

HIGHER ORDER EFFECTS IN Lepton-Hadron Production Processes

Newport News VA, 01.06.2016

Accardi, Anderle, de Florian, Ringer, Rotstein, Stratmann, Vogelsang

Speaker: Daniele Paolo ANDERLE

About Me...

2006-2009 — Bachelor's Degree: University of Trento. Advisor: Paolo Verrocchio.
2009-2012 — Master's Degree: Double degree program between University of Trento and University of Tübingen. Advisors: Werner Vogelsang and Marco Traini.
2013-2016 — PhD: University of Tübingen. Advisor: Werner Vogelsang.

MAIN COLLABORATIONS

- University of Buenos Aires: with Prof. Dr. Daniel de Florian and Yamila Rotstein. Project funded by "Fondazione Cassa Rurale di Trento" and Tübingen University.
- Jefferson Laboratory and Hampton University: with Prof.Dr.Alberto Accardi. Project funded by Hampton University.

MAIN COLLABORATORS

Alberto Accardi, Daniel de Florian, Felix Ringer, Yamila Rotstein, Marco Stratmann, Werner Vogelsang

2

OUTLINE

- THRESHOLD RESUMMATION FOR SIDIS
- MC + THRESHOLD RESUMMATION
- * TOWARDS A GLOBAL NNLO FF FIT

3

CONCLUSIONS

SEMI-INCLUSIVE DIS

JEFFERSON LAB

 $\ell(k) p(P) \to \ell(k') h(P_h) X$

Define the usual variables:

$$Q^{2} \equiv -q^{2} = -(k - k')^{2}$$
$$y \equiv \frac{P \cdot q}{P \cdot k}$$
$$x \equiv \frac{Q^{2}}{2P \cdot q}$$
$$z \equiv \frac{P \cdot P_{h}}{P \cdot q}$$

Eberhard Karls Univers Tübingen

SIDIS
$$\frac{d^{3}\sigma^{h}}{dxdydz} = \frac{4\pi\alpha^{2}}{Q^{2}} \left[\frac{1 + (1 - y)^{2}}{2y} \mathcal{F}_{T}^{h}(x, z, Q^{2}) + \frac{1 - y}{y} \mathcal{F}_{L}^{h}(x, z, Q^{2}) \right]$$

DIS
$$\frac{d^{2}\sigma}{dxdy} = \frac{4\pi\alpha^{2}}{Q^{2}} \left[\frac{1 + (1 - y)^{2}}{2y} \mathcal{F}_{T}(x, Q^{2}) + \frac{1 - y}{y} \mathcal{F}_{L}(x, Q^{2}) \right]$$

$$\mathcal{F}_{i}^{h}(x,z,Q^{2}) = \sum_{f,f'} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \int_{z}^{1} \frac{d\hat{z}}{\hat{z}} f\left(\frac{x}{\hat{x}},\mu^{2}\right) D_{f'}^{h}\left(\frac{z}{\hat{z}},\mu^{2}\right) \mathcal{C}_{f'f}^{i}\left(\hat{x},\hat{z},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right)$$

JEFFERSON LAB

hard-scattering coefficient function:

$$\mathcal{C}_{f'f}^{i} = C_{f'f}^{i,(0)} + \frac{\alpha_s(\mu^2)}{2\pi} C_{f'f}^{i,(1)} + \mathcal{O}(\alpha_s^2)$$

Hadron multiplicity definition for SIDIS

5

$$R^{h}_{\rm SIDIS} \equiv \frac{d^{3}\sigma^{h}/dxdydz}{d^{2}\sigma/dxdy}$$

Eberhard Karls Univer Tübingen

6

Singularities from the quark propagator

- soft: cancel for real + virtual corrections
- collinear: factorize into PDF/ FF

NLO COEFFICIENT FUNCTION

large corrections near threshold $\hat{x}, \hat{z} \rightarrow 1$

Altarelli et al.; Furmanski, Petronzio; de Florian et al.

$$C_{qq}^{T,(1)}(\hat{x},\hat{z}) \sim e_q^2 C_F \left[-8\,\delta(1-\hat{x})\,\delta(1-\hat{z}) + 2\,\delta(1-\hat{x})\,\left(\frac{\ln(1-\hat{z})}{1-\hat{z}}\right)_+ \right. \\ \left. + 2\,\delta(1-\hat{z})\,\left(\frac{\ln(1-\hat{x})}{1-\hat{x}}\right)_+ + \frac{2}{(1-\hat{x})_+(1-\hat{z})_+} \right]$$

 $\overline{\rm MS}$ scheme

$$\int_0^1 dz \, f(z) \, \left(\frac{\ln(1-z)}{1-z}\right)_+ \, \equiv \, \int_0^1 dz \, (f(z) - f(1)) \, \frac{\ln(1-z)}{1-z}$$

7

Eberhard Karls Univers Tübingen

NLO Threshold Logarithms

coming from emission of one soft gluon

$$+2\,\delta(1-\hat{x})\left(rac{\ln(1-\hat{z})}{1-\hat{z}}
ight)_+$$
 and $\hat{x}\leftrightarrow\hat{z}$

$$\gamma^*(Q^2)$$

N^kLO Threshold Logarithms coming from emission

of k soft gluon

$$\alpha_s^k \delta(1-\hat{z}) \left(\frac{\ln^{2k-1}(1-\hat{x})}{1-\hat{x}} \right)_+ \text{ and } \hat{x} \leftrightarrow \hat{z}$$

$$\alpha_s^k \left(\frac{\ln^m (1-\hat{x})}{1-\hat{x}}\right)_+ \left(\frac{\ln^m (1-\hat{z})}{1-\hat{z}}\right)_+$$
$$m+n = 2k-2$$

They become large for $\ \hat{x},\ \hat{z}
ightarrow 1$ Large Logs associated $(1 - \hat{x}) + (1 - \hat{z}) \approx \frac{2k^0}{O}$ With a careful with kinematic analysis soft gluon emissions G. F. Sterman and W. Vogelsang, Catani and Trentadue **JEFFERSON LAB**

The Exponentiation

The Resummation of the Threshold Logs occurs via the exponentiation of the "single soft emission"-contribution (one-loop contribution in the soft-limit $k_0 \approx 0$)

Matrix elements factorize in the soft-limit approximation (eikonal-approximation)
In order for the phase space to factorize we have to move into

$$\delta\left(1-k_0-\sum_{i=1}^n k_i\right) = \frac{1}{2\pi i} \int_C dN e^{N(1-k_0-\sum_{i=1}^n k_i)}$$
 Mellin Space

9

large corrections near threshold $\hat{x}, \hat{z} \rightarrow 1$

$$C_{qq}^{T,(1)}(\hat{x},\hat{z}) \sim e_q^2 C_F \left[-8\,\delta(1-\hat{x})\,\delta(1-\hat{z}) + 2\,\delta(1-\hat{x})\left(\frac{\ln(1-\hat{x})}{1-\hat{x}}\right)_+ \right. \\ \left. + 2\,\delta(1-\hat{x})\left(\frac{\ln(1-\hat{x})}{1-\hat{x}}\right)_+ + \frac{2}{(1-\hat{x})_+(1-\hat{z})_+} \right]$$

 $ilde{C}_{qq}^{T,(1)}(N,M) \sim e_q^2 C_F \left[-8 + rac{\pi^2}{3} + \left(\ln \bar{N} + \ln \bar{M} \right)^2
ight]$ double-Mellin transform: $ar{N}=Ne^{\gamma_E}, \ ar{M}=Me^{\gamma_E}$ for $N, M \to \infty$ JEFFERSON LAB

ACCURACY OF RESUMMATION

 $\mathcal{O}(\alpha_s^k): \qquad C_{knm} \times \alpha_s^k \ln^n \bar{N} \ln^m \bar{M}, \quad \text{where } n+m \le 2k$

In Mellin Space

ACCURACY OF RESUMMATION

 $\mathcal{O}(\alpha_s^k): \qquad C_{knm} \times \alpha_s^k \ln^n \bar{N} \ln^m \bar{M}, \quad \text{where } n+m \le 2k$

JEFFERSON LAB

berhard Karls Universit Tübingen

INVERSE MELLIN TRANSFORMATION

• Minimal Prescription Catani, Mangano, Nason, Trentadue

-Double Mellin Inverse Transformation

$$\mathcal{F}_i^h(x, z, Q^2) = \int_{\mathcal{C}_N} \frac{dN}{2\pi i} \, x^{-N} \int_{\mathcal{C}_M} \frac{dM}{2\pi i} \, z^{-M} \, \tilde{\mathcal{F}}_i^h(N, M, Q^2)$$

-Choose contours to the left of the Landau singularity at

$$\lambda_{NM} = 1 \leftrightarrow NM = e^{1/(\alpha_s b_0) - 2\gamma_E}$$

-Tilted contours in complex plane to increase numerical convergence

$$N = c_N + z_N e^{i\phi_N}$$

INTEGRATION CONTOURS

COMPASS DATA

CONCLUSIONS

POLARIZED SIDIS

Anderle, Ringer Vogelsang, PhysRevD.87. 094021

Longitudinal double-spin asymmetry

 $\vec{l}(k)\vec{p}(P) \rightarrow l(k')h(P_h)X$

Polarized PDFs: $\Delta f(x, Q^2) \equiv f^+(x, Q^2) - f^-(x, Q^2)$

JEFFERSON LAB

RESUMMATION FOR PSIDIS

Since in the threshold limit $\hat{x}, \hat{z} \rightarrow 1$

$$\begin{split} \Delta C_{qq}^{(1)}(\hat{x}, \hat{z}) &\sim C_{qq}^{(1)}(\hat{x}, \hat{z}) \sim e_q^2 C_F \left[+ 2\delta(1 - \hat{x}) \left(\frac{\ln(1 - \hat{z})}{1 - \hat{z}} \right)_+ + 2\delta(1 - \hat{z}) \left(\frac{\ln(1 - \hat{x})}{1 - \hat{x}} \right)_+ \right. \\ \\ \text{Daniel de Florian, Yamila Rotstein Habarnau} & \left. + \frac{2}{(1 - \hat{x})_+ (1 - \hat{z})_+} - 8\delta(1 - \hat{x})\delta(1 - \hat{z}) \right] \end{split}$$

The resummed spin-dependent coefficient function IDENTICAL to spin avaraged one

$$\Delta \tilde{\mathcal{C}}_{qq}^{\mathrm{res}}(N, M, \alpha_s(Q^2)) = \tilde{\mathcal{C}}_{qq}^{\mathrm{res}}(N, M, \alpha_s(Q^2))$$

JEFFERSON LAB

17

berhard Karls Universi Tübingen

INCLUSIVE & SI-DIS ASYMMETRIES

proton target 0.2 < z < 0.8

A.Airapetian et al. [Hermes Collaboration] 2005

using MRST'02/DSSV PDFs and DSS FFs

JEFFERSON LAB

erhard karls Universitä Tübingen

Towards NNLO FL

For the Longitudinal Structure Function at NLO, the quark scattering and the gluonfusion are Tree-Level diagrams

log g

d

U

The New Channels of NNLO $F_{\rm L}$

Tree Level diagrams at NNLO:

QUARK INITIATED

 $\gamma q \to q' \bar{q}' q \qquad q \neq q'$

Eberhard Karls Univei Türingen

JEFFERSON LAB

Universität

THE CALCULATION

HMC + THRESHOLD RESUMMATION

It is a **BRUTE-FORCE** calculation:

PHASE SPACE 2 to 3

$$\int dPS_3^{DI} = \frac{1}{(4\pi)^n} \frac{(s-Q^2)^{n-3}}{\Gamma(n-3)} (1-x)^{n-3} \int_0^{\pi} d\theta \int_0^{\pi} d\phi (\sin\theta)^{n-3} (\sin\phi)^{n-4}$$
$$\times \int_0^1 dy \int_0^1 dz y^{(n/2)-2} (1-y)^{n-3} \{z(1-z)\}^{(n/2)-2}$$

- Angular part solvable using know integrals of type: Beenakker,Kuijf,van Neerven, Smith (Phys.Rev. D40 (1989) 54-82)

$$\int_0^{\pi} \mathrm{d}\theta \int_0^{\pi} \mathrm{d}\phi \, \frac{(\sin\theta)^{n-3}(\sin\phi)^{n-4}}{(a+b\cos\theta)^i (A+B\cos\theta+C\cos\phi\sin\theta)^j}$$

21

- z-Integration remaining can be solved analytically with many tricks

OUTLINE

- THRESHOLD RESUMMATION FOR SIDIS
- MC + THRESHOLD RESUMMATION
- * TOWARDS A GLOBAL NNLO FF FIT
- CONCLUSIONS

HMC + THRESHOLD RESUMMATION

Accardi, Anderle, Ringer (Phys. Rev. D 91, 034008 (2015))

We consider two corrections on standard pQCD calculation of SIA and DIS:

- Threshold resummation
- Hadron Mass Correction

Both corrections become relevant only in some kinematical phase space regions

23

DEEP INELASTIC SCATTERING

 $x \equiv \frac{Q^2}{2P \cdot q}$

24

 $l(k)p(P) \to l(k')X$

JEFFERSON LAB

Defined kinematic variables:

 $k \xrightarrow{k'} x$

 $Q^2 \equiv -q^2 = -(k-k')^2$ Virtual Photon Energy

 $y \equiv \frac{P \cdot q}{P \cdot k}$ \propto to lepton scattered angle

berhard Karls Univer Tübingen

Electron-Positron Annhilation

25

JEFFERSON LAB

Defined kinematic variables:

 $q^2=Q^2$ Virtual Photon Energy

$$x_E \equiv \frac{2P_h \cdot q}{Q^2} = \frac{2E_h}{\sqrt{s}} \quad \text{(c.m.s)}$$

Hadron multiplicities $R^{h}_{e^{+}e^{-}} \equiv \frac{1}{\sigma^{\text{tot}}} \frac{d^{2}\sigma^{h}}{dx_{E} d\cos\theta}$

Eberhard Karls Univer Tübingen

THRESHOLD RESUMMATION

For both DIS and SIA

in Mellin space: exponentiation of the one-loop results

$$C_{
m res}^{q,N} = H_q \,\Delta_q^N J_q^N = H_q \exp\left[\int_0^1 dx rac{x^{N-1}-1}{1-x} \int_{\mu_F^2}^{(1-x)Q^2} rac{dp^2}{p^2} A_q[lpha_s(p^2)] + rac{1}{2} B_q[lpha_s((1-x)Q^2)]
ight]$$

where
$$A^{(1)} = C_F$$
, $A^{(2)} = \frac{1}{2}C_F K = \frac{1}{2}C_F \left[C_A \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5}{9}N_f\right]$
 $B^{(1)} = -\frac{3}{2}C_F$.

Catani, Trentadue; Sterman

Threshold Resummation acts for DIS and SIA in the same exact way and is relevant for the same Phase Space region:

JEFFERSON LAB

 P_h

STUDYING THE KINEMATICS (SIA)

27

we study the kinematics in the $\gamma - h$ frame

$$q = q^{+}\bar{n} + \frac{Q^{2}}{2q^{+}}n$$

$$P_{h} = P_{h}^{+}\bar{n} + \frac{m_{h}^{2}}{2p_{h}^{+}}n$$

$$k = k^{+}\bar{n} + \frac{k^{2} + k_{T}^{2}}{2k^{+}}n + \mathbf{k}_{T}$$

we work in collinear factorization

$$z = \frac{P_h^+}{k^+}, \qquad \mathbf{k}_T = 0$$

Accardi, Qiu

 $\begin{array}{c} q \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ &$

where the light-cone vectors

$$n^{\mu} = \frac{1}{\sqrt{2}}(1, 0, 0, -1)$$
$$\bar{n}^{\mu} = \frac{1}{\sqrt{2}}(1, 0, 0, 1)$$
$$n^{2} = \bar{n}^{2} = 0 \quad n \cdot \bar{n} = 1$$
$$a^{+} = a \cdot n \quad a^{-} = a \cdot \bar{n}$$

berhard Karls Univef Tübingen

One should use those variables when calculating structure functions, since they represent the right physical fractional momentum variables

$$\mathcal{F}_i(x_E, Q^2) \to \mathcal{F}_i(\xi_E, Q^2)$$

 $\mathcal{F}_i(x_B, Q^2) \to \mathcal{F}_i(\xi, Q^2)$

Albino et al.

Jefferson Lab

28

berhard Karls Universij Tübingen The hadron mass acts kinematically on the two processes in a very different way

JEFFERSON LAB

For DIS the TMC and Threshold Resummation do not act independently

30

JEFFERSON LAB

Eberhard Karls Universit Tübingen No interplay between the two effects is found since they act independently on two different kinematical regions

JEFFERSON LAB

31

berhard Karls Universi Tübingen

BELLE AND BABAR DATA

Belle collaboration arXiv: 1301.6183

JEFFERSON LAB

For Kaons one has to take into account HMC

Belle collaboration arXiv: 1301.6183; BaBar collaboration arXiv: 1306.2895

JEFFERSON LAB

For Kaons one as to take into account HMC

Belle collaboration arXiv: 1301.6183; BaBar collaboration arXiv: 1306.2895

JEFFERSON LAB

OUTLINE

- THRESHOLD RESUMMATION FOR SIDIS
- MC + THRESHOLD RESUMMATION
- * TOWARDS A GLOBAL NNLO FF FIT
- CONCLUSIONS

eberhard kai U Tübi

Ingredients needed to achieve the goal:

DATA SETS:

SI-e⁺e⁻	-	old: TPC(Phys. Rev. Lett 61, 1263 (1998)), SLD(Phys. Rev. D59,052001 (1999)), ALEPH(Phys. Lett. B357, 487 (1995)), DELPHI(Eur. Phys. J. C5, 585 (1998),Eur. Phys. J.C6, 19 (1999)) OPAL(Eur. Phys. J. C16, 407 (2000),Eur. Phys. J.C7, 369 (1999)), TASSO(Z. Phys.C42, 189 (1989))	
SIDIS		old: EMC(Z. Phys. C52, 361 (1991)), JLAB(Phys. Rev. Lett. 98, 022001)	
SI- p(anti-)p		old: CDF(Phys. Rev. Lett. 61,1819 (1988)), UAI (Nucl. Phys. B335,261 (1990)), UA2(Z. Phys. C27, 329 (1985))	

Ingredients needed to achieve the goal:

DATA SETS:

SI-e⁺e⁻

new: BaBar(Phys. Rev. D 88, 032011 (2013)), Belle(Phys. Rev. Lett. 111, 062002 (2013))

SIDIS new: HERMES(Ph.D. thesis, Erlangen Univ., Germany, September 2005), Compass(PoS DIS 2013, 202 (2013)), JLAB@12GeV

SI- p(anti-)p ----> new:

new: Phenix (Phys. Rev. D 76,051106 (2007)), Alice (Phys. Lett. B 717, 162 (2012).), Brahms (Phys. Rev. Lett. 98, 252001 (2007)), Star (Phys. Rev. Lett. 97, 152302 (2006))

 $pp \rightarrow (Jet h)X \longrightarrow future: Star, CMS(JHEP 1210, 087 (2012)), Alice(arXiv:1408.5723), Atlas(Eur. Phys. J. C 71, 1795 (2011))$

JEFFERSON LAB

Ingredients needed to achieve the goal:

NNLO EVOLUTION KERNELS:

Splitting functions NNLO-Non Singlet: Mitov, Moch, Vogt(Phys.Lett. B638 (2006) 61-67) NNLO-Singlet: Moch, Vogt(Phys.Lett.B659 (2008) 290-296)

NNLO-Singlet: Almasy, Mitov, Moch, Vogt (Nucl. Phys. B854 (2012)) 133-152)

Both computed in x-Space and in Mellin Space

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SI-e⁺e⁻

Rijken, van Neerven

(Phys.Lett.B386(1996)422, Nucl.Phys.B488(1997)233, Phys.Lett.B392(1997)207)

Mitov, Moch (Nucl.Phys.B751 (2006) 18-52) Blümlein, Ravindran (Nucl.Phys.B749 (2006) 1-24)

SIDIS \longrightarrow NOT COMPUTED YET but work in progress $\gamma q' \rightarrow q \bar{q} q'$ $\gamma q' \rightarrow q \bar{q} q'$ Anderle, de Florian, Rotstein, Vogelsang

SI- p(anti-)p ----> NOT COMPUTED YET

PP→(Jet h)X → NOT COMPUTED YET

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SIDIS Soft gluon Resummed results (can be expanded @ NNLO) Anderle,Ringer,Vogelsang (Phys.Rev. D87 (2013) 094021, Phys.Rev. D87 (2013) 3,034014)

SI- p(anti-)p -----> Soft gluon Resummed results (can be expanded @ NNLO)

Work in progress for $\frac{d\sigma}{dp_T d\eta}^{(NNLL)}$ Hinderer, Ringer, Sterman, Vogelsang

 $pp \rightarrow (|et h)X \longrightarrow$ Resummed results (can be expanded @ NNLO)

Work in progress from T. Kaufmann, Vogelsang

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

To include the last processes we need a

NNLO Mellin Space Fitting Program

41

JEFFERSON LAB

berhard Karls Universi Tübingen

The NNLO Evolution Code "Pegasus_FF"

Existing NNLO Evolution CODES:

- X-SPACE APFEL(time-like version C/C++, Fortran77, Python) Bertonel, Carrazza, Rojo (CERN-PH-TH/2013-209)
- Mellin SPACE MELA(Fortran77) Bertone I, Carrazza, Nocera (CERN-PH-TH-2014-265)

Newly born:

JEFFERSON LAB

 Mellin SPACE
 Pegasus_FF (Fortran77)
 based on Pegasus(Fortran77)

 Anderle, Ringer, Stratmann
 Vogt (Comput.Phys.Commun.170:65-92,2005)

42

Eberhard Karls Universität Tübingen

Universität

OUR SIA FIT

Parametrization of light patrons FF @ μ_0

$$D_{i}^{h}(z,Q_{0}) = \frac{N_{i}z^{\alpha_{i}}(1-z)^{\beta_{i}}[1+\gamma_{i}(1-z)^{\delta_{i}}]}{B[2+\alpha_{i},\beta_{i}+1]+\gamma_{i}B[2+\alpha_{i},\beta_{i}+\delta_{i}+1]}$$

So that $N_{i} = \int_{0}^{1} z D_{i}^{h} dz$

Heavy Quark Treatment:

NON PERTURBATIVE INPUT: at $\mu > m_q$ the evolution is set to evolve with $n_f + 1$ for flavours and for the q-heavy quark FF the same functional form as for the light quark is set at $\mu = m_q$

Data sets:

15 Data Set: from Sld, Aleph, Delphi, Opal, Tpc, BaBar, Belle either inclusive, uds tagged, b tagged or c tagged. We use a GLOBAL CUT 0.075<z<0.95

PARAMETERS FOR PI+

With only SIA one needs some extra constrains:

parameter	LO	NLO	NNLO	
$\overline{N_{u+ar{u}}}$	0.735	0.572	0.579	5 free param needed
$lpha_{u+ar{u}}$	-0.371	-0.705	-0.913	
$eta_{u+ar{u}}$	0.953	0.816	0.865	charge conjugation and isospin
$\gamma_{u+ar{u}}$	8.123	5.553	4.062	symmetry $D^{\pi^{\pm}}_{+-} = D^{\pi^{\pm}}_{+-}$.
$\delta_{u+ar{u}}$	3.854	1.968	1.775	J = u + u $L = u + d + d$
$\overline{N_{s+\bar{s}}}$	0.243	0.135	0.271	I free param 2 fixed by
$lpha_{s+ar{s}}$	-0.371	-0.705	-0.913	Thee param, 2 fixed by
$eta_{s+ar{s}}$	4.807	2.784	2.640	$\alpha_{s+\bar{s}} = \alpha_{u+\bar{u}}, \beta_{s+\bar{s}} = \beta_{u+\bar{u}} + \delta_{u+\bar{u}}$
N_g	0.273	0.211	0.174	
$lpha_g$	2.414	2.210	1.595	2 free param. I fixed
$eta_{m{g}}$	8.000	8.000	8.000	
$\overline{N_{c+\bar{c}}}$	0.405	0.302	0.338	
$lpha_{c+ar{c}}$	-0.164	-0.026	-0.233	3 free param
$eta_{c+ar{c}}$	5.114	6.862	6.564	•
$\overline{N_{b+\bar{b}}}$	0.462	0.405	0.445	
$lpha_{b+ar{b}}$	-0.090	-0.411	-0.695	
$eta_{b+ar{b}}$	4.301	4.039	3.681	5 free param
$\gamma_{b+ar{b}}$	24.85	15.80	11.22	-
$\delta_{b+ar{b}}$	12.25	11.27	9.908	TOT - 16 free param

JEFFERSON LAB

JEFFERSON LAB

Scale Dependence

$e+e-\mu$ scale dependance

JEFFERSON LAB

experiment	data	# data	χ^2		
	type	in fit	LO	NLO	NNLO
SLD [40]	incl.	23	15.0	14.8	15.5
	$uds ag{tag}$	14	9.7	18.7	18.8
	$c ext{tag}$	14	10.4	21.0	20.4
	$b \mathrm{tag}$	14	5.9	7.1	8.4
Aleph $[41]$	incl.	17	19.2	12.8	12.6
DELPHI [42]	incl.	15	7.4	9.0	9.9
	$uds ext{ tag}$	15	8.3	3.8	4.3
	$b \mathrm{tag}$	15	8.5	4.5	4.0
OPAL [43]	incl.	13	8.9	4.9	4.8
TPC $[44]$	incl.	13	5.3	6.0	6.9
	uds tag	6	1.9	2.1	1.7
	$c \mathrm{tag}$	6	4.0	4.5	4.1
	$b \mathrm{tag}$	6	8.6	8.8	8.6
BABAR $[10]$	incl.	41	108.7	54.3	37.1
Belle [9]	incl.	76	11.8	10.9	11.0
TOTAL:		288	241.0	190.0	175.2

UI

NNLO FIT

48

JEFFERSON LAB

berhard Karls Universi Tübingen

berhard Karls Universit Tübingen

OUTLINE

- THRESHOLD RESUMMATION FOR SIDIS
- MC + THRESHOLD RESUMMATION
- * TOWARDS A GLOBAL NNLO FF FIT
- CONCLUSIONS

JEFFERSON LAB

Eberhard Karls Univers Tübingen

CONCLUSIONS

HMC + THRESHOLD RESUMMATION

- We have extended threshold resummtion for SIDIS and begun the calculation of the tree level graphs appearing at NNLO for $F_{\rm L}$
- We have presented a framework for combined HMC with Resummation. Future extension to SIDIS
- We have presented our e+e- only FF NNLO fit and its extension to a global fit
- Future resummed FF fit including Log(N)/N

INSTITUTE FOR THEORETICAL PHYSICS

THANKS FOR YOUR ATTENTION ANY QUESTIONS?