A path into TMD phenomenology

Andrea Signori

About the speaker

2012 - Master student

"Hadron structure and QCD" group, Pavia U. (IT) Phenomenology of unpolarized TMDs at COMPASS

collaborators A. Bacchetta (supervisor), M. Radici

2012 - Summer intern

DESY - Hermes collaboration (GE) Transverse double spin asymmetry in inclusive hadron production

collaborators G. Schnell (supervisor), A. Movsisyan

About the speaker

2012 - present | PhD candidate

Nikhef and Vrije Universiteit Amsterdam (NL) Theory and phenomenology of TMDs

main collaborators P.J. Mulders (supervisor), T. Kasemets, M. Ritzmann (VU, Nikhef) A. Bacchetta, M. Radici (Pavia - IT) M. Echevarria (Barcelona - ES) C. Pisano (Antwerp - BE) J.P. Lansberg (Orsay - FR)

QUANTUM DIARIES

Thoughts on work and life from particle physicists from around the world

2014 - present | blogger

"Quantum Diaries" (Interaction collaboration) Thoughts on work and life from particle physicists around the world

Quark TMD PDFs

extraction of a **quark not** collinear with the proton

 g_{1L}

 g_{1T}

Quark TMD PDFs

holds for fragmentation and for gluons in Lorentz space

vrije Universiteit amsterdam

P k_T $\blacktriangleright xP$

extraction of a quark not collinear with the proton

Τ

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

spin-spin and spin-orbit interactions

Twist-2 TMDs

quark pol. U L

U

L

Τ

 f_1

 f_{1T}^{\perp}

flavor structure of unpolarized quark TMDs

TMDs and QCD evolution

flavor structure of unpolarized quark TMDs

Q = 1.55 GeV

flavor structure of unpolarized quark TMDs

flavor structure of unpolarized quark TMDs

flavor structure of unpolarized quark TMDs

vrije Universiteit amsterdam

vrije Universiteit amsterdam

11

$e^{\pm} + P/D \longrightarrow e^{\pm} + \pi^{\pm}/K^{\pm} + X$

TMDs at work in **SIDIS**

references :

AS, Bacchetta, Radici, Schnell 10.1007/JHEP11(2013)194 Bacchetta, Radici, **AS** 10.1142/S2010194514600209

Transverse momenta

Flavor dependent TMD PDFs

Flavor dependent TMD PDFs

15

Flavor dependent TMD FFs

Flavor dependent TMD FFs

TMDs at work in e⁺e⁻

references :

Bacchetta, Echevarria, Mulders, Radici, **AS** 10.1007/JHEP11(2015)076 Bacchetta, Echevarria, Radici, **AS** 10.1142/S201019451560023X 10.1051/epjconf/20158502016

Kinematics and observables

The observable: normalized multiplicity, poorly sensitive to perturbative corrections

vrije Universiteit amsterdam

$$M^{h_1h_2}(z_1, z_2, q_T^2, y) / M^{h_1h_2}(z_1, z_2, 0, y)$$

$$\begin{array}{ll} \text{Multiplicity,} & M^{h_1h_2}(z_1,z_2,q_T^2,y) = \frac{d\sigma^{h_1h_2}}{dz_1 \ dz_2 \ dq_T^2 \ dy} \ / \ \frac{d\sigma^{h_1}}{dz_1 \ dy} \end{array}$$

Partonic flavor

Evolution

vrije Universiteit amsterdam

21

TMDs at work in pp

references :

AS et al. 10.5506/APhysPolB.46.2501 Bacchetta, Mulders, Radici, Ritzmann, AS in preparation Echevarria, Kasemets, Lansberg, Pisano, AS in preparation

Quark TMDs at the LHC

$$\frac{d\sigma^{Z/W^{\pm}}}{dq_T} \sim \text{FT} \sum_{i,j} \exp\left\{-g_{ij} b_T^2\right\}$$
$$g_{ij} \sim \langle k_T^2 \rangle_i + \langle k_T^2 \rangle_j + \text{soft gluons}$$

g comes from 2 TMD PDFs and **controls** the position of the peak

Quark TMDs at the LHC

Gluon TMDs at work

low/medium energy process: we could extract information on the non perturbative part of gluon TMDs

but ... does TMD factorization hold ?

Gluon TMDs at work

low/medium energy process: we could extract information on the non perturbative part of gluon TMDs

but ... does TMD factorization hold ?

namely, are we allowed to use such an expression ?

$$\frac{d\sigma}{dq_T} \sim f_1^{g/A} f_1^{g/B} |\mathcal{M}|^2$$

Factorization

$QCD \rightarrow NRQCD \oplus SCET_{q_T}$

? same IR ?

vrije Universiteit amsterdam

yes: TMD fact. reproduces the physical result and the hard part can be calculated by subtraction

Factorization

$\operatorname{QCD} \to \operatorname{NRQCD} \oplus \operatorname{SCET}_{q_T}$

Philosophy: check (at NLO) if the structure of the IR divergencies is the same in the two expressions.

 $\sigma^{\text{virt},(1)} \longleftrightarrow \{\mathcal{H} \ \tilde{f}_1^{g/A} \tilde{f}_1^{g/B}\}_{\text{virt}}^{(1)}$

? same IR ?

yes: TMD fact. reproduces the physical result and the hard part can be calculated by subtraction

vrije Universiteit amsterdam

Unpolarized phenomenology

New TMD structures

references :

AS et al. 10.5506/APhysPolB.46.2501 Boer, Echevarria, Mulders, J. Zhou arXiv:1511.03485 Amsterdam group in preparation

Gluons in spin 1 hadrons

gluons in spin 1/2

$$\Phi^{\mu\nu}(k; P, S) \sim \text{F.T.} \langle PS | F^{+\mu}(0) U_{[0,\xi]} F^{+\nu}(\xi) U'_{[\xi,0]} | PS \rangle_{|_{LF}} \longrightarrow \begin{array}{l} \text{8 functions a} \\ \text{leading twist} \end{array}$$

 $\Phi^{\mu\nu}(k; P, S, T) \sim \text{F.T.} \langle PST | F^{+\mu}(0) U_{[0,\xi]} F^{+\nu}(\xi) U'_{[\xi,0]} | PST \rangle_{|_{LF}}$

$$\Phi^{\mu\nu}(k;P,S) \sim \text{F.T. } \langle PS | F^{+\mu}(0) U_{[0,\xi]} F^{+\nu}(\xi) U'_{[\xi,0]} | PS \rangle_{|_{LF}} \longrightarrow \begin{array}{c} \text{8 functions at leading twist} \\ \text{leading twist} \end{array}$$

t

as for quarks, we expect more structures

vrije Universiteit amsterdam

31

Pomerons from the gauge connection ?

gluons in spin 1/2 $\Phi^{\mu\nu}(k; P, S) \sim \text{F.T.} \langle PS | F^{+\mu}(0) U_{[0,\xi]} F^{+\nu}(\xi) U'_{[\xi,0]} | PS \rangle_{|_{LF}}$

Conclusions

1) There is **much to learn** about TMDs, and the **12 GeV program** at JLab is an excellent playground

2) How to access TMDs? Flexible and rich models + perturbative information (TMD factorization and evolution)

3) SIDIS data suggest a flavor dependence in the intrinsic transverse momentum of partons; this opens the path to yet unexplored effects

4) we can find its footprints in e+e- annihilation and it might have a non-negligible **impact on Z/W± production**

5) **new structures** can be introduced: factorization, universality, evolution, phenomenology, ...

Backup slides

how can we access TMDs in the "best" possible way ?

Quark TMD PDFs

$$\Phi_{ij}(k; P, S) \sim \text{F.T.} \langle PS | \ \bar{\psi}_{j}(0) \ U_{[0,\xi]} \ \psi_{i}(\xi) \ |PS\rangle_{|_{LF}}$$

$$extraction of a quark not collinear with the proton not collinear with the proton of a quark not collinear with the proton of a quark pol.$$

$$\text{ a similar scheme} \atop \text{ not collinear with the proton}$$

$$\text{ a similar scheme} \atop \text{ not gluons}$$

$$\text{ in Lorentz space} \quad \text{ of gluons}$$

$$\text{ of gluons} \quad \text{ of gluons}$$

$$\text{ for gluons} \quad \text{ of gluons}$$

$$\text{ for gluons} \quad \text{ of gluons} \quad \text{ of gluons} \quad \text{ of gluons}$$

$$\text{ of gluons} \quad \text{ o$$

Twist-2 TMDs

$\Phi^{\mu\nu}(k; P, S) \sim \text{F.T.} \langle PS | F^{+\mu}(0) U_{[0,\xi]} F^{n\nu}(\xi) U'_{[\xi,0]} | PS \rangle_{|_{LF}}$

hermiticity, parity, time-reversal invariance

GLUONS	unpolarized	circular	linear
U	$\left(f_{1}^{g}\right)$		$h_1^{\perp g}$
L		(g_{1L}^g)	$h_{_{1L}}^{_{\perp g}}$
Т	$f_{1T}^{\perp g}$	$g_{_{1T}}^{g}$	$h_{\scriptscriptstyle 1T}^g,h_{\scriptscriptstyle 1T}^{\scriptscriptstyle \perp g}$

Mulders, Rodriguez PRD 63 (2001)

LEADING TWIST

vrije Universiteit amsterdam

spin-spin and **spin-orbit** interactions between the proton and its constituents

vrije Universiteit amsterdam

courtesy A. Bacchetta

transverse momentum spectrum of physical observables

TMDs generate the q_T dep. of cross sections : but how in practice ?

The road to TMD phenomenology

SIDIS @ Hermes

Intrinsic flavor dependence: a way to account for differences between cross sections related to different final state hadrons

41

Flavor in transverse momentum

Kinematic dependence

$$\langle \boldsymbol{k}_{\perp,\,q}^2 \rangle(x) = \langle \widehat{\boldsymbol{k}_{\perp,\,q}^2} \rangle \, \frac{(1-x)^{\alpha} \, x^{\sigma}}{(1-\hat{x})^{\alpha} \, \hat{x}^{\sigma}}$$
$$\langle \widehat{\boldsymbol{k}_{\perp,\,q}^2} \rangle = \langle \boldsymbol{k}_{\perp,\,q}^2 \rangle(\hat{x} \,=\, 0.1)$$

$$\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle(z) = \langle \widehat{\boldsymbol{P}_{\perp,q \to h}^2} \rangle \, \frac{(z^\beta + \delta) \, (1 - z)^\gamma}{(\hat{z}^\beta + \delta) \, (1 - \hat{z})^\gamma} \\ \widehat{\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle} = \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle(\hat{z} = 0.5)$$

Best fit parameters

Parton model picture

TMD region

$q_T \sim \Lambda_{ m QCD}$	$q_T \ll Q$	$q_T \sim Q$		$q_T \gg Q$	
$f_1^a(x, k_T) = f_1^a(x) \frac{1}{\pi \langle k_T^2 \rangle_a(x)} e^{-\frac{k_T^2}{\langle k_T^2 \rangle_a(x)}}$			$\langle Q^2 angle = 2.4~{ m GeV}^2$ neglect QCD evo = parton model		
$D_1 (z, P_\perp) = D_1(z) \frac{1}{\pi \langle P_\perp^2 \rangle_{a/h}}$		$\left(\frac{1}{2}\right) e^{-\frac{1}{2}e^{-\frac{1}$	Flavor and kinematic dependent widths		

$$\langle k_{\perp,\mathrm{u}_{\mathrm{v}}}^{2} \rangle \neq \langle k_{\perp,\mathrm{d}_{\mathrm{v}}}^{2} \rangle \neq \langle k_{\perp,\mathrm{sea}}^{2} \rangle \qquad \langle P_{\perp,u\to\pi^{+}}^{2} \rangle = \langle P_{\perp,\bar{d}\to\pi^{+}}^{2} \rangle = \langle P_{\perp,\bar{u}\to\pi^{-}}^{2} \rangle = \langle P_{\perp,d\to\pi^{-}}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}}^{2} \rangle = \langle P_{\perp,\mathrm{d}\to\pi^{-}}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}^{2} \rangle \to \langle P_{\perp,\mathrm{d}\to\pi^{-}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}^{2} \rangle \equiv \langle P_{\perp,\mathrm{d}\to\pi^{-}^{2} \rangle \to \langle P_{\perp,\mathrm{d}\to\pi^{-}$$

es hermes h

A fit is performed on each replica

200 statistical replicas of HERMES data

200 best-fit values for the parameters

clean access to uncertainties

We get a **distribution**, not a single value; **physically reacher**

More complete exploration of the minima in the space of fit parameters

Fits of multiplicities

proton target global χ^2 / d.o.f. = 1.63 ± 0.12 no flavor dep. 1.72 ± 0.11

 π^+ 2.64 ± 0.21 2.89 ± 0.23

 K^+ 0.46 ± 0.07 0.43 ± 0.07

Best fit values

Parameters for TMD FFs								
	Default	$Q^2 > 1.6 \text{ GeV}^2$	Pions only	Flavor-indep.				
$\left< \hat{P}_{\perp, \mathrm{fav}}^2 \right> [\mathrm{GeV}^2]$	0.15 ± 0.04	0.15 ± 0.04	0.16 ± 0.03	0.18 ± 0.03				
$\left< \hat{\pmb{P}}_{\perp,\mathrm{unf}}^2 \right> [\mathrm{GeV^2}]$	0.19 ± 0.04	0.19 ± 0.05	0.19 ± 0.04	0.18 ± 0.03				
$\left< \hat{\pmb{P}}_{\perp,sK}^2 \right> \left[{ m GeV^2} \right]$	0.19 ± 0.04	0.19 ± 0.04	-	0.18 ± 0.03				
$\left< \hat{P}_{\perp,uK}^2 \right> [\text{GeV}^2]$	0.18 ± 0.05	0.18 ± 0.05	-	0.18 ± 0.03				
eta	1.43 ± 0.43	1.59 ± 0.45	1.55 ± 0.27	1.30 ± 0.30				
δ	1.29 ± 0.95	1.41 ± 1.06	1.20 ± 0.63	0.76 ± 0.40				
γ	0.17 ± 0.09	0.16 ± 0.10	0.15 ± 0.05	0.22 ± 0.06				

68% confidence intervals of best-fit parameters for TMD FFs in the different scenarios

Conclusions - SIDIS

 o) SIDIS (Hermes) multiplicities are also compatible with flavor dependent configurations in the intrinsic transverse momentum of partons

1) on average : sea > u-val > d-val & unf > fav(π), fav(K) > fav(π)

2) Despite not producing dramatic effects on SIDIS, the flavor decomposition of TMDs opens the way to yet unexplored effects

3) flavor dependence in TMD FFs can be investigated at e+eexperiment, together with information on the non-perturbative evolution

4) we need to look at different observables with multi-D kinematic ranges

Implementation of evolution

$$\frac{d\sigma^{h_1h_2}}{dz_1dz_2dq_T^2dy} \sim H(Q^2,\mu) \longrightarrow 1, \text{ no alpha corrections}$$

$$\times \sum_{q} e_q^2 \int_0^{\infty} db_T b_T J_0(q_T b_T) \left[z_1^2 D_1^{q \to h_1}(z_1, b_T; \mu, \zeta_1) z_2^2 D_1^{q \to h_2}(z_2, b_T; \mu, \zeta_2) + (q \leftrightarrow \bar{q}) \right]$$

$$+ Y(q_T^2/Q^2) + \mathcal{O}(M^2/Q^2)$$
no high qT tail (collinear factorization) no higher twist (collinear factorization) (collinear factorization)

Implementation of evolution

$$b_T^* = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{\max}^2}}} \xrightarrow{b_T \to \infty} b_{\max} \xrightarrow{b_T \to \infty} b_{\max} \xrightarrow{\text{two different ways}} to approach bmax, the point where we stop} the point where we stop the perturbative result}$$

$$g_{\rm np}^{\rm lin}(b_T^2;g_2) = \frac{g_2}{4}b_T^2$$
$$g_{\rm np}^{\rm log}(b_T^2;g_2) = g_2\ln\left(1 + \frac{b_T^2}{4}\right)$$

... partonic flavor

vrije Universiteit amsterdam

mu_b scale evolution

... transition low/medium qT

... collinear energy fractions Z_{1,2}

Conclusions - e+e-

Five take-home messages :

0) The way we implement QCD evolution affects the extraction of non-perturbative information - [very important]

1) At Belle scale (100 GeV²) we can discriminate evolution schemes and pin down non-perturbative evolution parameters (g2, bmax)

2) Annihilations at BES scale (14.6 GeV²) can be very useful to select non-perturbative intrinsic parameters of TMD FFs

3) Annihilations to different final states { π , K} can be useful to constrain flavor dependence of TMD FFs

4) knowledge of unpolarized TMD FFs helps in constraining both (un)polarized TMD PDFs and polarized TMD FFs

$$\mathcal{R}(q_T; Q) = \frac{\mathcal{C}[h_1^{\perp g/A} h_1^{\perp g/B}]}{\mathcal{C}[f_1^{g/A} f_1^{g/B}]}$$

quarkonium - low energy higgs - high energy

SCET in a nutshell

1) It is an effective theory of QCD

2) based on a systematic expansion of the QCD lagrangian in powers of small parameters

3) describes QCD interaction among low and high energy modes on the base of separate lagrangians for (ultra)soft and (anti)collinear modes

5) ASSUMPTION : SCET reproduces the IR structure of QCD ; need for a "matching" coefficient

6) useful to implement resummation | good for phenomenology

 $\mathcal{L}_{\text{QCD}} \longleftrightarrow \mathcal{L}_n + \mathcal{L}_{\bar{n}} + \mathcal{L}_{\text{soft}}$

Philosophy : check if the structure of the IR divergencies is the same as in 'full' QCD. If so, the SCET-factorized form works as QCD, namely factorization is "established"

A multistep matching process

1 : factorization

 $\operatorname{QCD} \to \operatorname{NRQCD} \oplus \operatorname{SCET}_{q_T}$

$$d\sigma = \frac{1}{2s} \frac{d^3q}{(2\pi)^3 2E_q} \int d^4y e^{-iq \cdot y} \sum_X \langle PS_A, \bar{P}S_B | \mathcal{O}(y) | X + \eta_q \rangle \langle X + \eta_q | \mathcal{O}(0) | PS_A, \bar{P}S_B \rangle$$

66

1 : factorization

 $\text{QCD} \rightarrow \text{NRQCD} \oplus \text{SCET}_{q_T}$

1) $|CH|^2$ is the "hard part": at this point still not known

2) NRQCD matrix element
$$\mathcal{O}^{q\bar{q}}(\eta_q) = |\langle 0|\chi^{\dagger}\psi(y)|\eta_q\rangle|^2 = \frac{N_c}{2\pi}|R_{nl}(0)|^2[1+\mathcal{O}(v^4)]$$

3) Gamma structure fixed to reproduce the LO QCD result

$$\Gamma_{\mu\nu} = \frac{\alpha_s \pi}{3\sqrt{M}} \ \frac{2\sqrt{2}\epsilon_{\mu\nu}^{\perp}}{\sqrt{(d-2)(d-3)}} \sqrt{N_c^2 - 1}$$

vrije Universiteit amsterdam

but no pole structure yet: go to next order!

1 : factorization

 $QCD \rightarrow NRQCD \oplus SCET_{q_T}$

$$\frac{\sigma^{v}}{\sigma_{\text{Born}}}\Big|_{\text{ren}} = \frac{\alpha_{s}}{2\pi} \left[-2\frac{C_{A}}{\epsilon_{\text{IR}}^{2}} - \frac{2}{\epsilon_{\text{IR}}} \left(\frac{\beta_{0}}{2} + C_{A} \ln \frac{\mu^{2}}{M^{2}}\right) + 2C_{F} \frac{\pi^{2}}{2v} - C_{A} \ln^{2} \frac{\mu^{2}}{M^{2}} + 2C_{A} \left(1 + \frac{\pi^{2}}{3}\right) + 2C_{F} \left(-5 + \frac{\pi^{2}}{4}\right)\right]$$

Coulomb singularity absorbed by NRQCD matrix element

> renormalization takes care of UV

$$\tilde{f}_{1}^{g} = \frac{\alpha_{s}}{2\pi} \left[\frac{C_{A}}{\epsilon_{\rm UV}^{2}} + \frac{1}{\epsilon_{\rm UV}} \left(\frac{\beta_{0}}{2} + C_{A} \ln \frac{\mu^{2}}{\zeta_{A}} \right) - \frac{C_{A}}{\epsilon_{\rm IR}^{2}} - \frac{1}{\epsilon_{\rm IR}} \left(\frac{\beta_{0}}{2} + C_{A} \ln \frac{\mu^{2}}{\zeta_{A}} \right) \right] \quad \text{X 2 TMDs}$$

SCET correctly reproduces QCD at NLO

$$\mathcal{H} = \left[\sigma^{\text{virt},(1)} - \{ \tilde{f}_1^{g/A} \tilde{f}_1^{g/B} \}_{\text{virt}}^{(1)} \right] \qquad \text{on-shell renormalization scheme}$$

$$\mathcal{H} = 1 + \frac{\alpha_s}{2\pi} \left[-C_A \ln^2 \frac{\mu^2}{M^2} + 2C_A \left(1 + \frac{\pi^2}{3} \right) + 2C_F \left(-5 + \frac{\pi^2}{4} \right) \right]$$
see Phys. Rev. D 70, 054014
(Maltoni&Polosa),
Phys.Rev. D48 (1993) (Kuhn&Mirkes)
vrije Universiteit amsterdam
68

2: re-factorization

transverse momentum spectrum of physical observables

Unpolarized phenomenology

Unpolarized phenomenology

On the to-do list!

Conclusions

1) Factorization for q_T spectrum of quarkonium has been established at NLO using the SCET methodology

2) we can make solid predictions for (un)polarized TMD cross sections for LHC, RHIC, AFTER@LHC

3) implementing perturbative content we can set the grounds for the **extraction** of information about the **proton structure** (provided that we'll get data!)

The gluon Sivers effect

Review Boer-Lorcé-Pisano-Zhou Message : the effect is not constrained!

usual argument : since **BSM** holds, we know it should be suppressed

two **objections**:

1) the numerical extractions are strongly model dependent and performed at LO

2) we know that any gluon Sivers is given by the sum of two universal gluon Sivers function (process dependence), one of each is constrained by BSM and the other not (since the momentum operator is C-even, the C- even function is constrained, but the C-odd on no

then there is need for improved predictions and extractions: we need the theoretical tools

Unpolarized phenomenology

$$\hat{b}_T(b_T) = b_c \left(1 - e^{-(b_T/b_c)^2}\right)^{1/2}, \ b_c = 1.5 \text{ GeV}^{-1}$$

 $\mu_{\hat{b}} = 2e^{-\gamma_E}/\hat{b}_T$

prescriptions to separate between low and high transverse momenta

$$\exp\left[-b_T^2(\lambda_f^T + \lambda_Q \ln(Q^2/Q_0^2))\right]$$

model for low/intrinsic transverse momentum

choices with important phenomenological impact (at medium energies)

SCET gluon fields

$$\mathcal{B}_{n\perp}^{\mu} = \frac{1}{g} [\bar{n} \cdot \mathcal{P} W_n^{\dagger} \ i D_{n\perp}^{\mu} \ W_n]$$

$$W_n(x) = P \exp\left[\int_{-\infty}^0 ds\bar{n} \cdot A_n^a(x+\bar{n}s)t^a\right]$$

$$S_n(x) = P \exp\left[\int_{-\infty}^0 dsn \cdot A_s^a(x+ns)t^a\right]$$

vrije Universiteit amsterdam

W mass determination @ CDF

TABLE X: Uncertainties on M_W (in MeV) as resulting from chargedlepton transverse-momentum fits in the $W \rightarrow \mu v$ and $W \rightarrow ev$ samples. The last column reports the portion of the uncertainty that is common in the μv and ev results.

p_T^{ℓ} fit uncertainties						
Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common			
Lepton energy scale	7	10	5			
Lepton energy resolution	1	4	0			
Lepton efficiency	1	2	0			
Lepton tower removal	0	0	0			
Recoil scale	6	6	6			
Recoil resolution	5	5	5			
Backgrounds	5	3	0			
PDFs	9	9	9			
W boson pT	9	9	9			
Photon radiation	4	4	4			
Statistical	18	21	0			
Total	25	28	16			

TABLE XI: Uncertainties on M_W (in MeV) as resulting from neutrino-transverse-momentum fits in the $W \to \mu v$ and $W \to ev$ samples. The last column reports the portion of uncertainty that is common in the μv and ev results.

p_T^V fit uncertainties					
Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Correlation 5		
Lepton energy scale	7	10			
Lepton energy resolution	1	7	0		
Lepton efficiency	2	3	0		
Lepton tower removal	4	6	4		
Recoil scale	2	2	2		
Recoil resolution	11	11	11		
Backgrounds	6	4	0		
PDFs	11	11	11		
W boson pT	4	4	4		
Photon radiation	4	4	4		
Statistical	22	25	0		
Total	30	33	18		

 $M_W = 80.387 \pm 0.019 \text{ GeV}$

W mass determination @ D0

TABLE VI: Systematic uncertainties on M_W (in MeV). The section of this paper where each uncertainty is discussed is given in the Table.

Source	Section	m_T	p_T^e	E_T
Experimental			a Antonio a	
Electron Energy Scale	VIIC4	16	17	16
Electron Energy Resolution	VIIC5	2	2	3
Electron Shower Medel	VC	4	6	7
Electron Energy Loss CONTROLLED ONLY	VD	4	4	4
Recoil Model	VIID3	5	6	14
Electron Efficiencie Dy SOIL gluoiis	/IIB10	1	3	5
Backgrounds	VIII	2	2	2
\sum (Experimental)		18	20	24
W Production and Decay Model		1. A 10 M 1	No.	1
PDF	VIC	11	11	14
QED	VIB	7	7	9
Boson p_T	VIA	2	5	2
\sum (Model)		13	14	17
Systematic Uncertainty (Experimental and Model)		22	24	29
W Boson Statistics	IX	13	14	15
Total Uncertain				33
Are there vet unexplo	ored unce	rtaintie	s 🚡	
			2	
on the Z/W transve	erse spec	trum?		

Nonperturbative effects

vrije Universiteit amsterdam

Impact on the peak

We study flavor dependent configurations that respect the experimental constraint on Z producing different distributions for W± $g_{ij}(Z) : [\text{GeV}^2] \ \mathbf{0.7} = \mathbf{u} + \bar{\mathbf{u}} = \mathbf{0.2} + 0.5$ $= d + \bar{d} = 0.3 + 0.4$ $= \cdots = 0.6 + 0.1 = \cdots$ $g_{ij}(W) : [\text{GeV}^2] \ \mathbf{0.6} = \mathbf{u} + \bar{d} = \mathbf{0.2} + \mathbf{0.4} = \cdots$

MESSAGE: the **uncertainty** on the peak position **is not negligible**

(Un)polarized cross sections

vrije Universiteit amsterdam

Conclusions

O) Phenomenology suggests a flavor dependence in the intrinsic transverse momentum of partons; this opens the way to yet unexplored effects

1) it might have a non-negligible **impact on Z/W± production**

2) are there contributions from transversely polarized quarks ? (Boer-Mulders effect still not included)

3) **3D proton structure is of interest for high-energy physics:** nonperturbative effects should be extracted and their impact tested

