Nucleon Form Factors at Low and High Momenta.

David Richards Jefferson Laboratory

25th October 2017 *Cake Seminar*

Proton EM form factors

 Nucleon Pauli and Dirac Form Factors described in terms of matrix element of vector current

 $\langle N \mid V_{\mu} \mid N \rangle(\vec{q}) = \bar{u}(\vec{p}_f) \left[F_q(q^2)\gamma_{\mu} + \sigma_{\mu\nu}q_{\nu}\frac{F_2(q^2)}{2m_N} \right] u(\vec{p}_i)$

• Alternatively, Sach's form factors determined in experiment $G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$ $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$

Charge radius is slope at $Q^2 = 0$

$$\frac{\partial G_E(Q^2)}{\partial Q^2}\Big|_{Q^2=0} = -\frac{1}{6}\langle r^2 \rangle = \left.\frac{\partial F_1(Q^2)}{\partial Q^2}\right|_{Q^2=0} - \frac{F_2(0)}{4M^2}$$

EM Form factors - Expt

Lattice QCD

Observables in lattice QCD are then expressed in terms of the path integral as

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{Z} \prod_{n,\mu} dU_{\mu}(n) \prod_{n} d\psi(n) \prod_{n} d\bar{\psi}(n) \mathcal{O}(U,\psi,\bar{\psi}) e^{-\left(S_{G}[U] + S_{F}[U,\psi,\bar{\psi}]\right)} \\ \text{Integrate out the Grassmann variables:} \\ \langle \mathcal{O} \rangle &= \frac{1}{Z} \prod_{n,\mu} dU_{\mu}(n) \mathcal{O}(U,G[U]) \det M[U] e^{-S_{G}[U]} \qquad \text{Importance Sampling} \\ \text{where } G(U,x,y)_{\alpha\beta}^{ij} \equiv \langle \psi_{\alpha}^{i}(x)\bar{\psi}_{\beta}^{j}(y) \rangle = M^{-1}(U) \end{split}$$

- Generate an ensemble of gauge configurations $P[U] \propto \det M[U] e^{-S_G[U]}$
- Calculate observable

$$\langle \mathcal{O} \rangle = \frac{1}{N} \sum_{n=1}^{N} \mathcal{O}(U^n, G[U^n])$$

Hadron Structure

 $C_{3\text{pt}}(t_{sep}, t; \vec{p}, \vec{q}) = \sum_{\vec{x}, \vec{y}} \langle 0 \mid N(\vec{x}, t_{sep}) V_{\mu}(\vec{y}, t) \bar{N}(\vec{0}, 0) \mid 0 \rangle e^{-i\vec{p} \cdot \vec{x}} e^{-i\vec{q} \cdot \vec{y}}$

Resolution of unity - insert states

 $\longrightarrow \langle 0 \mid N \mid N, \vec{p} + \vec{q} \rangle \langle N, \vec{p} + \vec{q} \mid V_{\mu} \mid N\vec{p} \rangle \langle N, \vec{p} \mid \bar{N} \mid 0 \rangle e^{-E(\vec{p} + \vec{q})(t_{\rm sep} - t)} e^{-E(\vec{p})t}$

1D Structure: EM Form Factors

Wilson-clover lattices from BMW

Green et al (LHPC), Phys. Rev. D 90, 074507 (2014)

Sea Quark Contributions

Thomas Jefferson National Accelerator Facility

EM Form factors

Green et al, arXiv:1404.40

Isgur-Wise Function and CKM matrix

UKQCD, L. Lellouch et al., Nucl. Phys. B444, 401 (1995), hep-lat/9410013

Moment Methods

- Introduce three-momentum projected three-point function $C^{3\text{pt}}(t,t') = \sum_{\vec{x},\vec{x}'} \left\langle N^a_{t,\vec{x}} \Gamma_{t',\vec{x}'} \overline{N}^b_{0,\vec{0}} \right\rangle e^{-ikx'_z}$
- Now take derivative w.r.t. k²

whence
$$C'_{3\text{pt}}(t,t') = \sum_{\vec{x},\vec{x'}} \frac{-x'_{z}}{2k} \sin(kx'_{z}) \left\langle N^{a}_{t,\vec{x}} \Gamma_{t',\vec{x'}} \overline{N}^{b}_{0,\vec{0}} \right\rangle$$
$$\lim_{k^{2} \to 0} C'_{3\text{pt}}(t,t') = \sum_{\vec{x},\vec{x'}} \frac{-x'^{2}_{z}}{2} \left\langle N^{a}_{t,\vec{x}} \Gamma_{t',\vec{x'}} \overline{N}^{b}_{0,\vec{0}} \right\rangle.$$

Odd moments vanish by symmetry

Moment Methods - II

• Analogous expressions for two-point functions:

$$C_{2pt}(t) = \sum_{\vec{x}} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle e^{-ikx_z}$$

$$\Rightarrow C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z}{2k} \sin(kx_z) \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle$$

$$\Rightarrow \lim_{k^2 \to 0} C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z^2}{2} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle.$$

Lowest coordinate-space moment ⇔ slope at zero momentum

Moment Methods - II

• Analogous expressions for two-point functions:

$$C_{2pt}(t) = \sum_{\vec{x}} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle e^{-ikx_z}$$

$$\Rightarrow C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z}{2k} \sin(kx_z) \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle$$

$$\Rightarrow \lim_{k^2 \to 0} C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z^2}{2} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle.$$

Lowest coordinate-space moment ⇔ slope at zero momentum

Lattice Details

• Two degenerate light-quark flavors, and strange quark set to its physical value

a	\simeq	$0.12~\mathrm{fm}$
m_{π}	\simeq	$400 { m MeV}$
Lattice Size	:	$24^3 \times 64$

• To gain control over finite-volume effects, replicate in z direction: $24 \times 24 \times 48 \times 64$

Two-point correlator

Thomas Jefferson National Accelerator Facility

Three-point correlator

- Spatial moments push the peak of the correlator away from origin
- Larger finite volume corrections compared to regular correlators

Jefferson Lab

Fitting the data...

$$C^{3\text{pt}}(t,t') = \sum_{n,m} \frac{Z_n^{\dagger a}(0)\Gamma_{nm}(k^2)Z_m^b(k^2)}{4M_n(0)E_m(k^2)} e^{-M_n(0)(t-t')}e^{-E_m(k^2)t'}$$

$$C_{2\text{pt}}(t) = \sum_m \frac{Z_m^{b\dagger}(k^2)Z_m^b(k^2)}{2E_m(k^2)}e^{-E_m(k^2)t}$$
where
$$Z_n^{\dagger a}(0) \equiv \langle \Omega | N^a | n, p_i = (0,0,0) \rangle$$

$$Z_m^b(k^2) \equiv \langle n, p_i = (0,0,k) | \overline{N}^b | \Omega \rangle$$

$$\Gamma_{nm}(k^2) \equiv \langle n, p_i = (0,0,0) | \Gamma | m, p_i = (0,0,k) \rangle$$

Allow for multi-state contributions in the fit

Fitting - II

• Now look at the functional form of derivatives:

Fitting - III

F₁ Form Factor

Thomas Jefferson National Accelerator Facility

Nucleon Form Factors at High Momenta

Work in progress...

EM Form factors at Low and High Momenta

Boosted interpolating operators

Lattice Challenges

Discretisation Uncertainties

 $\mathcal{O}(q^2a^2, \mid p_ia \mid^2)$

 $C_{2\mathrm{pt}}(t,\vec{p})/C_{\sigma^2}(t) \longrightarrow e^{-((E_N(\vec{p})-3m_\pi/2)t)}$

Boosted Sources

Replace quark field by spatially extended (smeared) quark field

Bali et al., Phys. Rev. D 93, 094515 (2016)

Variational Method

Subleading terms → *Excited* states

Construct matrix of correlators: *different smearing radii*

$$C_{ij}(t) = \sum_{\vec{x}} \langle N_i(\vec{x}, t) \bar{N}_j(0) \rangle = \sum_n A_n^i A_n^{j\dagger} e^{-E_n t}$$

Delineate contributions using *variational method*: solve

$$C(t)v^{(N)}(t,t_0) = \lambda_N(t,t_0)C(t_0)v^{(N)}(t,t_0).$$

$$\lambda_N(t, t_0) \to e^{-E_N(t-t_0)} (1 + \mathcal{O}(e^{-\Delta E(t-t_0)}))$$

Eigenvectors, with metric $C(t_0)$, are orthonormal and project onto the respective states

$$v^{(N')\dagger}C(t_0)v^{(N)} = \delta_{N,N}$$

Baryon Operators

 $\langle 0 \mid O^{JM} \mid J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}$ Starting point $B = (\mathcal{F}_{\Sigma_F} \otimes \mathcal{S}_{\Sigma_S} \otimes \mathcal{D}_{\Sigma_D}) \{ \psi_1 \psi_2 \psi_3 \}$ Introduce circular basis: $\overleftarrow{D}_{m=-1} = \frac{i}{\sqrt{2}} \left(\overleftarrow{D}_x - i \overleftarrow{D}_y \right)$ $\overleftarrow{D}_{m=0} = i \overleftarrow{D}_z$ $\overleftarrow{D}_{m=+1} = -\frac{i}{\sqrt{2}} \left(\overleftarrow{D}_x + i \overleftarrow{D}_y \right)$.
Straighforward to project to definite spin: J = 1/2, 3/2, 5/2

$$\left|\left[J,M\right]\right\rangle = \sum_{m_1,m_2} \left|\left[J_1,m_1\right]\right\rangle \otimes \left|\left[J_2,m_2\right]\right\rangle \left\langle J_1m_1;J_2m_2\right|JM\right\rangle$$

R.G.Edwards et al., arXiv:1104.5152

Distillation for Baryons?

 $\begin{array}{ll} \text{Measure matrix of correlation functions:} & C_{ij}(t) \equiv \sum_{\vec{x},\vec{y}} \langle N_i(\vec{x},t)\bar{N}_j(\vec{y},0) \rangle \\ \text{M. Peardon et al., PRD80,054506 (2009)} & Perambulators & \tau^{ij}_{\alpha\beta}(t,0) = \xi^{*i}(t)M^{-1}(t,0)_{\alpha\beta}\xi^j \\ \text{Perambulators} & \tau^{ij}_{\alpha\beta\gamma}(t,0) = \xi^{*i}(t)M^{-1}(t,0)_{\alpha\beta}\xi^j \\ C_{ij}(t) = \phi^{i,(pqr)}_{\alpha\beta\gamma}(t)\phi^{j,(\bar{p}\bar{q}\bar{r})}_{\bar{\alpha}\bar{\beta}\bar{\gamma}}(0) \times \left[\tau^{p\bar{p}}_{\alpha\bar{\alpha}}(t,0)\tau^{q\bar{q}}_{\beta\bar{\beta}}(t,0)\tau^{r\bar{r}}_{\gamma\bar{\gamma}}(t,0) + \dots\right] \end{array}$

- Meson correlation functions N³
- Baryon correlation functions N⁴

Severely constrains baryon lattice sizes

Nucleon Dispersion Relation

Thomas Jefferson National Accelerator Facility

Isotropic Clover Production

ID	m_l	β	a (fm)	$M_{\pi} ({\rm MeV})$	L	T	$M_{\pi}L$	Split at	N_{traj}	On Titan
C12	-0.2800	6.1	0.118	430	48	96	12.4		20000	
C13	-0.2850	6.1	0.114	300	32	96	5.6			1762 - 2104
C13a	-0.2850	6.1	0.114	300	32	96	5.6			1100 - 1870
C13b	-0.2850	6.1	0.114	300	32	96	5.6			1000 - 2618
C13-W	-0.2850	6.1	0.114	300	32	96	5.6			2108 - 3164
C13a-W	-0.2850	6.1	0.114	300	32	96	5.6			1872 - 3564
C13b-W	-0.2850	6.1	0.114	300	32	96	5.6			2620 - 3980
D4	-0.2350	6.3	0.085	400	32	64	5.5		5164	
D5	-0.2390	6.3	0.081	310	32	64	4.0		6020	1000 - 6020
D6	-0.2416	6.3	0.080	210	48	96	3.7		2312 (a)	1000 - 2312
D6a	-0.2416	6.3	0.080	210	48	96	3.7	1000	866~(a)	254 - 866
D6b	-0.2416	6.3	0.080	210	48	96	3.7	1200	956~(a)	284 - 956
D7	-0.2416	6.3	0.080	210	64	128	4.9		1514 (a)	1112 - 1514
D7b	-0.2416	6.3	0.080	210	64	128	4.9	700	640 (a)	330 - 640
D7c	-0.2416	6.3	0.080	210	64	128	4.9	750	732 (a)	288 - 592
D7d	-0.2416	6.3	0.080	210	64	128	4.9	800	762~(a)	328 - 736
D8	-0.2424	6.3	0.080	140	72	196	4.1		370 (b)	

Add third lattice spacing: β = 6.5, a ~0.06

SUMMARY

- Controlling systematic uncertainties key at both low momenta and high momenta
- Momentum methods for direct calculation of form factors
- Can we get to high momenta? Exploring "distillation" for pion (see Bipasha)...

