5\sigma$ 

O. Tomalak and M. Vanderhaeghen (2016)



k′≠k p′≠p



#### forward scattering

non-forward scattering

## Structure amplitudes



### Electron scattering is described by 3 structure amplitudes

 $T^{\text{non-flip}} \sim \mathcal{G}_M(\nu, Q^2), \mathcal{F}_2(\nu, Q^2), \mathcal{F}_3(\nu, Q^2)$ 

P.A.M. Guichon and M. Vanderhaeghen (2003)

#### Muon scattering requires lepton helicity-flip amplitudes

 $m_l \neq 0$  –

 $T^{\text{flip}} \sim \mathcal{F}_4(\nu, Q^2), \mathcal{F}_5(\nu, Q^2), \mathcal{F}_6(\nu, Q^2)$ 

M. Gorchtein, P.A.M. Guichon and M. Vanderhaeghen (2004)

### 2y correction to cross-section

Leading 2y contribution to cross section - interference term



$$\delta_{2\gamma} = \frac{2}{G_M^2 + \frac{\varepsilon}{\tau_P} G_E^2} \left\{ G_M \Re \mathcal{G}_1^{2\gamma} + \frac{\varepsilon}{\tau_P} G_E \Re \mathcal{G}_2^{2\gamma} + \frac{1 - \varepsilon}{1 - \varepsilon_0} \left( \frac{\varepsilon_0}{\tau_P} \frac{\nu}{M^2} G_E \Re \mathcal{G}_4^{2\gamma} - G_M \Re \mathcal{G}_3^{2\gamma} \right) \right\}$$

2

O. Tomalak and M. Vanderhaeghen (2014)

$$\varepsilon_0 = \frac{2m^2}{Q^2}$$
  
\varepsilon in range (\varepsilon\_0, 1  
or (1, \varepsilon\_0)

 $\tau = \frac{Q^2}{4M^2}$ 

$$\mathcal{G}_1 = \mathcal{G}_M + \frac{\nu}{M^2} \mathcal{F}_3 + \frac{m^2}{M^2} \mathcal{F}_5$$
$$\mathcal{G}_2 = \mathcal{G}_M - (1 - \tau) \mathcal{F}_2 + \frac{\nu}{M^2} \mathcal{F}_3$$
$$\mathcal{G}_3 = \frac{\nu}{M^2} \mathcal{F}_3 + \frac{m^2}{M^2} \mathcal{F}_5$$
$$\mathcal{G}_4 = \mathcal{F}_4 + \frac{\nu}{M^2(1 + \tau)} \mathcal{F}_5$$

2y correction is given by amplitudes real parts



non-forward scattering proton state

# Box diagram model

The one-photon exchange on-shell vertex

$$\Gamma^{\mu}(Q^2) = \gamma^{\mu} F_D(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_P(Q^2)$$

P. G. Blunden, W. Melnitchouk, and J. A. Tjon (2003)

 $F_D$   $F_P$ 

form factors



# IR divergencies are subtracted

L.C. Maximon and J. A. Tjon (2000)

Point-like couplings

Dipole FFs for  $G_M, G_E$ 

# Box diagram model

The one-photon exchange on-shell vertex



unsubtracted disp. rel. in ep scattering disagree with model

## 2y in e<sup>-</sup>p elastic scattering

box diagram model vs. unsubtr. dis. rel.



### 2y in e<sup>-</sup>p elastic scattering



### CLAS data and 2y

box diagram model vs. subtracted dis. rel.



k′≠k p′≠p



#### forward scattering

near-forward scattering account for inelastic 2y

# Low-Q<sup>2</sup> inelastic 2% correction (e<sup>-</sup>p)



# Low-Q<sup>2</sup> inelastic 2% correction (e<sup>-</sup>p)

comparison with low Q<sup>2</sup> measurements



CLAS data in agreement with Born + inelastic 28

VEPP-3 data in agreement with Born 2% only

## MUSE estimates (µ<sup>-</sup>p)

proton box diagram model + inelastic 28



## MUSE estimates (µ<sup>-</sup>p)

proton box diagram model + inelastic 28





O. T. and M. Vanderhaeghen (2014, 2016)

expected muon over electron ratio



K. Mesick talk (PAVI 2014), MUSE TDR (2016)



#### k′≠k k′≠k p′≠p p′≠p l l L ppp $\mathcal{D}$ Т

near-forward scattering elastic + inelastic non-forward scattering disp. rel.  $X = p + \pi N$ 

# πN in dispersive framework (e<sup>-</sup>p)



Pion electroproduction amplitudes are taken from MAID

## $\pi N$ in dispersive framework (e<sup>-</sup>p)

unsubtracted disp. rel.





## $\pi N$ in dispersive framework (e<sup>-</sup>p)

unsubtracted disp. rel.



## Conclusions

- Forward limit of 2y in lp scattering
- Proton T1 subtraction function estimated from data
- Subtracted disp. rel. formalism for ep scattering
- Theoretical estimates for 23 (ep and  $\mu p)$
- First estimates for  $\pi N$  channel in disp. rel.

# Outlook

- Application to forthcoming high-precision HFS exp.
- Extraction of magnetic radius accounting for 28
- Comparison with VEPP-3, CLAS, OLYMPUS

#### Thanks for your attention !!!

## Fixed-Q<sup>2</sup> dispersion relation framework

 $2\gamma$  corrections



D. Borisyuk, A. Kobushkin (2008)



Proton intermediate state is outside physical region Analytical continuation for arbitrary FFs parametrization is found O. Tomalak and M. Vanderhaeghen (2015) 47

#### Hadronic model vs. dispersion relations

- Imaginary parts are the same
- Real parts are the same for

Fixed-Q<sup>2</sup> subtracted dispersion relation works for all amplitudes

• Calculation based on DR for ep scattering

for amplitudes G<sub>1</sub>, G<sub>2</sub> unsubtracted DR can be used
for amplitude F<sub>3</sub> subtracted DR should be used
subtraction point ℜF<sup>F<sub>P</sub>F<sub>P</sub></sup><sub>3</sub> (ν<sub>0</sub>, Q<sup>2</sup>) fixed from δ<sub>2γ</sub>(ν<sub>0</sub>, Q<sup>2</sup>) data

#### T<sub>1</sub> subtraction function TPE correction

Subtraction function contributes only to  $\mathcal{F}_4$  amplitude

$$\delta_{2\gamma,0}^{\text{subt}} \approx -\frac{Q^2 m^2}{\omega} \int_{0}^{\infty} f\left(x, \frac{Q^2}{m^2}\right) \beta\left(\frac{Q^2\left(x-1\right)}{4}\right) \mathrm{d}x$$

#### In the limit of small electron mass TPE correction vanishes



Valid only for small Q<sup>2</sup> For enhanced at HE function

$$\delta_{2\gamma,0}^{subt} \approx -\frac{3Q^2m^2}{2\pi\omega} \int_{0}^{\infty} \beta\left(\tilde{Q}^2\right) \frac{\mathrm{d}\tilde{Q}^2}{\tilde{Q}^2}$$

#### $\pi N$ TPE contribution in dispersive framework (ep)

subtracted DR



account of P<sub>33</sub> channel decreases uncertainty with subtracted DR

#### Proton form factors problem



A possible explanation - two-photon exchange