isoscalar mesons in QCD

Jozef Dudek

arXiv:1708.06667 [hep-lat] with Raul, Robert, David Wilson (Trinity)

isoscalar meson resonances – tensors

JLab 'cake' seminar | 10.4.2017 | isoscalar mesons in QCD

HIJAM

& MARY

isoscalar meson resonances – scalars

coupled $\pi\pi$, $K\overline{K}$, $\eta\eta$... scattering

resonance content ... ?

WILLIAM

& MARY

isoscalar meson resonances – scalars

in some processes the **dip** is a **peak**

resonance content ?

a rigorous definition – pole singularity in a partial-wave amplitude $t_{ij}^{(\ell)}(s) \sim \frac{c_i c_j}{s_0 - s}$

- bound state:
$$s_0 = M^2$$

e.g. deuteron
- resonance: $\sqrt{s_0} = M - i\frac{1}{2}\Gamma$
e.g. ρ meson
 $\prod_{i=1}^{n\pi} \prod_{i=1}^{n\pi} Re[s]$

WILLIAM & MARY

JLab 'cake' seminar | 10.4.2017 | isoscalar mesons in QCD

Jefferson Lab

f₂ resonances

f₀ resonances ?

$f_0(980)$ large coupling to $K\overline{K}$


```
broad, light \sigma(600) in \pi\pi /=0
```

broad, light $\kappa(800)$ in πK $I=\frac{1}{2}$, S=1

```
narrow f_0(980) in \pi\pi at K\overline{K} threshold I=0
narrow a_0(980) in \pi\eta at K\overline{K} threshold I=1
```

... a flavor nonet ?

broad, light $\sigma(600)$ in $\pi\pi$ broad, light $\kappa(800)$ in πK

'H I JAM

& MARY

narrow $f_0(980)$ in $\pi\pi$ at $K\overline{K}$ threshold narrow $a_0(980)$ in $\pi\eta$ at $K\overline{K}$ threshold

12

scalar mesons

broad, light $\sigma(600)$ in $\pi\pi$ broad, light $\kappa(800)$ in πK

narrow $f_0(980)$ in $\pi\pi$ at $K\overline{K}$ threshold narrow $a_0(980)$ in $\pi\eta$ at $K\overline{K}$ threshold

or some other explanation we've not thought of yet?

... can these questions be explored in QCD ?

lattice QCD

WILLIAM

& MARY

you've heard this a million times ...

in this case:

- → discrete cubic grid (probably irrelevant)
- → larger quark mass (helpful makes pions heavier)
- → finite spatial volume (vital tool for scattering)

compute two-point correlation functions $C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j(0) | 0 \rangle$

to determine the discrete spectrum:

$$C_{ij}(t) = \sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}}t} \langle 0 | \mathcal{O}_i | \mathfrak{n} \rangle \langle \mathfrak{n} | \mathcal{O}_j | 0 \rangle$$

lattice QCD

compute two-point correlation functions $C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j(0) | 0 \rangle$

to determine the discrete spectrum:

$$C_{ij}(t) = \sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}}t} \langle 0 | \mathcal{O}_i | \mathfrak{n} \rangle \langle \mathfrak{n} | \mathcal{O}_j | 0 \rangle$$

operators

WILLIAM

& MARY

'single-meson'

$$\sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \ \overline{\psi}\Gamma \overleftrightarrow{D} \cdots \overleftrightarrow{D} \psi(\mathbf{x}, t)$$
'meson meson'

 $\sum_{\hat{\mathbf{p}}_1, \hat{\mathbf{p}}_2} C(\mathbf{p}_1, \mathbf{p}_2; \mathbf{p}) \ M_1(\mathbf{p}_1) M_2(\mathbf{p}_2)$

Wick contractions

choice of meson-meson operators guided by non-interacting spectrum ...

$$E_{\text{n.i.}} = \sqrt{m_1^2 + \left(\frac{2\pi}{L}\right)^2 \mathbf{p}_1^2} + \sqrt{m_2^2 + \left(\frac{2\pi}{L}\right)^2 \mathbf{p}_2^2}$$

finite-volume formalism

$$\det\left[\mathbf{1}+i\boldsymbol{\rho}\cdot\mathbf{t}\cdot(\mathbf{1}+i\boldsymbol{\mathcal{M}})\right]=0$$

 $oldsymbol{
ho}(E)$ phase-space

 $\mathbf{t}(E)$ scattering matrix

 $\mathcal{M}(E,L)$ finite-volume function

in the elastic case (for one partial wave)

$$t = \frac{1}{\rho} e^{i\delta} \sin \delta$$
$$\cot \delta(E) = \mathcal{M}(E, L)$$

actually more information in moving-frame spectra

JLab 'cake' seminar | 10.4.2017 | isoscalar mesons in QCD

Jefferson Lab

finite-volume formalism

$$\det\left[\mathbf{1}+i\boldsymbol{\rho}\cdot\mathbf{t}\cdot(\mathbf{1}+i\boldsymbol{\mathcal{M}})\right]=0$$

 $oldsymbol{
ho}(E)$ phase-space

 $\mathbf{t}(E)$ scattering matrix

 $\boldsymbol{\mathcal{M}}(E,L)$ finite-volume function

can also be applied in **coupled-channel case**

more challenging

 $\mathbf{t}(E) o E_{\mathfrak{n}}(L)$ (plug into eqn. above & solve)

 $E_{\mathfrak{n}}(L) \not\rightarrow \mathbf{t}(E_{\mathfrak{n}})$ (multiple unknowns in the scattering matrix)

do a global fit to the spectrum with an amplitude parameterization ...

(guarantee unitarity by using a *K*-matrix)

finite-volume spectrum -I=0, G=+

Jefferson Lab

 $m_{\pi} \sim 391 \,\mathrm{MeV}$ ¹⁸

finite-volume spectrum

WILLIAM

& MARY

19

a K-matrix amplitude description

WILLIAM

& MARY

 $\chi^2/N_{\rm dof} = 44.0/(57-8) = 0.90$

too conservative systematic error estimation ?

a K-matrix amplitude description

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

Jefferson Lab

WILLIAM & Mary

a K-matrix amplitude description

JLab 'cake' seminar | 10.4.2017 | isoscalar mesons in QCD

& MARY

varying the amplitude parameterization $m_{\pi} \sim 391 \,\mathrm{MeV}$

WILLIAM & MARY

varying the amplitude parameterization $_{m_{\pi} \sim 391 \, { m MeV}}$

JLab 'cake' seminar | 10.4.2017 | isoscalar mesons in QCD

& MARY

couplings from pole residue

WILLIAM

& MARY

S-wave summary

& MARY

 0^{++}

1.6

Jefferson Lab

 \overline{E}

D-wave

D-wave – amplitude variations

& MARY

D-wave – resonance couplings

D-wave summary

 $m_{\pi} \sim 391 \,\mathrm{MeV}$ ³¹

Phys.Rev. D93 094506 (2016)

previously calculated coupled $\pi\eta$, $K\overline{K}$ I=1 scattering

sheets ?

WILLIAM

& MARY

complex *s*-plane actually multi-sheeted

unitarity $\operatorname{Im}[t_{ij}(s)] = -\delta_{ij} \rho_i(s)$

$$\rho_i(s) = \sqrt{1 - \frac{4m_i^2}{s}}$$

square-root branch-point at each threshold

sheets ?

complex *s*-plane actually multi-sheeted

unitarity $\operatorname{Im}[t_{ij}(s)] = -\delta_{ij} \rho_i(s)$

$$\rho_i(s) = \sqrt{1 - \frac{4m_i^2}{s}}$$

square-root branch-point at each threshold

sheets ?

$$m_R(f_0) = 1166(45) \text{ MeV}, \quad \Gamma_R(f_0) = 181(68) \text{ MeV}, \ m_R(a_0) = 1177(27) \text{ MeV}, \quad \Gamma_R(a_0) = 49(33) \text{ MeV}.$$

$$|c(a_0 \to K\overline{K})| \approx |c(f_0 \to K\overline{K})| \sim 850 \,\mathrm{MeV}$$

 $|c(a_0 \to \pi\eta)| \approx |c(f_0 \to \pi\pi)| \sim 700 \,\mathrm{MeV}.$

look very similar (in mass and couplings), but ...

'explaining' the sheet distribution

e.g. Flatté form
$$D(s)=m_0^2-s-ig_1^2\,
ho_1(s)-ig_2^2\,
ho_2(s)$$

has poles

$$\begin{split} \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \,\rho_2}{m_0} \left[\left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} - 1 \right] & \text{ on sheet II, if } \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} > 1, \text{ or,} \\ \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \,\rho_2}{m_0} \left[1 - \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} \right] & \text{ on sheet IV, if } \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} < 1, \text{ and,} \\ \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \,\rho_2}{m_0} \left[1 + \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} \right] & \text{ on sheet III, in all cases,} \end{split}$$

 $m_R(f_0) = 1166(45) \text{ MeV}, \quad \Gamma_R(f_0) = 181(68) \text{ MeV}, \ m_R(a_0) = 1177(27) \text{ MeV}, \quad \Gamma_R(a_0) = 49(33) \text{ MeV}.$

$$|c(a_0 \to K\overline{K})| \approx |c(f_0 \to K\overline{K})| \sim 850 \,\mathrm{MeV}$$

 $|c(a_0 \to \pi\eta)| \approx |c(f_0 \to \pi\pi)| \sim 700 \,\mathrm{MeV}.$

but larger phase-space for $\pi\pi$ than $\pi\eta$

a pole on **only** sheet II or sheet IV \Rightarrow 'molecular resonance'?

explained to me by Adam, i'm still trying to understand ...

on the other hand ...

an 'ordinary' resonance is expected to have 'mirror' poles:

e.g. Flatté form

$$D(s) = m_0^2 - s - ig_1^2 \rho_1(s) - ig_2^2 \rho_2(s)$$

has poles

$$\begin{split} \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \rho_2}{m_0} \left[\left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} - 1 \right] & \text{ on sheet II, if } \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} > 1, \text{ or,} \\ \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \rho_2}{m_0} \left[1 - \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} \right] & \text{ on sheet IV, if } \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} < 1, \text{ and,} \\ \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \rho_2}{m_0} \left[1 + \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} \right] & \text{ on sheet III, in all cases,} \end{split}$$

poles on other sheets in the lattice calc ? $m_{\pi} \sim 391 \,\mathrm{MeV}$

parameterization dependent distant poles on sheet III

looks more like one pole \Rightarrow 'molecular resonance'?

Jefferson Lab

summary — isoscalar mesons

first exploration of the lightest few isoscalar resonances in first-principles QCD with unphysically heavy u,d quarks

scalars are much more interesting σ as stable bound-state below $\pi\pi$ threshold f_0 resonance close to $K\overline{K}$ threshold

Jefferson Lab

K*K* threshold region

WILLIAM

& MARY

finite-volume Flatté

WILLIAM & MARY

finite-volume 'dip-like'

WILLIAM

& MARY

meson-meson ops are vital

& MARY

quark mass evolution of σ

why is this case different ?

the real energy axis behaviour isn't just dominated by a single (nearby) pole

e.g.

JLab 'cake' seminar | 10.4.2017 | isoscalar mesons in QCD

47

Jefferson Lab

σ pole with changing quark mass

*f*₀(980) dip – peak

'local' operator spectrum

generic local diquark operator

$$\delta_{RF}^{J[\Gamma]} = \langle \mathbf{3}r_a; \mathbf{3}r_b | Rr \rangle \langle F_a f_a; F_b f_b | Ff \rangle q_{r_a f_a}^T (C\Gamma) q_{r_b f_b}$$
 color reps. $R = \overline{\mathbf{3}}, \mathbf{6}$
spins $J^p = 0^{\pm}, 1^{\pm}$

no assumptions made at this point about good/bad diquarks

generic local tetraquark operator

$$\mathcal{T}_{\mathbf{1}[R_1R_2]F[F_1F_2]}^{J[\Gamma_1\Gamma_2]} = \langle J_1m_1; J_2m_2|Jm \rangle \langle R_1r_1; R_2r_2|\mathbf{1} \rangle \langle F_1f_1; F_2f_2|Ff \rangle \delta_{R_1F_1}^{J_1[\Gamma_1]} \bar{\delta}_{R_2F_2}^{J_2[\Gamma_2]} + \mathcal{C}/G\text{-parity symmetrisation ...} \rangle$$

spins $J \leq 2$

smeared quark fields, but otherwise **local**, certainly not sampling the whole lattice volume

(diquark construction just makes fermion antisymmetry manifest)

JLab 'cake' seminar | 10.4.2017 | isoscalar mesons in QCD Jefferson Lab

tetraquark operators — hidden charm I=1

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

52

Gavin Cheung (Cambridge) arXiv:1709.01417 [hep-lat]

WILLIAM

& MARY

