Three-loop QCD corrections from massive quarks to deep-inelastic structure functions

J. Ablinger¹, **A. Behring**², J. Blümlein², A. De Freitas², A. Hasselhuhn³, A. von Manteuffel⁴, M. Round¹, C. Schneider¹, F. Wißbrock⁵

¹ Johannes Kepler University, Linz
 ² DESY, Zeuthen
 ³ KIT, Karlsruhe
 ⁴ J. Gutenberg University, Mainz
 ⁵ IHES, Bures-Sur-Yvette

August 22nd, 2016 - Jefferson Lab - Theory seminar

Outline

- Introduction
- Calculation of operator matrix elements
- Selected results
- Conclusion

Based on the following publications:

- A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein and F. Wißbrock, Eur.Phys.J. C74 (2014), 3033
- J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock, Nucl. Phys. B886 (2014) 733
- J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Nucl. Phys. B890 (2014) 48
- A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Nucl. Phys. B897 (2015) 612
- A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, C. Schneider, Phys.Rev. D92 (2015), 114005
- J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Comput. Phys. Commun. 202 (2016) 33

Deep-inelastic scattering (DIS)

[[]Used with kind permission from Xiaochao Zheng]

- Lepton-nucleon scattering: measure scattered electron
- Deep-inelastic scattering: Sufficiently large W^2 and Q^2 .
- Compare: experimental measurements \leftrightarrow theoretical predictions
 - ⇒ Extraction of important quantities: parton distributions (PDFs), strong coupling constant (α_s), mass of heavy quarks, . . .

Results

Conclusion

Theoretical description

Structure functions receive contributions from

- Gluons and light quarks (up, down, strange; $m^2 < \Lambda^2_{QCD}$)
- Heavy quarks (charm, bottom; $m^2 \gg \Lambda_{QCD}^2$)

Heavy quarks in deep-inelastic scattering

• Structure functions: Contributions from light and heavy quarks

- Contributions from heavy quarks start at $\mathcal{O}(\alpha_s)$
- Gluon-photon fusion \Rightarrow Sensitive to gluon PDF
- Heavy quarks yield significant contributions to structure functions

(e.g. 20 - 30% to $F_2(x, Q^2)$), esp. at low x

Motivation for 3-loop calculations

- Comparison of theory and experiment requires sufficiently precise theory predictions
- Precision of experimental data for DIS: $\sim 1\%$ for $F_2(x, Q^2)$ \rightarrow requires theoretical description at $\mathcal{O}(\alpha_s^3)$
- ⇒ NNLO contributions of heavy quarks are important for the precise measurement of the strong coupling constant [d'Enterria et al. '15]

$$\delta \alpha_s(M_Z) \simeq 1\%$$

and the masses of the heavy quarks $_{\rm [Alekhin\ et\ al.\ '12\ and\ updates]}$

$$\begin{split} m_c(m_c) &= 1.25 \pm 0.02(\exp)^{+0.03}_{-0.02}(\text{scale})^{+0.00}_{-0.07}(\text{thy})\text{GeV} \\ m_b(m_b) &= 3.91 \pm 0.14(\exp)^{+0.00}_{-0.11}(\text{thy})\text{GeV} \quad (\text{preliminary}) \\ (\overline{\text{MS}} \text{ scheme}) \end{split}$$

Hadronic tensor: $W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$

Hadronic tensor:

Hadronic tensor:

$$W_{\mu\nu} = (\dots)_{\mu\nu} F_{L}(x, Q^{2}) + (\dots)_{\mu\nu} F_{2}(x, Q^{2})$$
Structure functions:

$$F_{2}(x, Q^{2}, m^{2}) = x \sum_{j} \mathbb{C}_{2,j}\left(x, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right) \otimes f_{j}(x, \mu^{2})$$
Wilson coefficients PDFs (perturbative) PDFs (non-perturbative)

 ℓ^2

Theoretical description of heavy quarks

Hadronic tensor:

$$W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$$
Structure functions:

$$F_2(x, Q^2, m^2) = x \sum_{j \in \mathbb{C}_{2,j}} \mathbb{C}_{2,j}\left(x, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}\right) \otimes f_j(x, \mu^2)$$

$$($$
Wilson coefficients PDFs
(perturbative) PDFs
(non-perturbative)

x- and N-space are connected by a Mellin transformation:

$$M[f(x)](N) = \int_0^1 dx \, x^{N-1} f(x)$$

Representation simplifies in Mellin space.

Hadronic tensor:
$$W_{\mu\nu}$$

Structure functions: $F_2(N)$

$$W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$$

$$F_2(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

$$(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j} \left(N, \frac{Q^2}{\mu^2} \right) \cdot f_j(N, \mu^2)$$

x- and N-space are connected by a Mellin transformation:

$$M[f(x)](N) = \int_0^1 dx \, x^{N-1} f(x)$$

Representation simplifies in Mellin space.

Hadronic tensor:
$$W_{\mu\nu} = (...)_{\mu\nu} F_L(x, Q^2) + (...)_{\mu\nu} F_2(x, Q^2)$$

Structure functions:

Wilson coefficients:

$$F_{2}(N-1,Q^{2},m^{2}) = \sum_{j} \mathbb{C}_{2,j}\left(N,\frac{Q^{2}}{\mu^{2}},\frac{m^{2}}{\mu^{2}}\right) \cdot f_{j}(N,\mu^{2})$$

$$\mathbb{C}_{2,j}\left(N,\frac{Q^{2}}{\mu^{2}},\frac{m^{2}}{\mu^{2}}\right) = C_{2,j}\left(N,\frac{Q^{2}}{\mu^{2}}\right) + H_{2,j}\left(N,\frac{Q^{2}}{\mu^{2}},\frac{m^{2}}{\mu^{2}}\right)$$
massless
Wilson coefficients
NNLO: [Moch, Vermaseren, Vogt '05]
$$\gamma^{*}$$

$$q_{j}$$

$$\gamma^{*}$$

$$q_{j}$$

$$\gamma^{*}$$

$$q_{j}$$

Hadronic tensor:
$$W_{\mu\nu} = (...)_{\mu\nu} F_L(x, Q^2) + (...)_{\mu\nu} F_2(x, Q^2)$$

Structure functions: $F_2(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j}\left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}\right) \cdot f_j(N, \mu^2)$

Wilson coefficients:
$$\mathbb{C}_{2,j}\left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}\right) = C_{2,j}\left(N, \frac{Q^2}{\mu^2}\right) + H_{2,j}\left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}\right)$$

For F_2 and $Q^2/m^2 \gtrsim 10$ the heavy flavor Wilson coefficients factorise: Buza, Matiounine, Smith, Migneron, van Neerven '96]

Heavy flavor Wilson coefficients: $H_{2,j}(N) = \sum_{i} A_{ij}(N)C_{2,i}(N)$ massive operator matrix elements (OMEs) LO: [Witten '76; Babcock, Sievers '78; Shifman, Vainshtein, Zakharov '78; Leveille, Weiler '79; Glück, Reya '79; Glück, Hoffmann, Reya '82] NLO: [Laenen, van Neerven, Riemersma, Smith '93; Buza, Matiounine, Smith, Migneron, van Neerven '96; Bierenbaum, Blümelin, Klein '07a. '07b. '08a' [09a]

Hadronic tensor:
$$W_{\mu\nu} = (...)_{\mu\nu} F_L(x, Q^2) + (...)_{\mu\nu} F_2(x, Q^2)$$

Structure functions: $F_2(N-1, Q^2, m^2) = \sum_j \mathbb{C}_{2,j}\left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}\right) \cdot f_j(N, \mu^2)$

Wilson coefficients:
$$\mathbb{C}_{2,j}\left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}\right) = C_{2,j}\left(N, \frac{Q^2}{\mu^2}\right) + H_{2,j}\left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2}\right)$$

For F_2 and $Q^2/m^2\gtrsim 10$ the heavy flavor Wilson coefficients factorise: [Buza, Matiounine, Smith, Migneron, van Neerven '96]

Heavy flavor $H_{2,j}(N) = \sum_{i} A_{ij}(N) C_{2,i}(N)$ Wilson coefficients:

OMEs A_{ij} also essential to define the variable flavor number scheme \rightarrow describe transition $N_F \rightarrow N_F + 1$ massless quarks \rightarrow transitions relevant for the PDFs at the LHC

Massive operator matrix elements (OME)

Definition of the operator matrix elements

 $\begin{array}{c} & \underset{A_{ij} := \langle j | O_i | j \rangle}{\bigwedge} \\ \text{Local operators from the light-cone expansion} \\ \text{e.g. } O_{q,s;\mu_1,\ldots,\mu_N}^{\text{NS}} = i^{N-1} S[\overline{\Psi} \gamma_{\mu_1} D_{\mu_2} \ldots D_{\mu_N} \frac{\lambda^a}{2} \Psi] - \text{trace terms} \end{array}$

Feynman rules for operators

 $p \longrightarrow p \quad \propto (\Delta . p)^{N-1}$ $p_1 \longrightarrow p_2 \quad \propto \sum_{j=0}^{N-2} (\Delta . p_1)^j (\Delta . p_2)^{N-2-j}$ $p_2 \quad \propto \sum_{j=0}^{N-2} (\Delta . p_1)^j (\Delta . p_2)^{N-2-j}$ $p_2 \quad p_2 \quad p$

Massive operator matrix elements at NNLO Fixed moments for OMEs: $N = 2...10(14) \checkmark$ [Bierenbaum, Blümlein, Klein, '09b]

All logarithmic terms from renormalisation \checkmark [Behring et al. '14]

Factorisation of Wilson coefficients for $Q^2 \gg m^2$

Factorisation into massive OMEs and massless Wilson coefficients

Example: [Buza, Matiounine, Smith, Migneron, van Neerven '96] [Bierenbaum, Blümlein, Klein, '09b]

$$\begin{split} H_{q,2}^{\text{PS}}(N_F+1) &= a_s^2 \left[A_{Qq}^{\text{PS},(2)}(N_F+1) + \frac{C_{q,2}^{\text{PS},(2)}(N_F+1)}{N_F+1} \right] \\ &+ a_s^3 \left[A_{Qq}^{\text{PS},(3)}(N_F+1) + \frac{C_{q,2}^{\text{PS},(3)}(N_F+1)}{N_F+1} \right. \\ &+ A_{gq,Q}^{(2)}(N_F+1) \frac{C_{g,2}^{(1)}(N_F+1)}{N_F+1} \\ &+ A_{Qq}^{\text{PS},(2)}(N_F+1) C_{q,2}^{\text{NS},(1)}(N_F+1) \right] \end{split}$$

Factorisation of Wilson coefficients for $Q^2 \gg m^2$

Factorisation into massive OMEs and massless Wilson coefficients

Status of heavy flavour Wilson coefficients at NNLO

$$\begin{array}{ll} L_{q,2}^{\text{PS}}\left(\propto A_{qq,Q}^{\text{PS},(3)}\right) & \checkmark \begin{array}{c} \text{[Ablinger et al. '10]} \\ \text{[Behring et al. '14]} \end{array} \\ L_{g,2}^{\text{S}}\left(\propto A_{qg,Q}^{(3)}\right) & \checkmark \begin{array}{c} \text{[Ablinger et al. '14]} \\ \text{[Behring et al. '14]} \end{array} \\ L_{q,2}^{\text{NS}}\left(\propto A_{qq,Q}^{\text{NS},(3)}\right) & \checkmark \begin{array}{c} \text{[Ablinger et al. '14]} \end{array} \\ H_{q,2}^{\text{PS}}\left(\propto A_{qq,Q}^{\text{PS},(3)}\right) & \checkmark \begin{array}{c} \text{[Ablinger et al. '14]} \end{array} \\ H_{q,2}^{\text{PS}}\left(\propto A_{Qq}^{\text{PS},(3)}\right) & \checkmark \begin{array}{c} \text{[Ablinger et al. '14]} \end{array} \\ H_{g,2}^{\text{S}}\left(\propto A_{Qq}^{\text{PS},(3)}\right) & \checkmark \begin{array}{c} \text{[Ablinger et al. '14]} \end{array} \\ \end{array}$$

Variable flavour number scheme (VFNS)

- Transition from scheme with N_F massless and 1 massive flavour to scheme with $N_F + 1$ effectively massless flavours
- Massive OMEs appear in the matching conditions of the PDFs

NNLO matching relations: [Buza et al. '96] [Bierenbaum, Blümlein, Klein, '09a, '09b]

$$\begin{split} f_{k}(N_{F}+1,\mu^{2}) + \bar{f}_{k}(N_{F}+1,\mu^{2}) &= A_{qq,Q}^{\mathsf{NS}} \otimes \left[f_{k}(N_{F},\mu^{2}) + \bar{f}_{k}(N_{F},\mu^{2})\right] \\ &+ \frac{1}{N_{F}} \left[A_{qq,Q}^{\mathsf{PS}} \otimes \Sigma(N_{F},\mu^{2}) + A_{qg,Q} \otimes G(N_{F},\mu^{2})\right] \\ f_{Q+\bar{Q}}(N_{F}+1,\mu^{2}) &= A_{Qq}^{\mathsf{PS}} \otimes \Sigma(N_{F},\mu^{2}) + A_{Qg} \otimes G(N_{F},\mu^{2}) \\ G(N_{F}+1,\mu^{2}) &= A_{gq,Q} \otimes \Sigma(N_{F},\mu^{2}) + A_{gg,Q} \otimes G(N_{f},\mu^{2}) \\ \Sigma(N_{F}+1,\mu^{2}) &= \left[A_{qq,Q}^{\mathsf{NS}} + A_{qq,Q}^{\mathsf{PS}} + A_{Qq}^{\mathsf{PS}}\right] \otimes \Sigma(N_{F},\mu^{2}) \\ &+ \left[A_{qg,Q} + A_{Qg}\right] \otimes G(N_{F},\mu^{2}) \end{split}$$

with the singlet combination $\Sigma(N_F, \mu^2) = \sum_{k=1}^{N_F} [f_k(N_F, \mu^2) + f_k(N_F, \mu^2)]$

Result

Conclusion

Outline of the calculation

Dealing with operator insertions

- Large number of scalar integrals ($\sim 10^5$) requires using integration-by-parts reductions to master integrals (474)
- Problem: Operators prevent straightforward application of Laporta's algorithm (*N* in exponents of scalar products)
- Solution: Introduce generating functions for operators

$$\sum_{N=0}^{\infty} t^N (\Delta . k)^N = \frac{1}{1 - t(\Delta . k)}$$

and similar expressions for more complex operators

 \Rightarrow treat them as linear propagators

- Allows to use Reduze 2 to obtain IBP reductions
- Additional advantage: Allows to derive differential equations in t
- Result in *N* is recovered as *N*th coefficient of expansion in *t* at the end of the calculation

Calculation of master integrals

Master integrals are calculated using a range of techniques:

- Hypergeometric function techniques
- Mellin-Barnes representations
- \Rightarrow Yields multi-sum representations
- $\Rightarrow \label{eq:simplemented} \begin{array}{l} \text{Simplify using summation algorithms based on } \Sigma\Pi \mbox{ fields/rings implemented in Sigma [Schneider '01-], EvaluateMultiSums and SumProduction [Ablinger, Blümlein, Hasselhuhn, Schneider'10-] and special function tools from HarmonicSums [Ablinger, Blümlein, Schneider '10,'13]} \end{array}$

Moreover, we use

- Coupled systems of differential equations/difference equations [Ablinger et al. '15]
 SolveCoupledSystem
- Almkvist-Zeilberger algorithm [Almkvist, Zeilberger '90; Apagodu, Zeilberger '06]
 → MultiIntegrate [Ablinger '12]
- $\Rightarrow\,$ Yields scalar recurrences for the integrals
- \Rightarrow Solve using the packages listed above

Nested sums and iterated integrals

Results require mathematical objects of increasing complexity:

 $\begin{array}{l} A_{qq,Q}^{\mathsf{PS}}, \ A_{qg,Q}, \\ A_{qq,Q}^{\mathsf{NS}}, \ A_{gq,Q} \end{array}$

Harmonic sums [Vermaseren '98] [Blümlein, Kurth '98] $\sum_{i=1}^{N} \frac{1}{i^2} \sum_{j=1}^{i} \frac{1}{j}$

Generalised harmonic sums [Moch, Uwer, Weinzierl '01] [Ablinger, Blümlein, Schneider '13] $\sum_{i=1}^{N} \frac{2^{-i}}{i^2} \sum_{j=1}^{i} \frac{2^j}{j}$

 $egin{array}{c} A_{gg,Q},\ A_{Qg} \ (ext{so far}) \end{array}$

Cyclotomic & binomial sums [Ablinger, Blümlein, Schneider '11] [Ablinger, Blümlein, Raab, Schneider '14] $N \sum_{j}^{i} {\binom{2j}{j} \frac{(-1)^{j}}{3}}$

$$\sum_{i=1}^{N} \frac{\sum_{j=1}^{\binom{2j}{j}} \frac{(-1)^{i}}{j^{3}}}{\binom{2i}{i}(2i+1)}$$

HPLs [Remiddi, Vermaseren '99] $\int_{0}^{x} \frac{dy}{y} \int_{0}^{y} \frac{dz}{1-z}$

(Here:) HPLs at 1 - 2x $\int_{0}^{1-2x} \frac{dy}{y} \int_{0}^{y} \frac{dz}{1-z}$

Cyclotomic HPLs [Ablinger, Blümlein, Schneider '11] & iterated integrals over root-valued letters [Ablinger, Blümlein, Raab, Schneider '14] $\int_{y}^{x} \frac{dy}{y\sqrt{y+\frac{1}{2}}} \int_{z}^{y} \frac{dz}{z} \int_{z}^{z} \frac{dw}{w}$

$A_{Qg}^{(3)}$: Ladder- and V-diagrams

- Ladder topologies enter $A^{(3)}_{Qg},\,A^{(3)}_{gg,Q}$ and $A^{(3)}_{qg,Q}$
- Scalar prototypes (without numerators) of $A_{Qg}^{(3)}$ ladder diagrams were calculated in 2012 [Ablinger et al. '12]
- Here: Calculation of 12 physical $A_{Qg}^{(3)}$ diagrams (with numerators) via master integrals [Ablinger et al. '15]
- Benefits beyond the diagrams discussed here: Methods developed for this allow to calculate all $A_{gg,Q}^{(3)}$ and many $A_{Qg}^{(3)}$ diagrams

Example: V diagram 12

- Particularly difficult diagram: V topology with 5 massive lines
- Operator introduces "non-planarity" into planar diagram
- Reduction using integration-by-parts identities requires 92 master integrals
- Calculation of master integral is very demanding $(\mathcal{O}(weeks) \text{ of computation time})$
- Required new computer algebra tools for the solution of coupled systems of difference equations and handling of binomially weighted sums [Ablinger et al. '15]

Example: V diagram 12 – Result

 $D_{12,b} = T_F \left(\frac{C_A}{2} - C_F\right) (C_A - C_F) \left\{ \frac{1}{\varepsilon^3} \left[-\frac{128(N^2 + N + 1)}{3N(N + 1)^2(N + 2)} + \frac{128(N + 3)}{3(N + 1)^2(N + 2)} S_1 \right] \right\}$ $-\frac{64}{3(N+1)(N+2)}[3S_2 + S_1^2 + 4S_{-2}] + (-1)^N \frac{128}{3N(N+1)^2(N+2)}$ $+\frac{1}{\varepsilon^2}\left|-\frac{64P_{324}}{3N(N+1)^3(N+2)^2}-\frac{32(2N+1)(4N^3+10N^2+17N+20)}{3N(N+1)^2(N+2)^2}S_2+\dots\right|$ $+\frac{1}{c}\left[+\frac{128(N^2-5N+2)}{3N(N+1)(N+2)}S_{-2,1,1}+\frac{16(10N^3+62N^2+111N+60)}{9N(N+1)^2(N+2)^2}S_1^3+\dots\right]$ $-\frac{P_{328}}{N^3(N+1)(N+2)(2N+1)(2N+3)(^{2N})}\left[16\left(\sum_{i=1}^{N}(-2)^{i_1}\binom{2i_1}{i_1}\right)\zeta_3\right]$ + 16 $\sum_{i=1}^{N} (-2)^{i_1} {2i_1 \choose i_1} S_{1,2} \left(\frac{1}{2}, 1, i_1\right)$ + 48 $\sum_{i=1}^{N} (-2)^{i_1} {2i_1 \choose i_1} S_{1,2} \left(\frac{1}{2}, -1, i_1\right)$ + $\frac{N^2 + 4N + 2}{N(N + 1)(N + 2)} \left[-192 \sum_{i=1}^{N} (-2)^{i_1} \binom{2i_1}{i_1} \left(\sum_{i=1}^{i_1} \frac{1}{\binom{2i_2}{i_2}} \right) S_{1,2} \left(\frac{1}{2}, 1, i_1 \right) \right]$ $-576\sum_{i=1}^{N} (-2)^{i_1} {2i_1 \choose i_1} \left(\sum_{i=1}^{i_1} \frac{1}{\binom{2i_2}{i_1} \binom{2i}{i_2}} \right) S_{1,2} \left(\frac{1}{2}, -1, i_1 \right) - 32\sum_{i=1}^{N} \frac{\sum_{i=1}^{i_2-1} \frac{(-1)^{i_2} \binom{i_2}{i_2}}{\binom{2i_1}{\binom{2i_1}{1+i_1}}}$ + $\left(192\sum_{i=1}^{N}(-2)^{i_1}\binom{2i_1}{i_1}S_{1,2}\left(\frac{1}{2}, 1, i_1\right) + 576\sum_{i=1}^{N}(-2)^{i_1}\binom{2i_1}{i_1}S_{1,2}\left(\frac{1}{2}, -1, i_1\right)\right)$ $\times \sum_{i=1}^{N} \frac{1}{\binom{2i_{1}}{i_{2}}} - 64 \sum_{i=1}^{N} \frac{\sum_{i=1}^{i_{1}} \binom{2i_{2}}{i_{2}} \frac{S_{1}(i_{2})}{i_{2}}}{\binom{2i_{1}}{i_{2}}} + 64 \sum_{i=1}^{N} \frac{\sum_{i_{1}=1}^{i_{1}} \frac{(-1)^{i_{2}} \binom{2i_{1}}{i_{2}} S_{2}(i_{2})}{i_{2}}}{\binom{2i_{1}}{i_{1}}(1+i_{1})}$ $+96\sum_{i=1}^{N}\frac{\sum_{i_2=1}^{i_1}\binom{\binom{i_2}{i_2}S_2(i_2)}{i_2}}{\binom{i_2}{2i_1}(1+i_1)}+96\sum_{i_1}^{N}\frac{\sum_{i_2=1}^{i_2}\binom{\binom{i_2}{i_2}S_{-2}(i_2)}{i_2}}{\binom{i_2}{2i_1}(1+i_1)}+96\sum_{i_1}^{N}\frac{\sum_{i_2=1}^{i_1}\binom{\binom{i_2}{i_2}S_{1,1}(i_2)}{i_2}}{\binom{i_2}{2i_1}(1+i_1)}$ $+ 192 \sum^{N} \frac{\sum_{i_2=1}^{i_1} \frac{(-1)^{i_2} \binom{r_{i_2}}{r_{i_2}} S_{-2}(i_2)}{\frac{i_2}{\binom{2i_1}{1+1+i_1}}} - 64S_{2,1,2} \left(-2, \frac{1}{2}, 1\right) - 192S_{2,1,2} \left(-2, \frac{1}{2}, -1\right)$ + $\left(192 \sum_{i_{2}=1}^{N} \frac{\sum_{i_{2}=1}^{i_{1}} (-2)^{i_{2}} {2i_{2} \choose i_{2}}}{(2i_{1})i_{1}^{2}} - 256S_{2}(-2)\right) \zeta_{3}\right]$ $+\frac{(3N^2+16)}{N(N+1)(N+2)}\left[\frac{64}{3}\sum_{i=1}^{N}\frac{\sum_{i=1}^{i_{i=1}}\frac{(-1)^{i_{i}}\binom{n}{i_{i_{i}}}}{\binom{2^{i_{i}}}{(2^{i_{i}})(1+2i_{i})}}-128\sum_{i=1}^{N}\frac{\sum_{i_{i=1}}^{i_{i_{i}}}\frac{(-1)^{i_{i}}\binom{n}{i_{i_{i}}}2^{N}S^{-2(i_{i})}}{i_{i_{i}}}$ $+\frac{128}{3}\sum^{N}\frac{\sum_{i_{2}=1}^{i_{1}}\frac{\binom{(i_{2})}{2}S_{1}(z)}{\binom{(2i_{1})}{2}}-64\sum^{N}\frac{\sum_{i_{2}=1}^{i_{1}}\frac{\binom{(2i_{2})}{2}S_{2}(z)}{\frac{(2i_{2})}{2}}-64\sum^{N}\frac{\sum_{i_{2}=1}^{i_{1}}\frac{\binom{(2i_{2})}{2}S_{-2}(z)}{\frac{(2i_{1})}{2}}$

 $-\frac{128}{3}\sum_{i=1}^{N}\frac{\sum_{i_{2}=1}^{i_{1}-(-1)^{2}}\binom{(-1)^{2}}{i_{2}}\binom{(i_{2})S_{2}(i_{2})}{i_{2}}}{\binom{(2i_{1})}{(2+2i_{1})}}-64\sum_{i=1}^{N}\frac{\sum_{i_{2}=1}^{i_{2}}\binom{(-1)^{2}}{i_{2}}\binom{(-1)^{2}}{i_{2}}}{\binom{(2i_{1})}{(2+2i_{1})}}$ $+\frac{6N-5}{N(N+1)(N+2)}\left[\left(-256\sum_{i=1}^{N}(-2)^{i_1}\binom{2i_1}{i_1}S_{1,2}\left(\frac{1}{2},1,i_1\right)\right]\right]$ $-768 \sum_{i=1}^{N} (-2)^{i_1} {2i_1 \choose i_1} S_{1,2} \left(\frac{1}{2}, -1, i_1\right) \sum_{i=1}^{N} \frac{1}{{2i_1 \choose i_1}}$ + 768 $\sum_{i=1}^{N} (-2)^{i_1} {2i_1 \choose i_1} \left(\sum_{i=1}^{i_1} \frac{1}{i_1^{2i_2} i_2} \right) S_{1,2} \left(\frac{1}{2}, -1, i_1 \right)$ + 256 $\sum_{i=1}^{N} (-2)^{i_1} {2i_1 \choose i_1} \left(\sum_{i=1}^{i_1} \frac{1}{(2i_2)i_2} \right) S_{1,2} \left(\frac{1}{2}, 1, i_1 \right)$ + $\left(256S_1(-2) - 256\sum_{i_2=1}^{N} \frac{\sum_{i_2=1}^{i_1} (-2)^{i_2} {2i_2 \choose i_2}}{{2i_1 \choose i_1}} \zeta_3 \right|$ + $\frac{P_{343}}{N^3(N+1)^2(N+2)(2N+1)(2N+3)(^{2N})} \int_{3}^{32} \sum_{i}^{N} \frac{(-1)^{i_1}\binom{2i_1}{i_1}S_2(i_1)}{i_1}$ $+ 32 \sum^{N} \frac{(-1)^{i_1} {\binom{2i_1}{i_1}} S_{-2}(i_1)}{\frac{i_1}{i_1}} - \frac{16}{3} \sum^{N} \frac{(-1)^{i_1} {\binom{2i_1}{i_1}}}{\frac{i_3}{i_1}} - \frac{32}{3} \sum^{N} \frac{{\binom{2i_1}{i_1}} S_1(i_1)}{\frac{i_2}{i_1}}$ + $16\sum_{i_1}^{N} \frac{\binom{2i_1}{i_1}S_2(i_1)}{i_1}$ + $16\sum_{i_1}^{N} \frac{\binom{2i_1}{i_1}S_{-2}(i_1)}{i_1}$ + $16\sum_{i_1}^{N} \frac{\binom{2i_1}{i_1}S_{1,1}(i_1)}{i_1}$ $+\frac{64(5N^2-N+10)}{3N(N+1)(N+2)}S_{-2,2,1}+\frac{2(34N^3+34N^2-119N-108)}{9N(N+1)^2(N+2)^2}S_1^4$ $\frac{64(5N^2+19N+10)}{3N(N+1)(N+2)}S_{-4,1}-\frac{64(25N^3+4N^2+58N+20)}{3N^2(N+1)(N+2)}S_{-2,1,1}$ $+ \frac{32 (5 N^2 + 57 N + 10)}{3 N (N + 1) (N + 2)} S_{2,-3} - \frac{64 (7 N^2 - 11 N + 14)}{3 N (N + 1) (N + 2)} S_{-2,1,1,1}$ $\frac{64(9N^2 - 7N + 18)}{3N(N + 1)(N + 2)}S_{2,1,-2} + \frac{32(19N^3 - 20N^2 + 62N + 28)}{3N^2(N + 1)(N + 2)}S_{-3,1}$ $\frac{64(9N^2 + 4N + 18)}{3N(N + 1)(N + 2)}S_{-2,3} + \frac{64(11N^3 - 4N^2 + 30N + 12)}{3N^2(N + 1)(N + 2)}S_{-2,2}$ $\frac{32 \left(13 N^2+7 N+26\right)}{3 N (N+1) (N+2)} S_{-3,1,1}-\frac{64 \left(13 N^2+30 N+26\right)}{3 N (N+1) (N+2)} S_{-5}$ $\frac{128(15N^2 + 10N - 6)}{3N(N + 1)(N + 2)}S_{-2,1,-2} - \frac{32(15N^2 + 412N + 530)}{15N(N + 1)(N + 2)}S_5$ $\frac{64 \big(16 N^2+43 N+16\big)}{3 N (N+1) (N+2)} S_{2,2,1}+\frac{128 \big(21 N^2+58 N+18\big)}{3 N (N+1) (N+2)} S_{-2,-3}+\ldots$

[Ablinger et al. '15]

Example: V diagram 12 - Result

Anomalous dimensions

• Renormalisation of the OMEs [Bierenbaum, Blümlein, Klein, '09b] involves the NNLO anomalous dimensions [Moch, Vermaseren, Vogt '04a, '04b] Example: $(\hat{\gamma}_{ij} = \gamma_{ij}(N_F + 1) - \gamma_{ij}(N_F))$

$$\begin{split} \hat{A}_{qq,Q}^{\text{NS},(3)} &= \frac{1}{\varepsilon^3} \dots + \frac{1}{\varepsilon^2} \dots + \frac{1}{\varepsilon} \left[\frac{\hat{\gamma}_{qq}^{\text{NS},(2)}}{3} - 4a_{qq,Q}^{\text{NS},(2)} \left[\beta_0 + \beta_{0,Q} \right] \right. \\ &+ \beta_{1,Q}^{(1)} \gamma_{qq}^{(0)} + \frac{\gamma_{qq}^{(0)} \beta_0 \beta_{0,Q} \zeta_2}{2} - 2\delta m_1^{(0)} \beta_{0,Q} \gamma_{qq}^{(0)} - \delta m_1^{(-1)} \hat{\gamma}_{qq}^{\text{NS},(1)} \right] + \mathcal{O}\left(\varepsilon^0 \right) \end{split}$$

 $\Rightarrow \mathcal{O}(N_F)$ contributions to anomalous dimensions

$$\begin{array}{ll} A_{gq,\,Q} \rightarrow \gamma^{(2)}_{gq} & \mbox{[Ablinger et al. '14a]} & A_{gg,\,Q} \rightarrow \gamma^{(2)}_{gg} \\ A^{\rm NS}_{qq,\,Q} \rightarrow \gamma^{\rm NS,(2)}_{qq} & \mbox{[Ablinger et al. '14b]} & A_{Qg} \rightarrow \gamma^{(2)}_{qg} \\ A^{\rm PS}_{Qq} \rightarrow \gamma^{\rm PS,(2)}_{qq} & \mbox{[Ablinger et al. '14c]} & \mbox{complete PS anom. dim.} \end{array}$$

· First independent calculation in a massive setting

Renormalisation: α_s in $\overline{\text{MS}}$ scheme, m_c in on-shell scheme

 $O(\alpha_s^3)$; $Q^2 = 100 \text{ GeV}^2$; $\mu^2 = Q^2$; $m_c^{\text{pole}} = 1.59 \text{ GeV}$; ABM13 $N_F = 3 \text{ PDFs}$ Renormalisation: α_s in $\overline{\text{MS}}$ scheme, m_c in on-shell scheme

 $O(\alpha_s^3)$; $Q^2 = 100 \text{ GeV}^2$; $\mu^2 = Q^2$; $m_c^{\text{pole}} = 1.59 \text{ GeV}$; ABM13 $N_F = 3 \text{ PDFs}$ Renormalisation: α_s in $\overline{\text{MS}}$ scheme, m_c in on-shell scheme

 $\mathcal{O}(\alpha_s^3)$; $Q^2 = 100 \text{ GeV}^2$; $\mu^2 = Q^2$; $m_c^{\text{pole}} = 1.59 \text{ GeV}$; ABM13 $N_F = 3 \text{ PDFs}$ Renormalisation: α_s in $\overline{\text{MS}}$ scheme, m_c in on-shell scheme

 $\mathcal{O}(\alpha_s^3)$; $Q^2 = 100 \text{ GeV}^2$; $\mu^2 = Q^2$; $m_c^{\text{pole}} = 1.59 \text{ GeV}$; ABM13 $N_F = 3 \text{ PDFs}$ Renormalisation: α_s in $\overline{\text{MS}}$ scheme, m_c in on-shell scheme

Non-singlet part of polarised structure functions $g_1 \& g_2$

- Odd moments of $A_{qq,Q}^{NS}$ calculated as well [Ablinger et al. '14b]
- They enter the non-singlet contribution to g₁
- Twist-2 part of g₂ determined via Wandzura-Wilczek relation:

$$g_2(x, Q^2) = -g_1(x, Q^2) + \int_x^1 \frac{\mathrm{d}y}{y} g_1(y, Q^2)$$

Charged current function xF_3

• Odd moments of $A_{qq,Q}^{NS}$ enter also $xF_3^{W^+} + xF_3^{W^-}$

- Two non-singlet Wilson coefficients:
 - $L_{q,3}^{NS}$: W couples to light quarks ($u \rightarrow d, ...$)
 - $H_{q,3}^{NS}$: W couples to heavy quark ($s \rightarrow c, ...$)

Calculation

Results

Conclusion

Sum rules

Polarised Bjorken sum rule [Bjorken '70]

$$\int_{0}^{1} dx \left[g_{1}^{ep}(x, Q^{2}) - g_{1}^{en}(x, Q^{2}) \right] = \frac{1}{6} \left| \frac{g_{A}}{g_{V}} \right| C_{pBj}(\hat{a}_{s})$$

Gross-Llewellyn-Smith sum rule [Gross, Llewellyn-Smith '69]

$$\int_0^1 dx \left[F_3^{\bar{\nu}p}(x, Q^2) + F_3^{\nu p}(x, Q^2) \right] = 6C_{GLS}(\hat{a}_s)$$

- QCD corrections: Coefficients C_{pBj} and C_{GLS} follow from moment N = 1 of the Wilson coefficients
- Massless corrections known to $\mathcal{O}(\alpha_s^4)$
- $A_{qq,Q}^{NS}(N=1) = 0$ due to fermion number conservation
- $\Rightarrow \text{ Corrections from heavy quarks at } Q^2 \gg m^2 \text{ reduce to} \\ \underset{\text{[Behving et al. '15a '15b]}{\text{ shift }} N_F \to N_F + 1 \text{ in massless coefficient}$

Results

Transversity

- Tensor operator (\rightarrow transversity h_1): $O_{q,r}^{\text{TR,NS},\mu\mu_1...\mu_N} = \frac{1}{2}i^{N-1}S\left[\bar{\psi}\sigma^{\mu\mu_1}D^{\mu_2}\dots D^{\mu_N}\frac{\lambda_r}{2}\psi\right] - \text{trace terms}$
- We calculated its massive operator matrix element $A_{qq,Q}^{\mathrm{TR,NS}}$

- Results for transversity:
 - N_F -dependent parts of the 3-loop anomalous dimension $\gamma_{qq}^{\text{TR,NS}}$
 - 3-loop massive operator matrix element $A_{aa,O}^{\text{TR,NS},(3)}$
 - Once the corresponding massless Wilson coefficients are known, also the asymptotic heavy flavour Wilson coefficients for transversity can be constructed using our results

Variable flavour number scheme (VFNS)

NNLO matching condition for non-singlet case: [Buza et al. '96] [Bierenbaum, Blümlein, Klein, '09a, '09b]

$$\begin{split} f_k(N_F + 1, \mu^2) + \bar{f}_k(N_F + 1, \mu^2) \\ &= \boldsymbol{A_{qq,Q}^{NS}} \otimes [f_k(N_F, \mu^2) + \bar{f}_k(N_F, \mu^2)] \\ &+ \frac{1}{N_F} \left(\boldsymbol{A_{qq,Q}^{PS}} \otimes \boldsymbol{\Sigma}(N_F, \mu^2) + \boldsymbol{A_{qg,Q}} \otimes \boldsymbol{G}(N_F, \mu^2) \right) \end{split}$$

- Ingredients at NNLO are now complete for the above relation $_{[Ablinger \mbox{ et al. }^{1}14b]}$
- $A_{qq,Q}^{PS}$ and $A_{qg,Q}$ start at NNLO
 - $\rightarrow \Sigma$ and ${\it G}$ contribute only from NNLO on

Variable flavour number scheme (VFNS)

NNLO matching condition for non-singlet case: [Buza et al. '96] [Bierenbaum, Blümlein, Klein, '09a, '09b]

$$\begin{split} f_k(N_F + 1, \mu^2) + \bar{f}_k(N_F + 1, \mu^2) \\ &= A_{qq,Q}^{\mathsf{NS}} \otimes \left[f_k(N_F, \mu^2) + \bar{f}_k(N_F, \mu^2) \right] \\ &+ \frac{1}{N_F} \left(A_{qq,Q}^{\mathsf{PS}} \otimes \Sigma(N_F, \mu^2) + A_{qg,Q} \otimes G(N_F, \mu^2) \right) \end{split}$$

- Ingredients at NNLO are now complete for the above relation $_{[Ablinger \mbox{ et al. }^{1}14b]}$
- $A_{qq,Q}^{PS}$ and $A_{qq,Q}$ start at NNLO
 - $\rightarrow \Sigma$ and ${\it G}$ contribute only from NNLO on

Variable Flavour Number Scheme (VFNS)

[[]Ablinger et al. '14b]

$$R(N_F + 1, N_F) = \frac{u(N_F + 1, \mu^2) + \bar{u}(N_F + 1, \mu^2)}{u(N_F, \mu^2) + \bar{u}(N_F, \mu^2)}, \quad \text{here } N_F = 3$$

Variable Flavour Number Scheme (VFNS)

[[]Ablinger et al. '14b]

$$R(N_F + 1, N_F) = \frac{u(N_F + 1, \mu^2) + \bar{u}(N_F + 1, \mu^2)}{u(N_F, \mu^2) + \bar{u}(N_F, \mu^2)}, \quad \text{here } N_F = 3$$

Conclusion

- Heavy quarks yield important contributions to DIS \Rightarrow essential for precision measurements of α_s (~ 1%) and m_c (~ 3%) [Alekhin et al. '12]
- Analytical calculation of the 3-loop corrections requires modern computer-algebraic methods and tools
- Completed massive operator matrix elements: $A_{qq,Q}^{PS}$, $A_{qg,Q}$, $A_{qq,Q}^{NS}$, $A_{qq,Q}^{TR}$, A_{Qq}^{PS} , $A_{gq,Q}$ and $A_{gg,Q}$
- Calculation of ladder- and V-diagrams for A_{Qg} lead to improvements of tools and methods \Rightarrow Allowed calculation of all $A_{gg,Q}$ and many A_{Qg} diagrams
- Applications:
 - Calculation of anomalous dimensions
 - Heavy flavour Wilson coefficients for F_2 , g_1 and xF_3
 - Sum rules for g₁ and xF₃
 - Matching relations in the Variable Flavour Number Scheme
- The new results are an important step towards an $\mathcal{O}(\alpha_s^3)$ description of the heavy quarks in DIS.

Backup

- Operator matrix element $A_{gg,Q}
 ightarrow 29$
- Non-planarity of diagram $12 \rightarrow 31$
- Feynman rules \rightarrow 32

Gluonic operator matrix element $A_{gg,Q}$

Important building block for the VFNS
 → enters the matching relation of the gluon PDF
 [Buza et al. '96] [Bierenbaum, Blümlein, Klein, '09a, '09b]

$$G(N_F + 1, \mu^2) = A_{gq,Q} \otimes \Sigma(N_F, \mu^2) + A_{gg,Q} \otimes G(N_F, \mu^2)$$

- + 642 diagrams \rightarrow 67212 scalar integrals \rightarrow 139 master integrals
- 2 crossed-box diagrams
- MI partly overlap with earlier calculations ($\sim 25\%$)
- Remaining MI calculated mainly via differential/difference equations
- \Rightarrow Diagrams are all done
- \Rightarrow Unrenormalised OME is known for all even N; vanishes for odd N

Constant term of the gluonic OME $A_{gg,Q}$

$$\begin{split} a^{(3)}_{gg,Q} &= \frac{1+(-1)^N}{2} \Biggl\{ C_F^2 T_F \Biggl[\frac{16(N^2+N+2)}{N^2(N+1)^2} \sum_{i=1}^N \frac{\binom{2^i}{i}}{\binom{2^i}{j}} \int_{j=1}^{i} \frac{\frac{4^i S_1(j-1)}{\binom{2^i}{j}} - 7\zeta_3}{4^i (i+1)^2} - \frac{4P_{69}S_1^2}{3(N-1)N^4(N+1)^4(N+2)} \\ &+ \tilde{\gamma}^{(0)}_{gg} \Biggl(\frac{128(S_{-4}-S_{-3}S_1+S_{-3,1}+2S_{-2,2})}{3N(N+1)(N+2)} + \frac{4(5N^2+5N-22)S_1^2S_2}{3N(N+1)(N+2)} + \cdots \Biggr) + \cdots \Biggr] \\ &+ C_A C_F T_F \Biggl[\frac{16P_{42}}{3(N-1)N^2(N+1)^2(N+2)} \sum_{i=1}^N \frac{\binom{2^i}{i}}{j} \left(\frac{\frac{j}{2^i}}{\binom{2^i}{j}} \frac{\frac{4^i S_1(j-1)}{\binom{2^i}{j}} - 7\zeta_3}{4^i (i+1)^2} + \frac{32P_2S_{-2,2}}{(N-1)N^2(N+1)^2(N+2)} + \cdots \Biggr] \\ &- \frac{64P_{14}S_{-2,1,1}}{3(N-1)N^2(N+1)^2(N+2)} - \frac{16P_{23}S_{-4}}{3(N-1)N^2(N+1)^2(N+2)} + \frac{4P_{63}S_4}{3(N-2)(N-1)N^2(N+1)^2(N+2)} + \cdots \Biggr] \\ &+ C_A^2 T_F \Biggl[-\frac{4P_{46}}{3(N-1)N^2(N+1)^2(N+2)} \sum_{i=1}^N \frac{\binom{2^i}{i} \left(\frac{j}{2^i} \frac{\frac{4^i S_1(j-1)}{\binom{2^i}{j}} - 7\zeta_3}{4^i (i+1)^2} + \frac{256P_5S_{-2,2}}{9(N-1)N^2(N+1)^2(N+2)} + \cdots \Biggr] \\ &+ \frac{32P_{30}S_{-2,1,1} + 16P_{35}S_{-3,1} + 16P_{44}S_{-4}}{9(N-1)N^2(N+1)^2(N+2)} + \frac{16P_{52}S_{-2}^2}{2(N-1)N^2(N+1)^2(N+2)} + \frac{8P_{30}S_2^2}{9(N-1)N^2(N+1)^2(N+2)} + \cdots \Biggr] \\ &+ C_F T_F^2 \Biggl[-\frac{16P_{48}\binom{2^N}{N}4^{-N}} {(\sum_{i=1}^{N-1} \frac{4^i S_1(i-1)}{\binom{2^i}{j}} - 7\zeta_3}{9(N-1)N^3(N+1)^3(N+2)} - \frac{16P_{45}S_2}{9(N-1)N^4(N+1)^4(N+2)(2N-3)(2N-1)} - \frac{32P_{36}S_1}{81(N-1)N^4(N+1)^4(N+2)(2N-3)(2N-1)} \\ &+ \frac{16P_{45}S_1^2}{27(N-1)N^3(N+1)^3(N+2)} - \frac{16P_{45}S_2}{9(N-1)N^3(N+1)^3(N+2)} + \cdots \Biggr] + \cdots \Biggr\}$$

Constant term of the gluonic OME $A_{gg,Q}$

Nicht-Planarität von Diagramm 12

• The Feynman rule for the operator reads

• $(p_1 + p_4)^{(l-j-1)}$ part mixes momenta from two different loops

- Shifting the momenta allows to put these mixed momenta into the operator or into one of the propagators, but one cannot get rid of this structure
- Effective non-planarity arises

Feynman rules for operator insertions

p, i

p, j

 $\gamma_{\pm} = 1$, $\gamma_{-} = \gamma_{5}$. For transversity, one has to replace: $\Delta \gamma_{\pm} \rightarrow \sigma^{\mu\nu} \Delta_{\nu}$.

Feynman rules for operator insertions

 $\begin{array}{c} \overbrace{p,\nu,b}^{\bullet\bullet\bullet\bullet\bullet} \underbrace{\delta \circ \circ \circ}_{p,\mu,a} a & \frac{1+(-1)^N}{2} \delta^{ab} (\Delta \cdot p)^{N-2} \\ & \left[g_{\mu\nu} (\Delta \cdot p)^2 - (\Delta_{\mu} p_{\nu} + \Delta_{\nu} p_{\mu}) \Delta \cdot p + p^2 \Delta_{\mu} \Delta_{\nu} \right], \quad N \geq 2 \end{array}$

$$\begin{array}{c} \overrightarrow{r} \underbrace{\sigma \ \overline{r} \ \overline{r}$$

$$\begin{array}{c} \overbrace{p_1,\mu,a}^{\gamma} \overbrace{p_1,\sigma,c}^{\gamma} \overbrace{p_1,\sigma,c}^{\gamma} \overbrace{q}^{2\frac{1+(-1)^N}{2}} \left(f^{abc} f^{obc} O_{\mu\nu\lambda\sigma}(p_1,p_2,p_3,p_4) \right. \\ \left. + f^{acc} f^{bdc} O_{\mu\lambda\nu\sigma}(p_1,p_3,p_2,p_4) + f^{abc} f^{bcc} O_{\mu\sigma\nu\lambda}(p_1,p_4,p_2,p_3) \right) \\ \left. + f^{acc} f^{bdc} O_{\mu\lambda\nu\sigma}(p_1,p_3,p_2,p_4) + f^{abc} f^{bcc} O_{\mu\sigma\nu\lambda}(p_1,p_4,p_2,p_3) \right) \\ \left. - O_{\mu\nu\lambda\sigma}(p_1,p_2,p_3,p_4) = \Delta_{\nu}\Delta_{\lambda} \left\{ -g_{\mu\sigma}(\Delta \cdot p_3 + \Delta \cdot p_4)^{N-2} \right. \\ \left. + \left[p_{4\mu}\Delta_{\sigma} - \Delta \cdot p_4 g_{\mu\sigma} \right] \sum_{i=0}^{N-3} (\Delta \cdot p_3 + \Delta \cdot p_4)^i (\Delta \cdot p_4)^{N-3-i} \right. \\ \left. - \left[p_{1,\sigma}\Delta_{\mu} - \Delta \cdot p_1 g_{\mu\sigma} \right] \sum_{i=0}^{N-3} (-\Delta \cdot p_1)^i (\Delta \cdot p_3 + \Delta \cdot p_4)^{N-3-i} \right. \\ \left. + \left[\Delta \cdot p_1\Delta \cdot p_4 g_{\mu\sigma} + p_1 \cdot p_4\Delta_{\mu}\Delta_{\sigma} - \Delta \cdot p_4 p_{1,\sigma}\Delta_{\mu} - \Delta \cdot p_1 p_{1,\mu}\Delta_{\sigma} \right] \\ \left. \times \sum_{i=0}^{N-4} \sum_{j=0}^{i} (-\Delta \cdot p_1)^{N-4-i} (\Delta \cdot p_3 + \Delta \cdot p_4)^{i-j} (\Delta \cdot p_4)^j \right\} \\ \left. - \left\{ p_{i+\nu\nu} \right\} - \left\{ p_{i+\nu\nu} p_i + p_i + p_{i+\nu} p_{i+\nu\rho} p_{i+\rho\sigma} \right\}, \quad N \ge 2 \end{array} \right.$$