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Gluonic structure

The past 60+ years have  
provided detailed view of  
the quark structure of nucleons 

Gluonic structure relatively  
unexplored 
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the glue that binds us all” 
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3Ultimate eRHIC design 
Highly advanced and energy efficient accelerator

Peak luminosity: 2 � 1034 cm-2 s-1

ERL, permanent magnet arcs and 
strong cooling of proton beam 
greatly reduce electric power 
consumption to about 15 MW!
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Gluonic structure

Unpolarised gluon PDF g(x) 

extracted from scaling 
violations in DIS,…  

dominant at small 
Bjorken x 

sharp rise due to QCD 
evolution 
 
 

Important input for LHC

XXXI PHYSICS IN COLLISION, Vancouver, BC Canada, August 28 - September 1, 2011

full statistics HERA inclusive CC and NC data are
used for NLO and NNLO QCD fits resulting in
HERAPDF1.5 [9]. The same formalism, model and
paramatrisation assumptions as in the HERAPDF1.0
are used in the HERAPDF1.5(NLO) fit.

The QCD predictions for the structure functions are
obtained by solving the DGLAP evolution equations
at NLO (or NNLO) in the MS scheme with the
renormalisation and factorisation scales chosen to be
Q2. The DGLAP equations yield the PDFs at all
values of Q2 above the input scale Q2

0 at which they
are parametrised as a functions of x. The starting
scale Q2

0 is chosen to be 1.9 GeV2 such that the
starting scale is below the charm mass threshold.
The QCD predictions for the structure functions are
obtained by convolution of the PDFs with the NLO
coefficient functions calculated using the general mass
variable favour number RT scheme [10].
For the parametrisation of PDFs at the input scale
the generic form xf(x) = AxB(1 − x)C(1 + Ex2) is
used. The parametrised PDFs are the gluon distribu-
tion xg, the valence quark distributions xuv, xdv, and
the u-type and d-type anti-quark distributions xŪ ,
xD̄. At the starting scale Q2

0 = 1.9 GeV2 xŪ = xū
and xD̄ = xd̄+xs̄. The central fit parametrisation is:

xg(x) = Agx
Bg (1− x)Cg ,

xuv(x) = Auv
xBuv (1 − x)Cuv (1 + Euv

x2),

xdv(x) = Adv
xBdv (1− x)Cdv ,

xŪ(x) = AŪx
BŪ (1− xCŪ ),

xD̄(x) = AD̄xBD̄ (1− xCD̄).

The normalisation parameters A are constrained by
the quark number sum-rules and momentum sum-
rule, extra constrains for small-x behaviour of d−
and u−type quarks Buv

= Bdv
, BŪ = BD̄ and

AŪ = AD̄(1 − fs) (fs is the strange quark distribu-
tion) which ensures that xū → xd̄ as x → 0.

The break-up of the HERA PDFs into different
flavours is illustrated in figure 3. Model uncertainties
(shown as yellow bands in the figure) of the central
fit solution is evaluated by varying the input assump-
tions: Q2

min, fs, mass of heavy quarks mC and mB.
Parametrisation uncertainties (green band) is formed
by an envelope of the maximal deviation from the cen-
tral fit varying parametrisation assumptions in the fit
and therefore has an asymmetric shape. The deter-
mination of parameterisation uncertainties are unique
to HERAPDFs.
An example of the parton distribution functions from
HERAPDF1.5 at NNLO is shown in figure 4. HER-
APDF1.5NLO and NNLO sets are the recommended
HERA PDFs to be used for the predictions of pro-
cesses at LHC.
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Figure 3: The parton distribution functions from
HERAPDF1.0 at Q2 = 10 GeV2. The gluon and sea
distributions are scaled down by a factor of 20. The
experimental, model and parametrisation uncertainties
are shown separately.
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Figure 4: The parton distribution functions from
HERAPDF1.5 NNLO at Q2 = 10000 GeV2, i.e. a region
relevant for the hadron colliders TEVATRON and LHC.
The gluon and sea distributions are scaled down by a
factor 20. The experimental, model and parametrisation
uncertainties are shown separately. For comparison, the
central values of HERAPDF1.0 NNLO are also shown.

2.4. Comparisons to recent LHC and
TEVATRON results

The prediction of the Z boson rapidity distribution,
based on three different PDFs, are compared to the
CDF measurement in figure 5. The predictions of the
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Gluon saturation?

Small x behaviour uncertain 

Large gluon density makes 
recombination important 
[Balitsky-Kovchegov, JIMWLK] 

“Colour glass condensate”?? 

Nuclear environment to 
enhance saturation 

Key motivation for EIC

What do we learn from low-x studies? 
Low-x è High Energy 

24 

What tames the low-x rise? 
•  New evolution eqn.s @ low x & moderate Q2 
•  Saturation Scale QS(x) where gluon 

emission and recombination comparable 

First observation of gluon recombination effects in nuclei: 
èleading to a collective gluonic system! 

 
First observation of g-g recombination in different nuclei  

à  Is this a universal property?  
à  Is the Color Glass Condensate the correct effective theory? 

 

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax

. d
en
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ty

Qs kT

~ 1/kT

k T
 φ

(x
, k

T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax

. d
en

si
ty

Qs kT

~ 1/kT
k T

 φ
(x

, k
T2 )
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Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

gluon  
emission 

gluon 
recombination 

= At QS 

Key Topic in eA: Gluon Saturation (I)

6

In QCD, the proton is made up 
of quanta that fluctuate in and 
out of existence 
• Boosted proton: 
‣ Fluctuations time dilated on 

strong interaction time 
scales  

‣ Long lived gluons can 
radiate further small x 
gluons! 

‣ Explosion of gluon density 
! violates unitarity
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9

pQCD  
evolution  
equation

New Approach: Non-Linear Evolution 
• New evolution equations at  low-x & low to moderate Q2 

• Saturation of gluon densities characterized by scale Qs(x) 
• Wave function is Color Glass Condensate

7/19/16 EIC Lecture 3 at NNPSS 2016 at MIT   

~



Gluon angular momentum

Gluon helicity much less well 
constrained 

Major focus of RHIC-spin 
program 

Asymmetries in polarised  
pp→ πX, DX, BX, jets 

Orbital angular momentum of 
gluons even less understood 

Gluon TMDs 

Further major motivation for 
EIC

Toward solving nucleon spin:  

8 
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But, theory & experimental techniques have also evolved, now so we can do 
better than this…. 

de Florian et. al, Phys.Rev.Lett. 113, 012001 (2014)



Gluonic Radius

A natural question

What does a proton look like? 
Bag Model: Gluon field distribution is 
wider than the fast moving quarks. 
Gluon radius > Charge Radius 
 
Constituent Quark Model: Gluons and 
sea quarks hide inside massive quarks. 
Gluon radius ~ Charge Radius  
 
Lattice Gauge theory (with slow moving 
quarks), gluons more concentrated 
inside the quarks:                           
Gluon radius < Charge Radius 
 

28 

Need transverse images of the quarks and gluons in protons  

Static                 Boosted 

7/18/16 EIC Lecture 1 at NNPSS 2016 at MIT   

Abhay Deshpande, 2016 National Nuclear Physics Summer School



Gluonic Radius

However not so simple to answer 

Experimentally challenging 

DIS probes are EW so sensitivity to gluons is poor 

Other processes less clean: heavy flavour 
production, … 

The proton is a quantum system 

Quarks and gluons mix via evolution 

Nonsinglet quantities uniquely quarky 

Double helicity flip uniquely gluonic



Lattice QCD input

EIC is a precision gluon structure 
machine 

Timescale is >2025 

What can lattice QCD do? 

Gluonic observables are challenging 
- signal to noise  

Few calculations so far 

Gluon momentum fraction  
[Meyer&Negele; Gockeler et al., Alexandru et al.] 

Gluon angular momentum  
[Liu et al., Yang et al, Alexandru et al.]

EIC at JLab: JLEIC 

7/18/16 EIC Lecture 1 at NNPSS 2016 at MIT   13 
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JLEIC: EIC at Jefferson Lab (



Gluon helicty/spin

Two common decompositions of the proton spin: 

Ji (1996) 
 
 
 
 

Jaffe-Manohar (1990)  
 
 
 

Interpolation between decompositions [M. Engelhardt, PRD 95 094505 
(2017)]

JN =
X

q=u,d,s,c...

✓
1

2
�⌃q + Lq

◆
+�g + Lg

gluon helicity

JN =
X

q=u,d,s,c...

✓
1

2
�⌃q + Lq

◆
+ Jg

quark helicity

quark orbital  
angular momentum

gluon spin



Spin decomposition of nucleon

Physical pion mass 

All terms calculated directly

5

TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
momentum (L) and total (J) contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

show schematically the various contributions to the spin
and momentum fraction.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calcula-
tion of the quark and gluon contributions to the pro-
ton spin, directly at the physical point. Individual
components are computed for the up, down, strange
and charm quarks, including both connected (valence)
and disconnected (sea) quark contributions. Our final
numbers are collected in Table II. The quark intrinsic
spin from connected and disconnected contributions is
1

2

�⌃
u+d+s

= 0.299(12)(3)|
conn.

� 0.098(12)(4)|
disc.

=
0.201(17)(5), while the total quark spin is J

u+d+s

=
0.255(12)(3)|

conn.

+ 0.153(60)(47)|
disc.

= 0.408(61)(48).
Our result for the intrinsic quark spin contribution agrees
with the upper bound set by a recent phenomenologi-
cal analysis of experimental data from COMPASS [45],
which found 0.13 <

1

2

�⌃ < 0.18. The results for L

q

and J

q

in Table II are also consistent with an analysis of
generalized parton distributions [45]. Using the spin sum
one would deduce that J

g

= 1

2

�J

q

=0.092(61)(48), which
is consistent with taking J

g

= 1

2

hxi
g

= 0.133(11)(14)
via the direct evaluation of the gluon momentum frac-
tion, which suggests that B

g

20

(0) is indeed small. Fur-
thermore, we find that the momentum sum is satisfied

P
q

hxi
q

+hxi
g

= 0.497(12)(5)|
conn.

+0.307(121)(95)|
disc.

+
0.267(12)(10)|

gluon

= 1.07(12)(10) as is the spin sum
of quarks and gluons giving J

N

=
P

q

J

q

+ J

g

=
0.408(61)(48) + 0.133(11)(14) = 0.541(62)(49) resolving
a long-standing puzzle.
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Hashed: connected 
Solid: disconnected

MS-scheme at 2 GeV
4

e↵ect than the mixing.

FIG. 1: The sea quark contribution (denoted by disc.) to
the isoscalar axial charge (upper) and momentum fraction
(lower) as a function of the sink-source time separation ts for
the plateau method (circles) and as a function of the lower
time value of ts used in the fits for the summation (green
triangles) and two-state fit (blue square) methods. The open
circle indicates the final value and the band its statistical
error, while the open square is the value taken to determine
the systematic error due to excited state contamination.

In Fig. 1 we show the ratio of Eq. (3) from which we ex-
tract the disconnected contribution to the isoscalar axial
charge gu+d

A

and quark momentum fraction hxi
u+d

. Tak-
ing the value at t

s

=14a = 1.3 fm is consistent with the
result from the two-state fit and summation method, for
both quantities. We take the plateau value at t

s

= 14a
as our final result and assign as systematic error due to
excited states the di↵erence between this value and the
mean value determined from the two-state fit. The same
analysis is performed for the strange and charm discon-
nected contributions. The analysis for the valence quark
contributions at lower statistics was presented in Ref. [39]
and it is followed also here.

Results: In Fig. 2 we present our results on the up,
down and strange quark contributions to the nucleon ax-
ial charge that yield the quark intrinsic spin contributions
to the nucleon spin. Since we are using a single ensemble
we cannot directly assess finite volume and lattice spac-
ings e↵ects. However, previous studies carried out using
N

f

=2 and N

f

=2+1+1 twisted mass fermion (TMF) en-
sembles at heavier than physical pion masses showed no
detectable volume e↵ects and no dependence on the lat-
tice spacings for similar values as the ensemble studied
in this work [21, 40]. This can also be seen from Fig. 2
for the �⌃

q

, where TMF results for several volumes and
lattice spacings are shown. In the same figure we also
compare twisted mass results with other recent lattice
QCD computations at heavier than physical pion masses.
There is an overall agreement among lattice QCD results.
We note, in particular, that all lattice QCD results yield
a non-zero and negative strange quark spin contribution

1

2

�⌃
s

. Our results are the first directly at the physi-
cal point for the strange quark and the first to include
disconnected contributions at the physical point for the
up and down quarks. We also note that the charm axial
charge and momentum fraction, at the physical point, is
consistent with zero.

FIG. 2: The up (upper), down (center) and strange (lower)
quark intrinsic spin contributions to the nucleon spin ver-
sus the pion mass. Open symbols show results includ-
ing only connected contributions while filled symbols denote
the total contribution. Filled red diamonds are the results
of this work. Open yellow, brown and green circles are
Nf=2 TMF results for a=0.056, 0.071, 0.088 fm, respectively
and light and dark blue squares are Nf=2+1+1 TMF for
a=0.060, 0.083 fm [30, 31, 40]. We compare with lattice
QCD results from Refs. [41] (open light (a=0.09 fm) and dark
(a=0.06 fm) blue triangles), [42] (filled magenta left trian-
gle for a=0.073 fm), [43] (light blue cross for a= 0.124 fm)
and [44] (yellow filled right triangle for a=0.074 fm). Experi-
ment is denoted by the black asterisks.

To determine the total quark spin J

q

, we need, be-
yond A

q

20

(0), the generalized form factor B

q

20

(0), which
is extracted from the nucleon matrix element of the
vector one-derivative operator for Q

2 6= 0 as de-
scribed in Ref. [21]. For the isovector case, we find
B

u�d

20

(0)=0.313(19), and for the isoscalar connected con-

tribution B

u+d,conn.

20

(0)=0.012(20). We observe that the
latter is consistent with zero, as is the disconnected
contribution B

u+d,disc.

20

(Q2 = 0.074 GeV2). Similarly,
the strange and charm B

s,c

20

(Q2) are zero, which implies
J

s,c

= 1

2

hxi
s,c

. In what follows we will also take the gluon
B

g

20

(0) to be zero and thus J
g

= 1

2

hxi
g

.
Our final values for the quark spin and angular mo-

mentum contributions are given in Table II. In Fig. 3 we

gluon spin



Spin decomposition of nucleon

Gluon helicity: not directly calculable 

Match to calculable ME in infinite momentum frame limit 
using large momentum effective theory [Ji et al.]

Y.-B. Yang et al., PRL 118, 102001 (2017)

de Florian et. al, Phys.Rev.Lett. 113, 012001 
(2014)

Extrapolated to  
physical pion 
mass 
 



Gluonic transversity

Volume 223, number 2 PHYSICS LETTERS B 8 June 1989 
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Received 24 March 1989 

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized 
targets (such as nuclei ) with spin >/1. The structure function measures a gluon distribution in the target and vanishes for a bound 
state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target. 

1. Introduction 

The physical photon has four structure functions 
[1,2] Three are familiar: F~, ~ ~ . F L = F 2 - 2 x F  1 and 

g~. The fourth, called F~ by Ahmed and Ross [2] ,  
corresponds to the imaginary part o f  the double he- 
licity flip Compton amplitude, A + - . -  + in the nota- 
tion o f  ref. [ 3]. The other three are proportional to 
helicity conserving Compton amplitudes, (g~i')oc 
(A+ +,+ + _+A_ + _  + ), FLOCAo+.o+. In patton models 
both F~. and F~ would be expected to vanish in the 
Bjorken limit since massless quarks do not couple to 
longitudinal photons, nor flip the photon helicity by 
two units. In Q C D both F [  and F~ get contributions 
from the box graph [ 1,2,4 ] which persist in the scal- 
ing limit because the short-distance behavior of  the 
box graph violates parton model assumptions. 

Witten [ 5 ] pointed out that these contributions to 
F~_ are associated with towers of  photon operators 
which appear in the operator product expansion 
(OPE) of  two electromagnetic currents. Their coef- 
ficient functions have been calculated from the box 
graph. Recently, one of  us [ 6 ] identified the tower of  
photon operators which contribute to F~. By analogy 
it is evident that there must be a tower o f  gluon op- 
erators in QCD, with coefficient functions of  order 
as (Q2) obtained from the box graph, which generate 
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a double helicity flip Compton amplitude on a had- 
ronic target. These operators belong to different rep- 
resentations of  the Lorentz group than the other op- 
erators which appear in the OPE and therefore do not 
mix under renormalization with quark operators and 
the other gluon operators. These operators have van- 
ishing matrix elements in any state with spin less than 
one and appear to have been overlooked in all QCD 
analyses in the past. We name the hadronic structure 
function associated with this tower o f  operators d (x, 
Q2) (to avoid confusion with the parity-violating 
structure function F3 (x, Q2 ) of  neutrino scattering). 
d(x ,  Q2) can be measured by scattering an unpolar- 
ized electron beam from a target aligned ( (that is, 
polarized either along or against) perpendicular to the 
beam. [Actually any direction not exactly parallel to 
the beam will do, but perpendicular is best. ] The only 
targets with J>_- 1 are nuclei. A(x, Q2) vanishes iden- 
tically for a nucleus made up of  protons, neutrons and 
pions regardless of  Fermi motion or binding correc- 
tions in the approximation in which the nucleons or 
pions scatter independently. It is therefore an unam- 
biguous probe of  the gluonic components of  the nu- 
clear wavefunction which cannot be identified with 
individual nucleons or pions. 

I f  the scattering cross section is measured as a 
function o f  the usual variables, x =  Q2/2 u, y =  p / M E  
and the azimuthal angle ~ between the plane formed 
by the beam and the alignment axis and the plane 
formed by the beam and the scattered electron (fig. 
1 ), then in the scaling limit (Q2, p__,~, x fixed), 
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Double Helicity Flip Gluon Structure

Targets with J≥1 have an additional leading twist gluon 
parton distribution Δ(x,Q2): double helicity flip [Jaffe & Manohar 

1989] 

Unambiguously gluonic: no analogous quark PDF at 
twist-2 

Vanishes in nucleon: nonzero value in  nucleus probes 
nuclear effects directly 

Experimentally measurable  

NH3: JLab  LoI 2015 [PI: James Maxwell] 

Polarised nuclei at EIC under serious  
consideration [R. Milner] 

Moments calculable in LQCD

Outline
1 Double Helicity Flip Structure

Function
Measurement Approaches

2 Je↵erson Lab Measurement
JLab Polarized Target

3 Gluonometry at the EIC
Polarized Ion Beams



Deep Inelastic Scattering

Deep inelastic scattering on J=1 target  
[Hoodbhoy, Jaffe, Manohar 1989]  
 
 
 
 
 

where 

Contains double helicity flip  
[Jaffe, Manohar 1989]

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Hadronic tensor for inelastic lepton scattering from a polarized spin-one
target:

Optical theorem relates squared amplitude of DIS process to imaginary
part of forward scattering amplitude:
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, E

Optical 
Theorem

structure functions F1, F2, g1, and g2 [20]:

W
λf λi
µν = −F1ĝµν +

F2

Mν
p̂µp̂ν +

ig1

ν
ϵµνλσqλsσ

+
ig2

Mν2
ϵµνλσqλ(p · qsσ − s · qpσ), (1)

where ϵµνλσ is an antisymmetric tensor with the conven-
tion ϵ0123 = 1, ν is defined by ν = p · q/M with the
hadron mass M , hadron momentum p, and momentum
transfer q, Q2 is given by Q2 = −q2 > 0, and sµ is the
spin vector [21] which satisfies s · p = 0. In Eq. (1), we
introduced notations:

ĝµν ≡ gµν −
qµqν

q2
, âµ ≡ aµ −

a · q
q2

qµ, (2)

which ensure the current conservation qµWµν =
qνWµν = 0. The aµ is a four vector, which is, for ex-
ample, pµ in Eq. (1). The coefficients of the unpolarized
structure functions F1 and F2 are symmetric under µ ↔ ν
in Wµν , while those of the polarized structure functions
g1 and g2 are antisymmetric.

In a spin-one hadron, there are four additional struc-
ture functions b1, b2, b3 and b4 in the hadron tensor
[4, 20]:

W
λf λi
µν = −F1ĝµν +

F2

Mν
p̂µp̂ν − b1rµν

+
1

6
b2(sµν + tµν + uµν) +

1

2
b3(sµν − uµν) +

1

2
b4(sµν − tµν)

+
ig1

ν
ϵµνλσqλsσ +

ig2

Mν2
ϵµνλσqλ(p · qsσ − s · qpσ), (3)

where rµν , sµν , tµν , and uµν are defined by

rµν =
1

ν2

[

q · E∗(λf )q · E(λi) −
1

3
ν2κ

]

ĝµν ,

sµν =
2

ν2

[

q · E∗(λf )q · E(λi) −
1

3
ν2κ

]

p̂µp̂ν

Mν
,

tµν =
1

2ν2

[

q · E∗(λf )
{

p̂µÊν(λi) + p̂νÊµ(λi)
}

+
{

p̂µÊ∗
ν (λf ) + p̂νÊ∗

µ(λf )
}

q · E(λi) −
4ν

3M
p̂µp̂ν

]

,

uµν =
M

ν

[

Ê∗
µ(λf )Êν(λi) + Ê∗

ν (λf )Êµ(λi)

+
2

3
ĝµν −

2

3M2
p̂µp̂ν

]

, (4)

where κ = 1 + Q2/ν2, and sµ is the spin vector which
satisfies p ·s = 0. The Eµ is the polarization vector of the
spin-one hadron and it satisfies p · E = 0, E∗ · E = −1.
The initial and final spin states are denoted by λi and
λf , respectively. Off-diagonal terms with λf ̸= λi need
to be taken into account in the general case to include
higher-twist contributions [4, 5]. The coefficients of b1,
b2, b3 and b4 are symmetric under µ ↔ ν, and they vanish
under the spin average. The functions F1, F2, g1, and g2

exist in a spin- 1
2

hadron as shown in Eq. (1). The b1,
b2, b3 and b4 are new structure functions for a spin-one
hadron and they are associated with its tensor structure
nature.

III. PROJECTIONS TO STRUCTURE
FUNCTIONS

In the following calculations, we choose the frame
in which the target is at rest and the photon is mov-
ing in the opposite direction to the z axis. Then, the
target-hadron and virtual-photon momenta are given by
pµ = (M, 0, 0, 0) and qµ = (ν, 0, 0,−|q⃗|), respectively.
However, results are Lorentz invariant, so that they do
not depend on the choice of the specific frame.

A. Spin-1

2
hadrons

Before discussing projections in a spin-one hadron, we
first show the spin- 1

2
case, in which the structure func-

tions F1, F2, g1, and g2 exist. Projections to these func-
tions from Wµν are discussed. The hadron tensor Wµν

for a spin- 1
2

hadron is given in Eq. (1). Such projec-
tions were discussed in other articles [18, 19]; however,
they are explained in order to compare with the spin-one
projections in Sec. III B.

The spin vector is given by s⃗λf λi = Nλf λiu
†
λf

σ⃗uλi [4]
where λ1 and λ2 are initial and final target spins, re-
spectively, along the z axis, σ⃗ is the Pauli matrix, uλ

is the Pauli spinor, and Nλf λi is a normalization factor
to satisfy (s⃗λf λi)

∗ · s⃗λf λi = 1. The spin four-vector is
then given by sµ

λf λi
= (0, s⃗λf λi) in the rest frame of the

hadron. Using u↑ =

(

1
0

)

and u↓ =

(

0
1

)

, we have explicit

expressions for the spin vectors sµ
↑↑ and sµ

↑↓:

sµ
↑↑ = (0, 0, 0, 1), sµ

↑↓ =
1√
2
(0, 1,−i, 0), sµ

↓↑ = (sµ
↑↓)

∗.

(5)
In order to project out the four structure functions,

four independent combinations of momentum and spin
need to be used. We choose a set:

gµν ,
pµpν

M2
,

i

M
ϵµναβqαs↑↑β δλf

1

2

δλi
1

2

,

i

M
ϵµναβqαs↑↓β δλf−

1

2

δλi
1

2

, (6)

for the projections from the hadron tensor W
λf λi
µν , which

depends on the initial and final spins through the spin
vector sµ. Here, δλλ′ = 1 (0 ) for λ = λ′ (λ ̸= λ′). The
first two terms in Eq. (6) are symmetric under the ex-
change µ ↔ ν and they project out the symmetric parts
(F1 and F2) of W

λf λi
µν . The latter two terms are antisym-

metric and they project out the antisymmetric parts (g1

and g2). Any other combinations such as pµsν
↑↑ + pνsµ

↑↑
are not independent terms, so that there are only four in-
dependent terms as shown in Eq. (6). Using these terms,
we can project out each structure function as follows:
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FIG. 1. Illustration of one of the leading contributions in DIS
sensitive to �(x,Q2). The wavy, curly and thin lines denote
photons, gluons and quarks, while the thick line represents a
spin-1 hadron.

This expression will vanish if E0 = E or if averaged
over spin. The leading contribution in DIS sensitive to
�(x,Q2) is illustrated in Fig. 1.

To relate �(x,Q2) to matrix elements of operators in

the operator product expansion, we consider the time-
ordered product of two vector currents,

Tµ⌫(q) ⌘ i

Z
d4x eiq·xT (jµ(x)j⌫(0)), (6)

and perform an operator product expansion (OPE) near
the lightcone. At leading twist (twist-2), the only con-
tribution which does not vanish when contracted with
P (±⌥,⌥±)µ⌫,↵� , and can therefore contribute to the
double-helicity-flip Compton amplitude, arises from a
tower of gluonic operators:

1

2
T �=2
µ⌫ (q) =

X

n=2,4,...

2nqµ1 . . . qµn

(Q2)n
Cn(Q2, µ2)Oµ⌫µ1...µn(µ2),

(7)
where µ is the factorization and renormalisation scale,

Oµ⌫µ1...µn(µ2) = S
h
Gµµ1

 !
D µ3 . . .

 !
D µnG⌫µ2

i
, (8)

and throughout this paper ‘S[ ]’ denotes symmetrisation
and trace-subtraction in the indices µ1, . . . , µn. Gµ⌫ is
the gluon field strength tensor and Dµ denotes the gauge
covariant derivative. The Wilson coe�cients in the OPE
are1

Cn(Q2, µ2) = �↵s(Q2)

2⇡
TrQ2 2

n + 2
, (9)

1 This expression agrees with those in Refs. [14, 15], but di↵ers by
a sign from that in Ref. [7].
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We present an exploratory study of the gluonic structure of the � meson using lattice QCD
(LQCD). This includes the first investigation of gluonic transversity via the leading moment of
the twist-two double-helicity-flip gluonic structure function �(x,Q2). This structure function only
exists for targets of spin J � 1 and does not mix with quark distributions at leading twist, thereby
providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic
analogue of the So↵er bound which relates the helicity flip and non-flip gluonic distributions, finding
it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies
of gluonic structure in the nucleon and in light nuclei where �(x,Q2) is an ‘exotic glue’ observable
probing gluons in a nucleus not associated with individual nucleons.

I. INTRODUCTION

Quantitatively describing the structure of hadrons, es-
pecially the nucleon, in terms of the quark and gluon con-
stituents encoded in Quantum Chromodynamics (QCD)
is a defining challenge for hadronic physics. The ulti-
mate goal is to map the complete spatial, momentum,
spin, flavour, and gluon structure of hadrons. Such a
map is not only the key to interpreting our observations
of Nature in terms of the currently-accepted fundamen-
tal theory, but is essential to inform searches for physics
beyond the Standard Model at both the high-energy and
intensity frontiers. While many observables related to
quark distributions in hadrons have been measured and
studied [1, 2], gluon distributions have received less at-
tention, in part because of the experimental challenges
inherent in measurements of these quantities. As a pri-
mary mission of the proposed Electron-Ion Collider [3, 4]
is to study glue in the proton and in nuclei, significant
experimental progress may be expected on this front over
the next decade. There is also potential for experiments
to study gluon distributions at Je↵erson Lab [5] and at
the LHC [6].

In this work, we study the gluon structure of the spin-
1 �(ss) meson through a calculation of the first mo-
ments of its spin-independent and transversity distribu-
tions. This constitutes the first lattice QCD calcula-
tion of the leading-twist, double-helicity-flip transversity
structure function, named �(x,Q2) [7], in any hadron.
This quantity is particularly interesting since, unlike the
unpolarised and helicity gluon distributions, the double-
helicity-flip density is a clean measure of gluonic de-
grees of freedom as it only mixes with quark distribu-
tions at higher twist. The only existing information on
�(x,Q2) comes from a rudimentary bag model calcula-
tion of its first moment in the spin- 32 � baryon [8], and a
related model of its x-dependence in the deuteron [9]. We
also study the gluonic analogue of the So↵er bound for
transversity for the first time, showing that the first mo-
ment of this bound in a � meson (at the unphysical light
quark masses used in this work and subject to caveats
regarding renormalisation and the continuum limit) is
saturated to approximately the same extent as the first

moment of the quark So↵er bound for the nucleon as
determined in a previous lattice simulation [10? ].

This work demonstrates that complex aspects of glu-
onic structure are accessible to lattice QCD calcula-
tions (previously the unpolarised gluonic structure of
the pion and nucleon have been investigated [11–13]).
It also lays the groundwork for extensions in several
phenomenologically-interesting directions. While the nu-
cleon has no gluon transversity distribution at twist-2,
its helicity-flip o↵-forward parton distributions are non-
vanishing. These quantities, which can be calculated on
the lattice using methods similar to those discussed in
this work, can be probed through distinct angular de-
pendence of the cross-section in deeply-virtual Compton
scattering (DVCS) [14]. In nuclei with spin J � 1, it has
been recognised since 1989 [7] that the structure function
�(x,Q2) is sensitive to exotic glue—the contributions
from gluons not associated with individual nucleons in
a nucleus—as neither nucleons nor pions (nor anything
with spin less than one) can transfer two units of helic-
ity to the nuclear target. This structure function can
be measured in deep inelastic scattering (DIS) on spin
J � 1 targets, as has been proposed for nitrogen targets
in a recent letter of intent to Je↵erson Lab [5].

II. DEFINITION OF �(x,Q2)

The observable �(x,Q2) was introduced in Ref. [7] as
a new leading-twist structure function which can be mea-
sured in deep inelastic scattering from polarized spin � 1
targets. We follow that reference in defining and outlin-
ing the construction of �(x,Q2) below.

The hadronic part of the di↵erential cross section for
inelastic lepton scattering from a polarized spin-one tar-
get can be expressed as

Wµ⌫(p, q, E
0, E) =

1

4⇡

Z
d4x eiq·xhp0, E0|[jµ(x), j⌫(0)]|p,Ei,

(1)

where E(0)
µ is a polarization vector describing the spin ori-

entation of the target, with p(0) ·E(0) = 0 and E(0)2 = �1.
The target four-momentum is denoted pµ while qµ de-
notes the transferred four-momentum to the target. The
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Double Helicity Flip Gluon Structure

2

dependence of this expression on the polarizations E and
E0 can be factored out to define a target-polarization–
independent tensor Wµ⌫,↵� :

Wµ⌫(p, q, E,E0) = E0⇤↵E�Wµ⌫,↵�(p, q). (2)

The tensor Wµ⌫,↵� can be related to helic-
ity projection operators P (hH, h0H 0)µ⌫,↵� =
✏⇤µ(h0)E⇤

↵(H 0)E�(H)✏⌫(h), where ✏µ(h) are photon
polarization vectors and the helicity components of the
photon and target are denoted h and H:

Wµ⌫,↵�(p, q) =
X

hH,h0H0

P (hH, h0H 0)µ⌫,↵�AhH,h0H0(p, q).

(3)

Here AhH,h0H0 represents the imaginary part of the corre-
sponding forward Compton helicity amplitude. Writing
the double-helicity-flip component A+�,�+ = A�+,+�
(where the equality follows by parity invariance) as
�(x,Q2), the double-helicity-flip part of Eq. (3) becomes

W�=2
µ⌫,↵� = [P (+�,�+)µ⌫,↵� + P (�+,+�)µ⌫,↵� ] �(x,Q2).

(4)

Finally, expanding the helicity projection operators ex-
plicitly in terms of the photon and target polarization
vectors, the double-helicity-flip term in Wµ⌫(p, q) can be
expressed as [7]:

W�=2
µ⌫ =

1

2
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FIG. 1. Illustration of one of the leading contributions in DIS
sensitive to �(x,Q2). The wavy, curly and thin lines denote
photons, gluons and quarks, while the thick line represents a
spin-1 hadron.

This expression will vanish if E0 = E or if averaged
over spin. The leading contribution in DIS sensitive to
�(x,Q2) is illustrated in Fig. 1.

To relate �(x,Q2) to matrix elements of operators in

the operator product expansion, we consider the time-
ordered product of two vector currents,

Tµ⌫(q) ⌘ i

Z
d4x eiq·xT (jµ(x)j⌫(0)), (6)

and perform an operator product expansion (OPE) near
the lightcone. At leading twist (twist-2), the only con-
tribution which does not vanish when contracted with
P (±⌥,⌥±)µ⌫,↵� , and can therefore contribute to the
double-helicity-flip Compton amplitude, arises from a
tower of gluonic operators:

1

2
T �=2
µ⌫ (q) =

X

n=2,4,...

2nqµ1 . . . qµn

(Q2)n
Cn(Q2, µ2)Oµ⌫µ1...µn(µ2),

(7)
where µ is the factorization and renormalisation scale,

Oµ⌫µ1...µn(µ2) = S
h
Gµµ1

 !
D µ3 . . .

 !
D µnG⌫µ2

i
, (8)

and throughout this paper ‘S[ ]’ denotes symmetrisation
and trace-subtraction in the indices µ1, . . . , µn. Gµ⌫ is
the gluon field strength tensor and Dµ denotes the gauge
covariant derivative. The Wilson coe�cients in the OPE
are1

Cn(Q2, µ2) = �↵s(Q2)

2⇡
TrQ2 2

n + 2
, (9)

1 This expression agrees with those in Refs. [14, 15], but di↵ers by
a sign from that in Ref. [7].
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dependence of this expression on the polarizations E and
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Wµ⌫(p, q, E,E0) = E0⇤↵E�Wµ⌫,↵�(p, q). (2)

The tensor Wµ⌫,↵� can be related to helic-
ity projection operators P (hH, h0H 0)µ⌫,↵� =
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↵(H 0)E�(H)✏⌫(h), where ✏µ(h) are photon
polarization vectors and the helicity components of the
photon and target are denoted h and H:
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X

hH,h0H0

P (hH, h0H 0)µ⌫,↵�AhH,h0H0(p, q).

(3)

Here AhH,h0H0 represents the imaginary part of the corre-
sponding forward Compton helicity amplitude. Writing
the double-helicity-flip component A+�,�+ = A�+,+�
(where the equality follows by parity invariance) as
�(x,Q2), the double-helicity-flip part of Eq. (3) becomes

W�=2
µ⌫,↵� = [P (+�,�+)µ⌫,↵� + P (�+,+�)µ⌫,↵� ] �(x,Q2).

(4)

Finally, expanding the helicity projection operators ex-
plicitly in terms of the photon and target polarization
vectors, the double-helicity-flip term in Wµ⌫(p, q) can be
expressed as [7]:
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FIG. 1. Illustration of one of the leading contributions in DIS
sensitive to �(x,Q2). The wavy, curly and thin lines denote
photons, gluons and quarks, while the thick line represents a
spin-1 hadron.

This expression will vanish if E0 = E or if averaged
over spin. The leading contribution in DIS sensitive to
�(x,Q2) is illustrated in Fig. 1.

To relate �(x,Q2) to matrix elements of operators in

the operator product expansion, we consider the time-
ordered product of two vector currents,

Tµ⌫(q) ⌘ i

Z
d4x eiq·xT (jµ(x)j⌫(0)), (6)

and perform an operator product expansion (OPE) near
the lightcone. At leading twist (twist-2), the only con-
tribution which does not vanish when contracted with
P (±⌥,⌥±)µ⌫,↵� , and can therefore contribute to the
double-helicity-flip Compton amplitude, arises from a
tower of gluonic operators:

1

2
T �=2
µ⌫ (q) =

X

n=2,4,...

2nqµ1 . . . qµn

(Q2)n
Cn(Q2, µ2)Oµ⌫µ1...µn(µ2),

(7)
where µ is the factorization and renormalisation scale,

Oµ⌫µ1...µn(µ2) = S
h
Gµµ1

 !
D µ3 . . .

 !
D µnG⌫µ2

i
, (8)

and throughout this paper ‘S[ ]’ denotes symmetrisation
and trace-subtraction in the indices µ1, . . . , µn. Gµ⌫ is
the gluon field strength tensor and Dµ denotes the gauge
covariant derivative. The Wilson coe�cients in the OPE
are1

Cn(Q2, µ2) = �↵s(Q2)

2⇡
TrQ2 2

n + 2
, (9)

1 This expression agrees with those in Refs. [14, 15], but di↵ers by
a sign from that in Ref. [7].
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FIG. 1. Illustration of one of the leading contributions in DIS
sensitive to �(x,Q2). The wavy, curly and thin lines denote
photons, gluons and quarks, while the thick line represents a
spin-1 hadron.

This expression will vanish if E0 = E or if averaged
over spin. The leading contribution in DIS sensitive to
�(x,Q2) is illustrated in Fig. 1.

To relate �(x,Q2) to matrix elements of operators in

the operator product expansion, we consider the time-
ordered product of two vector currents,

Tµ⌫(q) ⌘ i

Z
d4x eiq·xT (jµ(x)j⌫(0)), (6)

and perform an operator product expansion (OPE) near
the lightcone. At leading twist (twist-2), the only con-
tribution which does not vanish when contracted with
P (±⌥,⌥±)µ⌫,↵� , and can therefore contribute to the
double-helicity-flip Compton amplitude, arises from a
tower of gluonic operators:
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µ⌫ (q) =

X

n=2,4,...

2nqµ1 . . . qµn

(Q2)n
Cn(Q2, µ2)Oµ⌫µ1...µn(µ2),

(7)
where µ is the factorization and renormalisation scale,

Oµ⌫µ1...µn(µ2) = S
h
Gµµ1

 !
D µ3 . . .
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D µnG⌫µ2
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, (8)

and throughout this paper ‘S[ ]’ denotes symmetrisation
and trace-subtraction in the indices µ1, . . . , µn. Gµ⌫ is
the gluon field strength tensor and Dµ denotes the gauge
covariant derivative. The Wilson coe�cients in the OPE
are1

Cn(Q2, µ2) = �↵s(Q2)

2⇡
TrQ2 2

n + 2
, (9)

1 This expression agrees with those in Refs. [14, 15], but di↵ers by
a sign from that in Ref. [7].
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where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is

hpE0|Oµ⌫µ1...µn |pEi
= (�2i)n�2 1

2
S [{ (pµE

0⇤
µ1

� pµ1E
0⇤
µ )(p⌫Eµ2 � pµ2E⌫)

+ (µ $ ⌫)} pµ3 . . . pµn ]An(µ2),
(10)

where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and

Mn(Q2) =

Z 1

0
dxxn�1�(x,Q2) (12)

are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),

�(x,Q2) = �↵s(Q2)

2⇡
TrQ2 x2

Z 1

x

dy

y3
�G(y,Q2), (13)

where �G is again renormalized at the scale µ2 = Q2,
and

�G(x, µ2) = gx̂(x, µ
2) � gŷ(x, µ

2). (14)

Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2 This definition of An di↵ers from that in Ref. [7] by a factor of
two, chosen for convenience for the discussion of the So↵er bound
in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)k where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify

This expression is much simplified in the Bjorken limit:

lim
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2) + (1� y)F2(x,Q
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�(x,Q2) cos 2�

�
,

(6)
with higher twist terms and vanishing kinematic corrections ignored. Here � is the angle
between the scattering plane and the target spin orientation. If the target is polarized
in the opposite direction, the same cross section is obtained, so that the e↵ect is not
sensitive to the polarization of the target, but rather the alignment.

A partonic interpretation of �(x,Q2) can be defined for a target in the infinite mo-
mentum frame with its spin in the x̂ direction, perpendicular to momentum. For the
probability of finding a gluon with momentum fraction x and linearly polarized in the
x̂,ŷ direction gx̂,ŷ(x,Q2), we have

�(x,Q2) =
↵S(Q2)

2⇡
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for quark charge matrix Q = diag(2/3,�1/3,�1/3).
Sather and Schmidt [4] outline the scaling behavior of �(x,Q2), and calculate the

size of its first moment in the bag model for the spin-3⁄2 particle, �++:

Z 1

0
dx x�(x,Q2) = �0.012↵s(Q

2). (8)

�(x,Q2) may prove to be even smaller for a spin-1, nuclear target. Further lattice QCD
exploration of heavy mesons should shed light on the moments of � we might encounter
in light nuclear targets.

2. Experiment

Our investigation into the prospects of a measurement of �(x,Q2) remains prelimi-
nary, however several key requirements have already introduced challenging experimental
constraints, particularly in the choice of target. The need for a transversely polarized
target brings complications, but successful experiments at JLab and SLAC show that
the JLab/UVa solid polarized target presents a dependable solution [5]. The fact that
we search for truly nuclear e↵ects leads us toward heavier nuclei. Nitrogen and lithium
o↵er promising target candidates, as they may be polarized in commonly used 14NH3

and 6LiH, albeit at lower absolute polarization compared to the protons themselves.

2.1. Method

For a spin–1 target polarized at angle ✓m from the z-axis and electron incident from
�z, we can express the di↵erential cross section for the target spin in the m̂ direction
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where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
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where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification
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Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.
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appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators
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two, chosen for convenience for the discussion of the So↵er bound
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of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
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where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)k where d denotes
the dimension of the representation and k distinguishes
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where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is
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where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and
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are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),
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where �G is again renormalized at the scale µ2 = Q2,
and
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Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2 This definition of An di↵ers from that in Ref. [7] by a factor of
two, chosen for convenience for the discussion of the So↵er bound
in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)k where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify
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L/a T/a � aml ams a (fm) L (fm) T (fm) m⇡ (MeV) mK (MeV) m� (MeV) m⇡L m⇡T Ncfg Nsrc

24 64 6.1 -0.2800 -0.2450 0.1167(16) 2.801(29) 7.469(77) 450(5) 596(6) 1040(3) 6.390 17.04 1042 105

TABLE I. Parameters of the ensemble of gauge-field configurations. The lattices have dimension L3 ⇥ T , lattice spacing a
and bare quark masses amq (in lattice units). A total of Nsrc light-quark sources were used to perform measurements on Ncfg

configurations.

the symmetry properties of each irreducible representa-
tion, the bases of interest here (i.e., those which have the
same symmetry as the operator under consideration) are
those in the irreducible subspace corresponding to a 2⇥2
Young frame.

The symmetry properties of operators which could pos-

sibly mix with O(E)
µ⌫µ1µ2 are given in Table II in terms of

the defining representation labelled as ⌧ (4)1 and the odd-

parity representation labelled as ⌧ (4)4 .
Table III shows the rank at which irreducible repre-

sentations first appear in each tower of tensor products
(decomposed into direct sums) in Table II. Of the repre-
sentations that first appear at rank m = 4 (corresponding

to the n = 2 operator), ⌧ (2)1 , ⌧ (2)2 , and ⌧ (6)2 also appear
in the GL(4)-irreducible subspace which has the correct
symmetries for Eq. (15). We therefore choose to con-
sider lattice operators transforming under these three ir-
reducible representations as they cannot mix with any
quark or gluon operators of the same or lower dimen-
sion . Explicit forms of the ten (2+2+6 from the three
representations) basis vectors we consider are given in
Appendix A.

To implement the lattice operator, Olatt.
µ⌫µ1µ2

, we use the
clover definition of the field strength tensor

Gµ⌫(x) =
1

4

1

2

�
Pµ⌫(x) � P †

µ⌫(x)
�
, (17)

where

Pµ⌫(x) =Uµ(x)U⌫(x + µ)U†
µ(x + ⌫)U †

⌫ (x)

+ U⌫(x)U†
µ(x � µ + ⌫)U †

⌫ (x � µ)Uµ(x � µ)

+ U†
µ(x � µ)U †

⌫ (x � µ � ⌫)Uµ(x � µ � ⌫)U⌫(x � ⌫)

+ U†
⌫ (x � ⌫)Uµ(x � ⌫)U⌫(x � ⌫ + µ)U†

µ(x).
(18)

Once operators have been constructed with the correct
symmetry properties under H(4), the lattice and con-
tinuum operators are related by a finite renormalisation
factor

O(E)
m,n = Zm

2 Olatt.
m,n , (19)

where the subscript (m,n) denotes the nth vector from
the mth representation, and Zm

2 = 1+O(↵s). The super-
script m on the renormalisation factor indicates that this
can depend on representation. In this first investigation
we do not compute Zm

2 , but note that for similar gluonic
operators, such as the gluonic part of the energy momen-
tum tensor, the corresponding renormalisation factor is

O(1) [12]. It would be surprising if Zm
2 , for any choice of

m, was significantly di↵erent.

C. Extraction of Results

The expectation values of the matrix elements of the
operators described in the previous section in the � me-
son are extracted from ratios of two and three-point cor-
relation functions. In order to compute these correlation
functions, strange quark propagators were computed us-
ing a bare quark mass m = �0.2450 using 5 iterations
of gauge-invariant Gaussian smearing [21] in the spatial
directions at both source and sink. Measurements were
performed for 96 di↵erent source locations on each of
1042 configurations, resulting in 100032 measurements.
These propagators were contracted to form two-point and
three-point � meson correlators using interpolating oper-
ators of the form ⌘i(x) = s(x)�is(x) in terms of smeared
quark fields. For each type of correlator, measurements
on each configuration were averaged and bootstrap sta-
tistical resampling was used in order to assess the statis-
tical uncertainties in the measurements. Note that the
calculation does not include annihilation contributions
(self-contraction of propagators at the source and sink),
the e↵ects of which are OZI-suppressed.

The two point correlators

C2pt
jk (t, ~p) =

X

~x

ei~p·~xh⌘j(t, ~x)⌘†k(0,~0)i

=Z�

⇣
e�Et + e�E(T�t)

⌘X

��0

✏(E)
j (~p,�)✏(E)⇤

k (~p,�0)

+ . . . , (20)

were constructed for all diagonal and o↵-diagonal polar-
isation combinations (jk). The ellipsis denotes contribu-
tions from excited states. For the spin-1 � meson there
are three di↵erent particle states such that

h0|⌘i(~p)|~p,�i =
p

Z�✏
(E)
i (~p,�) , (21)

where � = {+,�, 0}, and the polarisation vectors in
Minkowski space have the explicit form

✏µ(~p,�) =

✓
~p · ~e�
m

,~e� +
~p · ~e�

m(m + E)
~p

◆
, (22)

with m and E =
p|~p|2 + m2 being the rest mass and
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tion, the bases of interest here (i.e., those which have the
same symmetry as the operator under consideration) are
those in the irreducible subspace corresponding to a 2⇥2
Young frame.

The symmetry properties of operators which could pos-

sibly mix with O(E)
µ⌫µ1µ2 are given in Table II in terms of

the defining representation labelled as ⌧ (4)1 and the odd-

parity representation labelled as ⌧ (4)4 .
Table III shows the rank at which irreducible repre-

sentations first appear in each tower of tensor products
(decomposed into direct sums) in Table II. Of the repre-
sentations that first appear at rank m = 4 (corresponding

to the n = 2 operator), ⌧ (2)1 , ⌧ (2)2 , and ⌧ (6)2 also appear
in the GL(4)-irreducible subspace which has the correct
symmetries for Eq. (15). We therefore choose to con-
sider lattice operators transforming under these three ir-
reducible representations as they cannot mix with any
quark or gluon operators of the same or lower dimen-
sion . Explicit forms of the ten (2+2+6 from the three
representations) basis vectors we consider are given in
Appendix A.

To implement the lattice operator, Olatt.
µ⌫µ1µ2

, we use the
clover definition of the field strength tensor

Gµ⌫(x) =
1

4

1

2

�
Pµ⌫(x) � P †

µ⌫(x)
�
, (17)

where

Pµ⌫(x) =Uµ(x)U⌫(x + µ)U†
µ(x + ⌫)U †

⌫ (x)

+ U⌫(x)U†
µ(x � µ + ⌫)U †

⌫ (x � µ)Uµ(x � µ)

+ U†
µ(x � µ)U †

⌫ (x � µ � ⌫)Uµ(x � µ � ⌫)U⌫(x � ⌫)

+ U†
⌫ (x � ⌫)Uµ(x � ⌫)U⌫(x � ⌫ + µ)U†

µ(x).
(18)

Once operators have been constructed with the correct
symmetry properties under H(4), the lattice and con-
tinuum operators are related by a finite renormalisation
factor

O(E)
m,n = Zm

2 Olatt.
m,n , (19)

where the subscript (m,n) denotes the nth vector from
the mth representation, and Zm

2 = 1+O(↵s). The super-
script m on the renormalisation factor indicates that this
can depend on representation. In this first investigation
we do not compute Zm

2 , but note that for similar gluonic
operators, such as the gluonic part of the energy momen-
tum tensor, the corresponding renormalisation factor is

O(1) [12]. It would be surprising if Zm
2 , for any choice of

m, was significantly di↵erent.

C. Extraction of Results

The expectation values of the matrix elements of the
operators described in the previous section in the � me-
son are extracted from ratios of two and three-point cor-
relation functions. In order to compute these correlation
functions, strange quark propagators were computed us-
ing a bare quark mass m = �0.2450 using 5 iterations
of gauge-invariant Gaussian smearing [21] in the spatial
directions at both source and sink. Measurements were
performed for 96 di↵erent source locations on each of
1042 configurations, resulting in 100032 measurements.
These propagators were contracted to form two-point and
three-point � meson correlators using interpolating oper-
ators of the form ⌘i(x) = s(x)�is(x) in terms of smeared
quark fields. For each type of correlator, measurements
on each configuration were averaged and bootstrap sta-
tistical resampling was used in order to assess the statis-
tical uncertainties in the measurements. Note that the
calculation does not include annihilation contributions
(self-contraction of propagators at the source and sink),
the e↵ects of which are OZI-suppressed.

The two point correlators

C2pt
jk (t, ~p) =

X

~x

ei~p·~xh⌘j(t, ~x)⌘†k(0,~0)i

=Z�

⇣
e�Et + e�E(T�t)

⌘X

��0

✏(E)
j (~p,�)✏(E)⇤

k (~p,�0)

+ . . . , (20)

were constructed for all diagonal and o↵-diagonal polar-
isation combinations (jk). The ellipsis denotes contribu-
tions from excited states. For the spin-1 � meson there
are three di↵erent particle states such that

h0|⌘i(~p)|~p,�i =
p

Z�✏
(E)
i (~p,�) , (21)

where � = {+,�, 0}, and the polarisation vectors in
Minkowski space have the explicit form

✏µ(~p,�) =

✓
~p · ~e�
m

,~e� +
~p · ~e�

m(m + E)
~p

◆
, (22)

with m and E =
p|~p|2 + m2 being the rest mass and
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Focus in bare operator and ignore renormalisation 

µ ν
µ1 µ2
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where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is

hpE0|Oµ⌫µ1...µn |pEi
= (�2i)n�2 1

2
S [{ (pµE

0⇤
µ1

� pµ1E
0⇤
µ )(p⌫Eµ2 � pµ2E⌫)

+ (µ $ ⌫)} pµ3 . . . pµn ]An(µ2),
(10)

where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and

Mn(Q2) =

Z 1

0
dxxn�1�(x,Q2) (12)

are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),

�(x,Q2) = �↵s(Q2)

2⇡
TrQ2 x2

Z 1

x

dy

y3
�G(y,Q2), (13)

where �G is again renormalized at the scale µ2 = Q2,
and

�G(x, µ2) = gx̂(x, µ
2) � gŷ(x, µ

2). (14)

Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2 This definition of An di↵ers from that in Ref. [7] by a factor of
two, chosen for convenience for the discussion of the So↵er bound
in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)k where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify
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the symmetry properties of each irreducible representa-
tion, the bases of interest here (i.e., those which have the
same symmetry as the operator under consideration) are
those in the irreducible subspace corresponding to a 2⇥2
Young frame.
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sentations that first appear at rank m = 4 (corresponding

to the n = 2 operator), ⌧ (2)1 , ⌧ (2)2 , and ⌧ (6)2 also appear
in the GL(4)-irreducible subspace which has the correct
symmetries for Eq. (15). We therefore choose to con-
sider lattice operators transforming under these three ir-
reducible representations as they cannot mix with any
quark or gluon operators of the same or lower dimen-
sion . Explicit forms of the ten (2+2+6 from the three
representations) basis vectors we consider are given in
Appendix A.

To implement the lattice operator, Olatt.
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Once operators have been constructed with the correct
symmetry properties under H(4), the lattice and con-
tinuum operators are related by a finite renormalisation
factor

O(E)
m,n = Zm

2 Olatt.
m,n , (19)

where the subscript (m,n) denotes the nth vector from
the mth representation, and Zm

2 = 1+O(↵s). The super-
script m on the renormalisation factor indicates that this
can depend on representation. In this first investigation
we do not compute Zm

2 , but note that for similar gluonic
operators, such as the gluonic part of the energy momen-
tum tensor, the corresponding renormalisation factor is

O(1) [12]. It would be surprising if Zm
2 , for any choice of

m, was significantly di↵erent.

C. Extraction of Results

The expectation values of the matrix elements of the
operators described in the previous section in the � me-
son are extracted from ratios of two and three-point cor-
relation functions. In order to compute these correlation
functions, strange quark propagators were computed us-
ing a bare quark mass m = �0.2450 using 5 iterations
of gauge-invariant Gaussian smearing [21] in the spatial
directions at both source and sink. Measurements were
performed for 96 di↵erent source locations on each of
1042 configurations, resulting in 100032 measurements.
These propagators were contracted to form two-point and
three-point � meson correlators using interpolating oper-
ators of the form ⌘i(x) = s(x)�is(x) in terms of smeared
quark fields. For each type of correlator, measurements
on each configuration were averaged and bootstrap sta-
tistical resampling was used in order to assess the statis-
tical uncertainties in the measurements. Note that the
calculation does not include annihilation contributions
(self-contraction of propagators at the source and sink),
the e↵ects of which are OZI-suppressed.
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were constructed for all diagonal and o↵-diagonal polar-
isation combinations (jk). The ellipsis denotes contribu-
tions from excited states. For the spin-1 � meson there
are three di↵erent particle states such that
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✓
~p · ~e�
m

,~e� +
~p · ~e�

m(m + E)
~p

◆
, (22)

with m and E =
p|~p|2 + m2 being the rest mass and
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tion, the bases of interest here (i.e., those which have the
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those in the irreducible subspace corresponding to a 2⇥2
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to the n = 2 operator), ⌧ (2)1 , ⌧ (2)2 , and ⌧ (6)2 also appear
in the GL(4)-irreducible subspace which has the correct
symmetries for Eq. (15). We therefore choose to con-
sider lattice operators transforming under these three ir-
reducible representations as they cannot mix with any
quark or gluon operators of the same or lower dimen-
sion . Explicit forms of the ten (2+2+6 from the three
representations) basis vectors we consider are given in
Appendix A.
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tum tensor, the corresponding renormalisation factor is

O(1) [12]. It would be surprising if Zm
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m, was significantly di↵erent.

C. Extraction of Results

The expectation values of the matrix elements of the
operators described in the previous section in the � me-
son are extracted from ratios of two and three-point cor-
relation functions. In order to compute these correlation
functions, strange quark propagators were computed us-
ing a bare quark mass m = �0.2450 using 5 iterations
of gauge-invariant Gaussian smearing [21] in the spatial
directions at both source and sink. Measurements were
performed for 96 di↵erent source locations on each of
1042 configurations, resulting in 100032 measurements.
These propagators were contracted to form two-point and
three-point � meson correlators using interpolating oper-
ators of the form ⌘i(x) = s(x)�is(x) in terms of smeared
quark fields. For each type of correlator, measurements
on each configuration were averaged and bootstrap sta-
tistical resampling was used in order to assess the statis-
tical uncertainties in the measurements. Note that the
calculation does not include annihilation contributions
(self-contraction of propagators at the source and sink),
the e↵ects of which are OZI-suppressed.
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were constructed for all diagonal and o↵-diagonal polar-
isation combinations (jk). The ellipsis denotes contribu-
tions from excited states. For the spin-1 � meson there
are three di↵erent particle states such that

h0|⌘i(~p)|~p,�i =
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those in the irreducible subspace corresponding to a 2⇥2
Young frame.
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sentations that first appear at rank m = 4 (corresponding

to the n = 2 operator), ⌧ (2)1 , ⌧ (2)2 , and ⌧ (6)2 also appear
in the GL(4)-irreducible subspace which has the correct
symmetries for Eq. (15). We therefore choose to con-
sider lattice operators transforming under these three ir-
reducible representations as they cannot mix with any
quark or gluon operators of the same or lower dimen-
sion . Explicit forms of the ten (2+2+6 from the three
representations) basis vectors we consider are given in
Appendix A.
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factor
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where the subscript (m,n) denotes the nth vector from
the mth representation, and Zm
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can depend on representation. In this first investigation
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operators, such as the gluonic part of the energy momen-
tum tensor, the corresponding renormalisation factor is
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2 , for any choice of
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The expectation values of the matrix elements of the
operators described in the previous section in the � me-
son are extracted from ratios of two and three-point cor-
relation functions. In order to compute these correlation
functions, strange quark propagators were computed us-
ing a bare quark mass m = �0.2450 using 5 iterations
of gauge-invariant Gaussian smearing [21] in the spatial
directions at both source and sink. Measurements were
performed for 96 di↵erent source locations on each of
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These propagators were contracted to form two-point and
three-point � meson correlators using interpolating oper-
ators of the form ⌘i(x) = s(x)�is(x) in terms of smeared
quark fields. For each type of correlator, measurements
on each configuration were averaged and bootstrap sta-
tistical resampling was used in order to assess the statis-
tical uncertainties in the measurements. Note that the
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(self-contraction of propagators at the source and sink),
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Double Helicity Flip Gluon Structure

First LQCD calculation [WD & P Shanahan PRD 94 (2016), 014507] 

First moment in ϕ meson (simplest spin-1 system, nuclei 
eventually) 

Lattice details: clover fermions, Lüscher-Weisz gauge 
action 
 
 
 
 
 

Many systematics not addressed!: a→0, L→∞, mphys 

Extremely high statistics: O(100,000) measurements

Lattice Details
Luscher-Weisz gauge action with a clover-improved quark action

L/a T/a � aml ams

24 64 6.1 -0.2800 -0.2450

a (fm) L (fm) T (fm) m⇡ (MeV) mK (MeV)

0.1167(16) 2.801(29) 7.469(77) 450(5) 596(6)

m� (MeV) m⇡L m⇡T Ncfg Nsrc

1040(3) 6.390 17.04 1042 105

All � polarization states ({1, 2, 3} or {+,�, 0})
I on-diagonal
I o↵-diagonal

Momenta up to (1,1,1) in lattice units (1 unit ⇠ 0.4GeV)

Di↵erent discretisations of the operator (di↵erent irreps.)
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Double Helicity Flip Gluon Structure

More specifically (including off-forward case  
 
 
 

Use appropriate combinations of polarisations 

Study for boost momenta up to (1,1,1) 

Examine all elements of each lattice irrep
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TABLE I. Parameters of the ensemble of gauge-field configurations. The lattices have dimension L3 ⇥ T , lattice spacing a
and bare quark masses amq (in lattice units). A total of Nsrc light-quark sources were used to perform measurements on Ncfg

configurations.

the symmetry properties of each irreducible representa-
tion, the bases of interest here (i.e., those which have the
same symmetry as the operator under consideration) are
those in the irreducible subspace corresponding to a 2⇥2
Young frame.

The symmetry properties of operators which could pos-

sibly mix with O(E)
µ⌫µ1µ2 are given in Table II in terms of

the defining representation labelled as ⌧ (4)1 and the odd-

parity representation labelled as ⌧ (4)4 .
Table III shows the rank at which irreducible repre-

sentations first appear in each tower of tensor products
(decomposed into direct sums) in Table II. Of the repre-
sentations that first appear at rank m = 4 (corresponding

to the n = 2 operator), ⌧ (2)1 , ⌧ (2)2 , and ⌧ (6)2 also appear
in the GL(4)-irreducible subspace which has the correct
symmetries for Eq. (15). We therefore choose to con-
sider lattice operators transforming under these three ir-
reducible representations as they cannot mix with any
quark or gluon operators of the same or lower dimen-
sion . Explicit forms of the ten (2+2+6 from the three
representations) basis vectors we consider are given in
Appendix A.

To implement the lattice operator, Olatt.
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, we use the
clover definition of the field strength tensor
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Once operators have been constructed with the correct
symmetry properties under H(4), the lattice and con-
tinuum operators are related by a finite renormalisation
factor
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m,n = Zm
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m,n , (19)

where the subscript (m,n) denotes the nth vector from
the mth representation, and Zm

2 = 1+O(↵s). The super-
script m on the renormalisation factor indicates that this
can depend on representation. In this first investigation
we do not compute Zm

2 , but note that for similar gluonic
operators, such as the gluonic part of the energy momen-
tum tensor, the corresponding renormalisation factor is

O(1) [12]. It would be surprising if Zm
2 , for any choice of

m, was significantly di↵erent.

C. Extraction of Results

The expectation values of the matrix elements of the
operators described in the previous section in the � me-
son are extracted from ratios of two and three-point cor-
relation functions. In order to compute these correlation
functions, strange quark propagators were computed us-
ing a bare quark mass m = �0.2450 using 5 iterations
of gauge-invariant Gaussian smearing [21] in the spatial
directions at both source and sink. Measurements were
performed for 96 di↵erent source locations on each of
1042 configurations, resulting in 100032 measurements.
These propagators were contracted to form two-point and
three-point � meson correlators using interpolating oper-
ators of the form ⌘i(x) = s(x)�is(x) in terms of smeared
quark fields. For each type of correlator, measurements
on each configuration were averaged and bootstrap sta-
tistical resampling was used in order to assess the statis-
tical uncertainties in the measurements. Note that the
calculation does not include annihilation contributions
(self-contraction of propagators at the source and sink),
the e↵ects of which are OZI-suppressed.
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were constructed for all diagonal and o↵-diagonal polar-
isation combinations (jk). The ellipsis denotes contribu-
tions from excited states. For the spin-1 � meson there
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h0|⌘i(~p)|~p,�i =
p

Z�✏
(E)
i (~p,�) , (21)

where � = {+,�, 0}, and the polarisation vectors in
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✏µ(~p,�) =

✓
~p · ~e�
m
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◆
, (22)

with m and E =
p|~p|2 + m2 being the rest mass and
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TABLE II. Dimensions and symmetry properties under H(4) of operators that may mix with O(E)
µ⌫µ1...µn . The symbol ⇢

indicates that the operator transforms as a subset of the symmetry group shown.

Rank ⌦
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TABLE III. Irreducible representations which appear for the first time at each rank m for the towers of operators in Table II.

energy of the state, and

~e± = ⌥ mp
2
(0, 1,±i), (23)

~e0 = m(1, 0, 0). (24)

The Euclidean polarisations needed for Eqs. (21) and (20)
are

✏(E)
i (~p,�) = ✏i(~p,�). (25)

To construct the three-point correlators correspond-
ing to the insertion of the gluonic operator, the two
point functions above were correlated configuration-by-
configuration, and source-location–by–source-location,
with the gluonic operator. The three-point correlators
for a given operator O = Olatt.

m,n have the form
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X

~x

X

~y
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�Et
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��0
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+ . . . (26)

if 0 ⌧ ⌧ ⌧ t ⌧ T (where T denotes the time extent of
the lattice). If we instead have 0 ⌧ t ⌧ ⌧ ⌧ T , t is
replaced by (T � t) in the rightmost form of the above
expression and there is an additional multiplicative factor
of (�1)n4 where n4 is the number of temporal indices
in the operator O. In constructing C3pt, various levels
of Wilson flow [22] or HYP smearing [23] were applied

to the links in the gluon operator. This was shown in
Refs. [11, 13] to significantly improve the signal-to-noise
ratio for a di↵erent gluon operator calculation.

Using Eq. (20) and Eq. (26) we construct the ratio

Rjk(t, ⌧, ~p) =
C3pt

jk (t, ⌧, ~p) + C3pt
jk (T � t, T � ⌧, ~p)

C2pt
jk (t, ~p)

(27)

for {t, ⌧} < T/2. Other choices for the ratio, with dif-
ferent combinations of the two-point function in the de-
nominator (e.g., spin-averaged) were also considered, and
give consistent results. This ratio may still depend on t
and ⌧ due to contributions from higher states neglected
in the derivation of Eq. (26). Note that the two point cor-
relator in the denominator has reached its ground state
after t = 8.

To determine the dependence of the ratio in Eq. (27) on
the reduced matrix element A2, we apply Eq. (10) to the
Minkowski-space versions of the Euclidean-space vectors
in Appendix A. The Minkowski operators are determined
by noting that

G(E)
ij = Gij if i, j 2 {1, 2, 3}, (28)

G(E)
4j = (�i)G0j , (29)

and so

Om,n ⇠ (�i)n4Oµ⌫µ1µ2 , (30)

where n4 is the number of temporal indices on the left-
hand side, and temporal indices labelled ‘4’ in Euclidean

4

L/a T/a � aml ams a (fm) L (fm) T (fm) m⇡ (MeV) mK (MeV) m� (MeV) m⇡L m⇡T Ncfg Nmeas

24 64 6.1 -0.2800 -0.2450 0.1167(16) 2.801(29) 7.469(77) 450(5) 596(6) 1040(3) 6.390 17.04 1042 105

TABLE I: LQCD simulation details. The gauge configurations have dimensions L3⇥T , lattice spacing a, and bare quark masses
amq (in lattice units). A total of Nmeas light-quark sources were used to perform measurements across Ncfg configurations.

ators in two irreducible representations of H(4) that do
not mix with operators of same or lower dimension are in-
vestigated. Lattice operators which define bases of these
representations are given explicitly in Appendix A along
with their Minkowski-space analogues. These operators
are constructed using the clover definition of the gluon
field strength tensor, with gradient flow [11] applied to
the links in the lattice gluon operators. The final results
shown use operators flowed to a total time of 1 in lattice
units using a step size of 0.01.

As discussed in Ref. [10], the transversity lattice oper-
ators are related to continuum Euclidean-space operators
through a finite multiplicative renormalisation factor:

O(E)

l,m,n = Zl,mOlatt

l,m,n, (9)

where the subscript (l,m, n) denotes the nth vector from
the mth representation of a lattice operator (where such
operators are identified by the subscript l), and Zl,m =
1 + O(↵s). In this work the renormalisation factors are
not computed, but it is expected based on studies of sim-
ilar gluonic operators [12] that they are O(1).

Lattice operators from two representations of H(4) are
considered for the spin-independent gluon operator de-
fined in Eq. (1), with explicit definitions given in Ap-
pendix A. As noted above, these operators necessarily

mix with the quark operator
P

f  f�{µ
 !
D⌫} f . With

the lattice operators corresponding to this quark bilin-
ear (where operators transforming irreducibly under H(4)
are constructed in the same way as those for the corre-

sponding gluonic operator) denoted by Qlatt

l,m,n with the
subscripts defined as above, this mixing under renormal-
isation can be expressed as

O(E)

l,m,n = Zgg
l,mOlatt

l,m,n + Zgq
l,mQlatt

l,m,n. (10)

In Ref. [12] it is shown numerically that this mixing, i.e.,
the magnitude of Zqg

l,m, is at the few-percent level for a
similar action to the one used here, and that the renor-
malisation Zgg

l,m is approximately unity, with several lev-
els of stout smearing used on the operator. These small
mixing e↵ects are neglected in the present calculation.

B. Determination of matrix elements

Matrix elements of the operators discussed in the previ-
ous section in the �meson can be extracted from ratios of
two and three-point correlation functions. With ⌘j(~p, t)
denoting the vector of � interpolating operators and
where ✏j are Euclidean polarisation vectors related to the

Minkowski expression in Eq. (4) by ✏j(~p,�) = Ej(~p,�),
such that3

h0|⌘j(~p)|~p,�i = Z�(~p) ✏j(~p,�), (11)

where ~p is the momentum of a state and � labels its
polarisation, the two-point function can be expressed as
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jk (~p, t) =
D

⌘k(~p, t)⌘
†
j (~p, 0)

E

= |Z�(~p)|2
⇣

e�Et + e�E(T�t)
⌘

X

�

✏k(~p,�)✏
⇤
j (~p,�).

(12)

Contributions from excited states (which are exponen-
tially suppressed) are omitted from this expression. In
analysis, care is taken to restrict to time ranges where
such contamination is negligible.
Three-point correlation functions are constructed

by taking the correlated product, configuration-by-
configuration and source-location–by–source-location, of
these two-point functions4 with the gluonic operators
calculated as described in the previous section. While
the only case for which the vacuum expectation value
D

⌘k(~p 0, t) ⌘†j (~p, 0)
ED

O(~p 0 � ~p, ⌧)
E

is non-zero is where

~p = ~p 0 and O is a spin-independent gluon operator, a
vacuum subtraction is performed for every operator and
all momenta in this calculation. This correlated sub-
traction of zero improves the signal-to-noise ratio signif-
icantly. Inserting complete sets of states, the subtracted
three-point correlators can thus be expressed as
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jk (~p, ~p 0, t, ⌧,O) ⌘
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��0
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j (~p

0,�0)h~p,�|O|~p 0,�0i

(13)

for 0⌧ ⌧ ⌧ t⌧ T (where T denotes the time extent of
the lattice). For the case 0⌧ t⌧ ⌧ ⌧ T , t is replaced by
(T � t) in the final line of the above expression and there

3
Note that cubic symmetry guarantees the polarisation-

independence of Z�(~p).
4
For three-point functions with o↵-diagonal polarisations in the

helicity basis, the two-point functions used are zero when an en-

semble average is taken, but signals emerge through their correla-

tion with the gluonic operators. The gluon transversity operators

considered here are themselves zero on ensemble average.
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ators in two irreducible representations of H(4) that do
not mix with operators of same or lower dimension are in-
vestigated. Lattice operators which define bases of these
representations are given explicitly in Appendix A along
with their Minkowski-space analogues. These operators
are constructed using the clover definition of the gluon
field strength tensor, with gradient flow [11] applied to
the links in the lattice gluon operators. The final results
shown use operators flowed to a total time of 1 in lattice
units using a step size of 0.01.

As discussed in Ref. [10], the transversity lattice oper-
ators are related to continuum Euclidean-space operators
through a finite multiplicative renormalisation factor:

O(E)

l,m,n = Zl,mOlatt

l,m,n, (9)

where the subscript (l,m, n) denotes the nth vector from
the mth representation of a lattice operator (where such
operators are identified by the subscript l), and Zl,m =
1 + O(↵s). In this work the renormalisation factors are
not computed, but it is expected based on studies of sim-
ilar gluonic operators [12] that they are O(1).

Lattice operators from two representations of H(4) are
considered for the spin-independent gluon operator de-
fined in Eq. (1), with explicit definitions given in Ap-
pendix A. As noted above, these operators necessarily

mix with the quark operator
P

f  f�{µ
 !
D⌫} f . With

the lattice operators corresponding to this quark bilin-
ear (where operators transforming irreducibly under H(4)
are constructed in the same way as those for the corre-

sponding gluonic operator) denoted by Qlatt

l,m,n with the
subscripts defined as above, this mixing under renormal-
isation can be expressed as

O(E)

l,m,n = Zgg
l,mOlatt

l,m,n + Zgq
l,mQlatt

l,m,n. (10)

In Ref. [12] it is shown numerically that this mixing, i.e.,
the magnitude of Zqg

l,m, is at the few-percent level for a
similar action to the one used here, and that the renor-
malisation Zgg

l,m is approximately unity, with several lev-
els of stout smearing used on the operator. These small
mixing e↵ects are neglected in the present calculation.

B. Determination of matrix elements

Matrix elements of the operators discussed in the previ-
ous section in the �meson can be extracted from ratios of
two and three-point correlation functions. With ⌘j(~p, t)
denoting the vector of � interpolating operators and
where ✏j are Euclidean polarisation vectors related to the

Minkowski expression in Eq. (4) by ✏j(~p,�) = Ej(~p,�),
such that3

h0|⌘j(~p)|~p,�i = Z�(~p) ✏j(~p,�), (11)

where ~p is the momentum of a state and � labels its
polarisation, the two-point function can be expressed as
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⌘
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(12)

Contributions from excited states (which are exponen-
tially suppressed) are omitted from this expression. In
analysis, care is taken to restrict to time ranges where
such contamination is negligible.
Three-point correlation functions are constructed

by taking the correlated product, configuration-by-
configuration and source-location–by–source-location, of
these two-point functions4 with the gluonic operators
calculated as described in the previous section. While
the only case for which the vacuum expectation value
D

⌘k(~p 0, t) ⌘†j (~p, 0)
ED

O(~p 0 � ~p, ⌧)
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is non-zero is where

~p = ~p 0 and O is a spin-independent gluon operator, a
vacuum subtraction is performed for every operator and
all momenta in this calculation. This correlated sub-
traction of zero improves the signal-to-noise ratio signif-
icantly. Inserting complete sets of states, the subtracted
three-point correlators can thus be expressed as
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for 0⌧ ⌧ ⌧ t⌧ T (where T denotes the time extent of
the lattice). For the case 0⌧ t⌧ ⌧ ⌧ T , t is replaced by
(T � t) in the final line of the above expression and there
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Note that cubic symmetry guarantees the polarisation-

independence of Z�(~p).
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For three-point functions with o↵-diagonal polarisations in the

helicity basis, the two-point functions used are zero when an en-

semble average is taken, but signals emerge through their correla-

tion with the gluonic operators. The gluon transversity operators

considered here are themselves zero on ensemble average.
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ators in two irreducible representations of H(4) that do
not mix with operators of same or lower dimension are in-
vestigated. Lattice operators which define bases of these
representations are given explicitly in Appendix A along
with their Minkowski-space analogues. These operators
are constructed using the clover definition of the gluon
field strength tensor, with gradient flow [11] applied to
the links in the lattice gluon operators. The final results
shown use operators flowed to a total time of 1 in lattice
units using a step size of 0.01.

As discussed in Ref. [10], the transversity lattice oper-
ators are related to continuum Euclidean-space operators
through a finite multiplicative renormalisation factor:

O(E)

l,m,n = Zl,mOlatt

l,m,n, (9)

where the subscript (l,m, n) denotes the nth vector from
the mth representation of a lattice operator (where such
operators are identified by the subscript l), and Zl,m =
1 + O(↵s). In this work the renormalisation factors are
not computed, but it is expected based on studies of sim-
ilar gluonic operators [12] that they are O(1).

Lattice operators from two representations of H(4) are
considered for the spin-independent gluon operator de-
fined in Eq. (1), with explicit definitions given in Ap-
pendix A. As noted above, these operators necessarily

mix with the quark operator
P

f  f�{µ
 !
D⌫} f . With

the lattice operators corresponding to this quark bilin-
ear (where operators transforming irreducibly under H(4)
are constructed in the same way as those for the corre-

sponding gluonic operator) denoted by Qlatt

l,m,n with the
subscripts defined as above, this mixing under renormal-
isation can be expressed as

O(E)

l,m,n = Zgg
l,mOlatt

l,m,n + Zgq
l,mQlatt

l,m,n. (10)

In Ref. [12] it is shown numerically that this mixing, i.e.,
the magnitude of Zqg

l,m, is at the few-percent level for a
similar action to the one used here, and that the renor-
malisation Zgg

l,m is approximately unity, with several lev-
els of stout smearing used on the operator. These small
mixing e↵ects are neglected in the present calculation.

B. Determination of matrix elements

Matrix elements of the operators discussed in the previ-
ous section in the �meson can be extracted from ratios of
two and three-point correlation functions. With ⌘j(~p, t)
denoting the vector of � interpolating operators and
where ✏j are Euclidean polarisation vectors related to the

Minkowski expression in Eq. (4) by ✏j(~p,�) = Ej(~p,�),
such that3

h0|⌘j(~p)|~p,�i = Z�(~p) ✏j(~p,�), (11)

where ~p is the momentum of a state and � labels its
polarisation, the two-point function can be expressed as
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Contributions from excited states (which are exponen-
tially suppressed) are omitted from this expression. In
analysis, care is taken to restrict to time ranges where
such contamination is negligible.
Three-point correlation functions are constructed

by taking the correlated product, configuration-by-
configuration and source-location–by–source-location, of
these two-point functions4 with the gluonic operators
calculated as described in the previous section. While
the only case for which the vacuum expectation value
D

⌘k(~p 0, t) ⌘†j (~p, 0)
ED

O(~p 0 � ~p, ⌧)
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is non-zero is where

~p = ~p 0 and O is a spin-independent gluon operator, a
vacuum subtraction is performed for every operator and
all momenta in this calculation. This correlated sub-
traction of zero improves the signal-to-noise ratio signif-
icantly. Inserting complete sets of states, the subtracted
three-point correlators can thus be expressed as
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for 0⌧ ⌧ ⌧ t⌧ T (where T denotes the time extent of
the lattice). For the case 0⌧ t⌧ ⌧ ⌧ T , t is replaced by
(T � t) in the final line of the above expression and there
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ators in two irreducible representations of H(4) that do
not mix with operators of same or lower dimension are in-
vestigated. Lattice operators which define bases of these
representations are given explicitly in Appendix A along
with their Minkowski-space analogues. These operators
are constructed using the clover definition of the gluon
field strength tensor, with gradient flow [11] applied to
the links in the lattice gluon operators. The final results
shown use operators flowed to a total time of 1 in lattice
units using a step size of 0.01.

As discussed in Ref. [10], the transversity lattice oper-
ators are related to continuum Euclidean-space operators
through a finite multiplicative renormalisation factor:
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l,m,n = Zl,mOlatt

l,m,n, (9)

where the subscript (l,m, n) denotes the nth vector from
the mth representation of a lattice operator (where such
operators are identified by the subscript l), and Zl,m =
1 + O(↵s). In this work the renormalisation factors are
not computed, but it is expected based on studies of sim-
ilar gluonic operators [12] that they are O(1).

Lattice operators from two representations of H(4) are
considered for the spin-independent gluon operator de-
fined in Eq. (1), with explicit definitions given in Ap-
pendix A. As noted above, these operators necessarily

mix with the quark operator
P

f  f�{µ
 !
D⌫} f . With

the lattice operators corresponding to this quark bilin-
ear (where operators transforming irreducibly under H(4)
are constructed in the same way as those for the corre-

sponding gluonic operator) denoted by Qlatt

l,m,n with the
subscripts defined as above, this mixing under renormal-
isation can be expressed as
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In Ref. [12] it is shown numerically that this mixing, i.e.,
the magnitude of Zqg

l,m, is at the few-percent level for a
similar action to the one used here, and that the renor-
malisation Zgg

l,m is approximately unity, with several lev-
els of stout smearing used on the operator. These small
mixing e↵ects are neglected in the present calculation.

B. Determination of matrix elements

Matrix elements of the operators discussed in the previ-
ous section in the �meson can be extracted from ratios of
two and three-point correlation functions. With ⌘j(~p, t)
denoting the vector of � interpolating operators and
where ✏j are Euclidean polarisation vectors related to the

Minkowski expression in Eq. (4) by ✏j(~p,�) = Ej(~p,�),
such that3

h0|⌘j(~p)|~p,�i = Z�(~p) ✏j(~p,�), (11)

where ~p is the momentum of a state and � labels its
polarisation, the two-point function can be expressed as
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(12)

Contributions from excited states (which are exponen-
tially suppressed) are omitted from this expression. In
analysis, care is taken to restrict to time ranges where
such contamination is negligible.
Three-point correlation functions are constructed

by taking the correlated product, configuration-by-
configuration and source-location–by–source-location, of
these two-point functions4 with the gluonic operators
calculated as described in the previous section. While
the only case for which the vacuum expectation value
D

⌘k(~p 0, t) ⌘†j (~p, 0)
ED

O(~p 0 � ~p, ⌧)
E

is non-zero is where

~p = ~p 0 and O is a spin-independent gluon operator, a
vacuum subtraction is performed for every operator and
all momenta in this calculation. This correlated sub-
traction of zero improves the signal-to-noise ratio signif-
icantly. Inserting complete sets of states, the subtracted
three-point correlators can thus be expressed as
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for 0⌧ ⌧ ⌧ t⌧ T (where T denotes the time extent of
the lattice). For the case 0⌧ t⌧ ⌧ ⌧ T , t is replaced by
(T � t) in the final line of the above expression and there

3
Note that cubic symmetry guarantees the polarisation-

independence of Z�(~p).
4
For three-point functions with o↵-diagonal polarisations in the

helicity basis, the two-point functions used are zero when an en-

semble average is taken, but signals emerge through their correla-

tion with the gluonic operators. The gluon transversity operators

considered here are themselves zero on ensemble average.
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is an additional multiplicative factor of (�1)n4 where n
4

is the number of temporal indices in the operator.
The two and three-point correlation functions were

constructed from propagators computed using a bare
quark mass m = �0.2450 and 5 iterations of gauge-
invariant Gaussian smearing in the spatial directions at
both source and sink, with interpolating operators of
the form ⌘j(x) =  (x)�i (x) in terms of smeared quark
fields. On each of 1042 configurations, spaced by 10 tra-
jectories, 96 source locations were used, and measure-
ments were averaged over these source locations before
a bootstrap analysis was performed to assess statistical
uncertainties.

The leading exponential time-dependence in Eq. (13),
as well as factors of Z�, can be eliminated by forming the
ratio:

Rjk(~p, ~p
0, t, ⌧,O) =

C3pt

jk (~p, ~p 0, t, ⌧,O)

C2pt

kk (~p 0, t)
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t
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jj (~p, t� ⌧)C2pt

kk (~p 0, t)C2pt

kk (~p 0, ⌧)

C2pt

kk (~p 0, t� ⌧)C2pt

jj (~p, t)C2pt

jj (~p, ⌧)
,

(14)

which is proportional, through factors of m� and mo-
mentum components, to the matrix elements of interest,
h~p 0,�0|O|~p,�i. For each lattice operator O, this ratio was
constructed for all diagonal and o↵-diagonal polarisation
combinations jk, and for momenta up to ~p 2 = 4 and
~p 02 = 4, taken in all combinations that give a resultant
momentum transfer up to |~�2| = (~p 0 � ~p )2 = 6. Ra-
tios for the cases with ⌧ ⌧ t and t ⌧ ⌧ are averaged,
with the appropriate signs included as discussed follow-
ing Eq. (13).

C. Extraction of GFFs

The Euclidean operators used here are given explic-
itly in Appendix A and discussed in Sec. IIIA. Ma-
trix elements of these operators, encoded in the ratios
Rjk(~p, ~p 0, t, ⌧,O) described in the previous section, are
matched to GFFs by applying Eqs. (7) and (8) to the cor-
responding Minkowski-space operator expressions (also
made explicit in Appendix A). For each basis of opera-
tors, at each value of the momentum transfer, this gener-

ates systems of equations for the GFFs, B(2)

i,m(�2) or the

A
(2)

i,m(�2) depending on the operator, where each equa-
tion corresponds to one choice of operator in the basis
and one set of momentum and polarisation vectors. In
general, these systems are large, the relation between the
GFFs and the matrix elements is not simply invertible,
and the systems can not be solved for all GFFs simulta-
neously, as discussed in detail below.
The extraction of the GFFs proceeds in four of steps:

1. Construct averages of the ratios Rjk(~p, ~p 0, t, ⌧,O)
for equivalent choices of polarisation, momenta,
and operators in a given basis;

2. Fit constants to the averaged ratios in their plateau
regions;

3. Determine the dominant GFFs for each operator;

4. Solve the (possibly over or under-determined) sys-
tem for the dominant GFFs at each �2;

each of which will be described in detail.
For each operator under consideration, the numerical

values of the ratios Rjk(~p, ~p 0, t, ⌧,O) are averaged, at the
bootstrap level, over all choices of momentum and po-
larisation that give the same linear combination of GFFs
up to a sign (by Eq. (7) or (8) as appropriate). This pro-
cedure defines a reduced set of unique, but not linearly
independent, linear equations for each operator and mo-
mentum transfer.

For each averaged ratio R(t, ⌧), the maximal connected
plateau region in t–⌧ space is determined, where this is
defined as the region where the bootstrap-level di↵er-
ences between all pairs of adjacent points are consistent
with zero. If this maximal plateau region for an aver-
aged ratio consists of less than 10 (t, ⌧) pairs, that ra-
tio is discarded from the analysis. Given this maximal
plateau region, the variation in central values of fits to
all sub-regions is taken as a measure of the fitting un-
certainty, while the bootstrap-level fit of a constant over
the maximal region gives the central value and statisti-
cal uncertainty of the fit. These uncertainties are propa-
gated as described below. In this analysis, all (t, ⌧) com-
binations are available, so a comprehensive elimination
of excited states can be achieved; this aspect of the cal-
culation is better controlled than for studies of quark
operators where each ⌧ (or t) value requires additional
computation and so typically only a few values can be
used. Figure 1 shows an example of such a plateau fit to
an averaged ratio in the t–⌧ plane.
Because of the large number of GFFs that contribute

to the o↵-forward matrix elements, not all can be de-
termined from the LQCD calculations presented here.
A complete extraction would require precise data from
many di↵erent sets of initial and final momenta giving
the same momentum transfer. This could be achieved ei-
ther with new techniques allowing high-precision data to
be obtained at large momenta [13–15], or with very large
lattices having the allowed values of momentum transfer
su�ciently closely spaced in physical units to allow bin-
ning. Given the sets of momenta available with good pre-
cision in these calculations, the linear systems generated
by the matching of the LQCD results to the correspond-
ing matrix elements in terms of GFFs do not contain
enough independent equations to constrain all GFFs for
some operators at some momentum transfers. In other
cases, the contributions from a number of the GFFs are
suppressed by several orders of magnitude relative to oth-
ers, again making the extraction of these quantities im-
possible with the current statistical precision. Moreover,
for some bases of operators, symmetries relate the coe�-
cients of two or more GFFs for every choice of momentum
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The Euclidean operators used here are given explic-
itly in Appendix A and discussed in Sec. IIIA. Ma-
trix elements of these operators, encoded in the ratios
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matched to GFFs by applying Eqs. (7) and (8) to the cor-
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general, these systems are large, the relation between the
GFFs and the matrix elements is not simply invertible,
and the systems can not be solved for all GFFs simulta-
neously, as discussed in detail below.
The extraction of the GFFs proceeds in four of steps:

1. Construct averages of the ratios Rjk(~p, ~p 0, t, ⌧,O)
for equivalent choices of polarisation, momenta,
and operators in a given basis;

2. Fit constants to the averaged ratios in their plateau
regions;

3. Determine the dominant GFFs for each operator;

4. Solve the (possibly over or under-determined) sys-
tem for the dominant GFFs at each �2;

each of which will be described in detail.
For each operator under consideration, the numerical

values of the ratios Rjk(~p, ~p 0, t, ⌧,O) are averaged, at the
bootstrap level, over all choices of momentum and po-
larisation that give the same linear combination of GFFs
up to a sign (by Eq. (7) or (8) as appropriate). This pro-
cedure defines a reduced set of unique, but not linearly
independent, linear equations for each operator and mo-
mentum transfer.

For each averaged ratio R(t, ⌧), the maximal connected
plateau region in t–⌧ space is determined, where this is
defined as the region where the bootstrap-level di↵er-
ences between all pairs of adjacent points are consistent
with zero. If this maximal plateau region for an aver-
aged ratio consists of less than 10 (t, ⌧) pairs, that ra-
tio is discarded from the analysis. Given this maximal
plateau region, the variation in central values of fits to
all sub-regions is taken as a measure of the fitting un-
certainty, while the bootstrap-level fit of a constant over
the maximal region gives the central value and statisti-
cal uncertainty of the fit. These uncertainties are propa-
gated as described below. In this analysis, all (t, ⌧) com-
binations are available, so a comprehensive elimination
of excited states can be achieved; this aspect of the cal-
culation is better controlled than for studies of quark
operators where each ⌧ (or t) value requires additional
computation and so typically only a few values can be
used. Figure 1 shows an example of such a plateau fit to
an averaged ratio in the t–⌧ plane.
Because of the large number of GFFs that contribute

to the o↵-forward matrix elements, not all can be de-
termined from the LQCD calculations presented here.
A complete extraction would require precise data from
many di↵erent sets of initial and final momenta giving
the same momentum transfer. This could be achieved ei-
ther with new techniques allowing high-precision data to
be obtained at large momenta [13–15], or with very large
lattices having the allowed values of momentum transfer
su�ciently closely spaced in physical units to allow bin-
ning. Given the sets of momenta available with good pre-
cision in these calculations, the linear systems generated
by the matching of the LQCD results to the correspond-
ing matrix elements in terms of GFFs do not contain
enough independent equations to constrain all GFFs for
some operators at some momentum transfers. In other
cases, the contributions from a number of the GFFs are
suppressed by several orders of magnitude relative to oth-
ers, again making the extraction of these quantities im-
possible with the current statistical precision. Moreover,
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(b)Cross-section at t = 9.

FIG. 2. Cross-sections of the plateau fit (in t and ⌧) to the re-
duced matrix element A2 extracted from the ratio Rjk(t, ⌧, ~p)

(Eq. (27)) for the vector O(E)
1,1 at |~p|2 = 0. Wilson flow [22]

was applied to the links in the gluon operator as described in
the text.

space correspond to indices labelled ‘0’ in Minkowski
space.

After averaging Rjk(t, ⌧, ~p), for a given basis vector

O(E)
m,n, over the combinations of {j, k} and equivalent

boost momenta ~p which are non-zero by Eq. (10)3, we
determine plateaus in the ⌧ -dependence at each value
of t, and in the t-dependence at each ⌧ , by searching
for regions where the nearest-neighbour finite di↵erences
in ⌧ or t are consistent with zero. Taking the maximal
connected overlap of the plateau regions defines a two-
dimensional plateau in ⌧ and t. We perform a fit at the
bootstrap level over that two-dimensional region to ex-

tract A2. An example of the fit for the vector O(E)
1,1 (given

explicitly in Appendix A) at |~p|2 = 0 is shown in Figs. 2

and 3, and for the vector O(E)
2,1 at |~p|2 = 3 is shown in

3 Note that this averaging requires factors of the energy and three-
momentum of the state; to determine the energy at a given ~p,
we use the measured mass and E =

p
|~p|2 + m2.

FIG. 3. Contour plot showing the fit region in the t–⌧ plane
for the fits displayed in Fig. 2. Each contour, moving out
from the center (i.e., moving from the pale to dark region),
denotes an interval of one standard deviation from the cen-
tral fit value. That is, results located on the third innermost
contour are inconsistent with the fit result at 3 standard devi-
ations. The results in the innermost pale region are consistent
with the fit at 1 standard deviation. The red stars show the
points included in the fit. Noise increases with increasing t as
illustrated in the vertical bar at the right of the figure which
shows the ⌧ -averaged (0 < ⌧ < t) absolute statistical uncer-
tainty of A2.

Fig. 4.

IV. SOFFER-LIKE INEQUALITY

As well as the proof-of-principle extraction of A2 de-
scribed above, we also undertake a more general explo-
ration of the gluonic structure of the � meson. We
consider here the direct gluonic analogue of the So↵er
bound [24] for transversity. This bound, which is a pos-
itivity constraint, was first studied in moment space on
the lattice in Ref. [10? ].

The So↵er bound, for the isovector quark parton dis-
tribution functions, is

|�q(x)|  1

2
(q(x) + �q(x)) , (31)

where q(x), �q(x) and �(x) denote the spin-independent,
spin-dependent and transversity quark distributions and
we suppress the renormalisation-scale dependence. The
gluonic analogue of this expression is [25, 26]

|�G(x)|  1

2
(G(x) + �G(x)) , (32)

where �G(x) is the gluonic transversity distribution de-
fined in Eq. (14) and G(x) and �G(x) are the spin-
independent and spin-dependent gluon distributions.
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with sink time t for the vector O(E)
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zontal bands show the final fit value obtained from the two
dimensional (t, ⌧) fit, as described in the text.

The Mellin moments of this equation are related to the
reduced matrix elements of local operators:

Oµ⌫µ1...µn =S
h
Gµµ1

 !
D µ3 . . .

 !
D µnG⌫µ2

i
, (33)

Oµ1...µn =S
h
Gµ1↵

 !
D µ3 . . .

 !
D µnG

↵
µ2

i
, (34)

eOµ1...µn =S
h
eGµ1↵

 !
D µ3 . . .

 !
D µnG

↵
µ2

i
, (35)

for the transversity, spin-independent and spin-
dependent distributions respectively, where the dual
field strength tensor is eGµ⌫ = 1

2✏µ⌫⇢�G
⇢�. The first

moments of the gluonic distributions are related to the
matrix elements of the n = 2 operators in the towers
above. Since the � matrix element of eOµ1µ2 vanishes by
parity, the analogue of the So↵er bound for the leading
Mellin moments of gluon distributions is [26]

|A2|
B2
 1

2
, (36)

where A2 is the reduced matrix element defined in

FIG. 5. Reduced matrix element A2 extracted from ratios of
two and three-point functions for di↵erent boost momenta, as
described in Section III C. Wilson flow [22] was applied to the
links in the gluon operator as described in the text. Results in
sections I, II and III of the figure are determined from vectors
in the ⌧

(2)
1 , ⌧

(6)
1 and ⌧

(2)
2 representations. Di↵erent colours

(o↵set on the horizontal access for clarity) denote di↵erent
vectors in each basis. The horizontal band is a fit shown to
guide the eye.

Eq. (10) and we define B2 through

hpE0|Oµ1µ2 |pEi
= S

h
(�E · E0⇤)pµ1pµ2 + (p · E)E0⇤

µ1
pµ2

+(p · E0⇤)Eµ1pµ2 � (p · p)E0⇤
µ1
Eµ2

⇤
B2(µ

2).
(37)

The building block of the Euclidean analogue of
Eq. (34) for n = 2 is

Oµ1µ2 = G(E)
µ1↵G

(E)
µ2↵. (38)

It is clear from Table II that this operator is subject to
mixing with same-dimension quark operators at O(↵s).
In this proof-of-principle study we neglect operator mix-
ing and renormalisation and simply determine the bare
lattice matrix element B2, as described in previous sec-
tions for A2, from the matrix elements of Euclidean-space
basis vectors in appropriate irreducible representations of
H(4). Explicit forms for the particular vectors we con-
sider are given in Appendix A.

V. RESULTS

The reduced matrix element A2 obtained from this
analysis, with Wilson flow [22] applied to the links in
the gluon operator to a total flow time of 1 in lattice
units using a step size of 0.01, is shown in Fig. 5 for
various boosts and for all operator basis vectors that
have non-vanishing contributions at that boost. Out-
standing agreement is seen between the values obtained

sink position
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determine plateaus in the ⌧ -dependence at each value
of t, and in the t-dependence at each ⌧ , by searching
for regions where the nearest-neighbour finite di↵erences
in ⌧ or t are consistent with zero. Taking the maximal
connected overlap of the plateau regions defines a two-
dimensional plateau in ⌧ and t. We perform a fit at the
bootstrap level over that two-dimensional region to ex-

tract A2. An example of the fit for the vector O(E)
1,1 (given

explicitly in Appendix A) at |~p|2 = 0 is shown in Figs. 2

and 3, and for the vector O(E)
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FIG. 3. Contour plot showing the fit region in the t–⌧ plane
for the fits displayed in Fig. 2. Each contour, moving out
from the center (i.e., moving from the pale to dark region),
denotes an interval of one standard deviation from the cen-
tral fit value. That is, results located on the third innermost
contour are inconsistent with the fit result at 3 standard devi-
ations. The results in the innermost pale region are consistent
with the fit at 1 standard deviation. The red stars show the
points included in the fit. Noise increases with increasing t as
illustrated in the vertical bar at the right of the figure which
shows the ⌧ -averaged (0 < ⌧ < t) absolute statistical uncer-
tainty of A2.
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IV. SOFFER-LIKE INEQUALITY

As well as the proof-of-principle extraction of A2 de-
scribed above, we also undertake a more general explo-
ration of the gluonic structure of the � meson. We
consider here the direct gluonic analogue of the So↵er
bound [24] for transversity. This bound, which is a pos-
itivity constraint, was first studied in moment space on
the lattice in Ref. [10? ].

The So↵er bound, for the isovector quark parton dis-
tribution functions, is

|�q(x)|  1

2
(q(x) + �q(x)) , (31)

where q(x), �q(x) and �(x) denote the spin-independent,
spin-dependent and transversity quark distributions and
we suppress the renormalisation-scale dependence. The
gluonic analogue of this expression is [25, 26]

|�G(x)|  1

2
(G(x) + �G(x)) , (32)

where �G(x) is the gluonic transversity distribution de-
fined in Eq. (14) and G(x) and �G(x) are the spin-
independent and spin-dependent gluon distributions.
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On further investigation, it was discovered that the
decomposition of the PDFs of the spin-independent gluon
operator in Eq. (37) of the main paper is incorrect. This
lead to a number of errors, which are corrected here.

Replacing Eq. (32) of the main paper, the gluonic ana-
logue of the So↵er bound, for spin-1 particles, is [1–4]

|�G(x)|  1

2

✓
f1(x) +

1

2
f1LL(x) + g1(x)

◆
, (1)

where �G(x) is the gluonic transversity distribution de-
fined in Eq. (14) of the main paper, f1(x) and f1LL(x)
are the spin-independent gluon distributions, and g1(x)
is the spin-dependent gluon distribution. The notation
here for f1, f1LL and g1 is the same as in Refs. [3, 4],
while �G(x) is named h1TT in those works.

Replacing Eq. (36) of the main paper, the analogue of
the So↵er bound for the leading Mellin moments of gluon

distributions is [4]

|A2|  1

24
(5B2,1 � 6B2,2), (2)

where A2 is the reduced matrix element defined in
Eq. (10) of the main paper and B2,1 and B2,2 are linear
combinations of the moments of the structure functions
f1 and f1LL in Eq. (1), defined through

hpE0|Oµ1µ2 |pEi
=S

⇥
M

2
E

0⇤
µ1
Eµ2

⇤
B2,1(µ

2)

+ S [(E · E0⇤)pµ1pµ2 ]B2,2(µ
2). (3)

This equation replaces Eq. (37) from the main paper.
Several figures must also be replaced. Figures 1 and 2

below replace Figs. 6 and 8 from the main paper. The
conclusions of the analysis, including that the gluon sof-
fer bound in the spin-1 � meson is saturated to approxi-
mately 80%–100%, do not change.
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are the spin-independent gluon distributions, and g1(x)
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Several figures must also be replaced. Figures 1 and 2

below replace Figs. 6 and 8 from the main paper. The
conclusions of the analysis, including that the gluon sof-
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FIG. 4. Example of the evolution of the ⌧ -plateaus for A2

with sink time t for the vector O(E)
2,1 at |~p|2 = 3. The hori-

zontal bands show the final fit value obtained from the two
dimensional (t, ⌧) fit, as described in the text.

reduced matrix elements of local operators:

Oµ⌫µ1...µn =S
h
Gµµ1

 !
D µ3 . . .

 !
D µnG⌫µ2

i
, (33)

Oµ1...µn =S
h
Gµ1↵

 !
D µ3 . . .

 !
D µnG

↵
µ2

i
, (34)

eOµ1...µn =S
h
eGµ1↵

 !
D µ3 . . .

 !
D µnG

↵
µ2

i
, (35)

for the transversity, spin-independent and spin-
dependent distributions respectively, where the dual
field strength tensor is eGµ⌫ = ✏µ⌫⇢�G⇢�. The first
moments of the gluonic distributions are related to the
matrix elements of the n = 2 operators in the towers
above. Since the � matrix element of eOµ1µ2 vanishes by
parity, the analogue of the So↵er bound for the leading
Mellin moments of gluon distributions is [26]

|A2|
B2
 1

2
, (36)

where A2 is the reduced matrix element defined in

FIG. 5. Reduced matrix element A2 extracted from ratios of
two and three-point functions for di↵erent boost momenta, as
described in Section III C. Wilson flow [22] was applied to the
links in the gluon operator as described in the text. Results in
sections I, II and III of the figure are determined from vectors
in the ⌧

(2)
1 , ⌧

(6)
1 and ⌧

(2)
2 representations. Di↵erent colours

(o↵set on the horizontal access for clarity) denote di↵erent
vectors in each basis. The horizontal band is a fit shown to
guide the eye.

Eq. (10) and we define B2 through

hpE0|Oµ1µ2 |pEi
= S

h
(�E · E0⇤)pµ1pµ2 + (p · E)E0

⇤µ1
pµ2

+(p · E0⇤)Eµ1pµ2 � (p · p)E0
⇤µ1

Eµ2

⇤
B2(µ

2).
(37)

The building block of the Euclidean analogue of
Eq. (34) for n = 2 is

Oµ1µ2 = G(E)
µ1↵G

(E)
µ2↵. (38)

It is clear from Table II that this operator is subject to
mixing with same-dimension quark operators at O(↵s).
In this proof-of-principle study we neglect operator mix-
ing and renormalisation and simply determine the bare
lattice matrix element B2, as described in previous sec-
tions for A2, from the matrix elements of Euclidean-space
basis vectors in appropriate irreducible representations of
H(4). Explicit forms for the particular vectors we con-
sider are given in Appendix A.

V. RESULTS

The reduced matrix element A2 obtained from this
analysis, with Wilson flow [22] applied to the links in
the gluon operator to a total flow time of 1 in lattice
units using a step size of 0.01, is shown in Fig. 5 for
various boosts and for all operator basis vectors that
have non-vanishing contributions at that boost. Out-
standing agreement is seen between the values obtained
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On further investigation, it was discovered that the
decomposition of the PDFs of the spin-independent gluon
operator in Eq. (37) of the main paper is incorrect. This
lead to a number of errors, which are corrected here.

Replacing Eq. (32) of the main paper, the gluonic ana-
logue of the So↵er bound, for spin-1 particles, is [1–4]
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where �G(x) is the gluonic transversity distribution de-
fined in Eq. (14) of the main paper, f1(x) and f1LL(x)
are the spin-independent gluon distributions, and g1(x)
is the spin-dependent gluon distribution. The notation
here for f1, f1LL and g1 is the same as in Refs. [3, 4],
while �G(x) is named h1TT in those works.
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where A2 is the reduced matrix element defined in
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combinations of the moments of the structure functions
f1 and f1LL in Eq. (1), defined through

hpE0|Oµ1µ2 |pEi
=S

⇥
M

2
E

0⇤
µ1
Eµ2

⇤
B2,1(µ

2)
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This equation replaces Eq. (37) from the main paper.
Several figures must also be replaced. Figures 1 and 2

below replace Figs. 6 and 8 from the main paper. The
conclusions of the analysis, including that the gluon sof-
fer bound in the spin-1 � meson is saturated to approxi-
mately 80%–100%, do not change.
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2

lated to matrix elements of the operators

Oµ⌫µ1...µn = S
h

Gµ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

, (1)

Õµ⌫µ1...µn = S
h

G̃µ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

, (2)

Oµ⌫µ1...µn = S
h

Gµµ1i
 !
D µ3 . . . i

 !
D µnG⌫µ2

i

, (3)

respectively, where the gluon field strength tensor is Gµ⌫ ,
the dual field-strength tensor is G̃µ⌫ = 1

2

✏µ⌫↵�G
↵� , and

 !
D = 1

2

⇣�!
D � �D

⌘

. ‘S’ denotes symmetrisation and trace-

subtraction in all free indices for Eqs. (1) and (2), and
symmetrisation in the µi and and trace-subtraction in
all indices for Eq. (3). The matrix elements of these
operators in spin-1 states, at lowest n, are the focus of
this work.

The o↵-forward matrix elements of the twist-2 oper-
ators defined above are described by GFFs. For spin-1
particles, there are 7(bn/2c+ 1) spin-independent gluon

GFFs for the nth operator in the tower. For the transver-
sity operator, there are 8(b(n � 2)/2c + 1) gluon GFFs.
The spin-dependent gluon GFFs, which vanish at lowest-
n through operator symmetries, are not considered nu-
merically in this work but are enumerated in Appendix B.
With the polarisation vectors of massive spin-1 particles
defined in Minkowski space as

Eµ(~p,�) =

✓

~p · ~e�
m

,~e� +
~p · ~e�

m(m+ E)~p
◆

, (4)

where � = {+,�, 0}, m and E =
p|~p|2 +m2 are the rest

mass and energy of the state, and

~e± = ⌥ 1p
2
(0, 1,±i), (5)

~e
0

= (1, 0, 0), (6)

the spin-independent gluon GFFs are defined1 [6] through

D

p0E0
�

�

�

S
h

Gµ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

�

�

�

pE
E

=
n
X

m even

m=0

(

B
(n+2)

1,m (�2)M2S
⇥

EµE
0⇤
⌫ �µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

2,m (�2)S
⇥

(E · E0⇤)PµP⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

3,m (�2)S
⇥

(E · E0⇤)�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

4,m (�2)S
⇥�

(E0⇤ · P )EµP⌫ + (E · P )E0⇤
µ P⌫

�

�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

5,m (�2)S
⇥�

(E0⇤ · P )Eµ�⌫ � (E · P )E0⇤
µ �⌫

�

�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+
B

(n+2)

6,m (�2)

M2

S
⇥

(E · P )(E0⇤ · P )PµP⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+
B

(n+2)

7,m (�2)

M2

S
⇥

(E · P )(E0⇤ · P )�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

)

. (7)

Here, P = (p + p0)/2 is the average momentum and the momentum transfer is defined as � = p0 � p. ‘S’ denotes

symmetrisation and trace-subtraction in all free indices. Of these GFFs, only B
(n)
1,0 (�

2) and B
(n)
2,0 (�

2) contribute to
forward-limit matrix elements. The renormalisation scheme and scale-dependence of the GFFs is suppressed here.

1
This choice of basis is slightly di↵erent from that in Ref. [6],

where the decomposition also includes a trace term.
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m

,~e� +
~p · ~e�

m(m+ E)~p
◆

, (4)

where � = {+,�, 0}, m and E =
p|~p|2 +m2 are the rest

mass and energy of the state, and

~e± = ⌥ 1p
2
(0, 1,±i), (5)

~e
0

= (1, 0, 0), (6)

the spin-independent gluon GFFs are defined1 [6] through
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Here, P = (p + p0)/2 is the average momentum and the momentum transfer is defined as � = p0 � p. ‘S’ denotes

symmetrisation and trace-subtraction in all free indices. Of these GFFs, only B
(n)
1,0 (�

2) and B
(n)
2,0 (�

2) contribute to
forward-limit matrix elements. The renormalisation scheme and scale-dependence of the GFFs is suppressed here.

1
This choice of basis is slightly di↵erent from that in Ref. [6],

where the decomposition also includes a trace term.

Many gluonic radii: 
Defined by slope of each 

form factor at Q2=t=0
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P = (p+ p0)/2, � = p0 � p.

note that, by the symmeries of the operator, Ã
labelme

= 0. Note also that there is no term that survives in the
forward limit.

Ack TMD collab

Matrix elements of the gluon transversity operator 

Similarly complicated:
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where the numbers and uncertainties on the right hand side of the equation come from the plateau fits to averaged
ratios obtained as described in the main text. The ordering of the rows is as in Table II.

Appendix D: Direct solution of form factor
decomposition for electromagnetic current

Since only three form factors contribute to matrix el-
ements of the electromagnetic current, a direct solution
of the constraint equations relating ratios of three-point
and two-point functions to the form factors is straight-
forward [18, 19]. This extraction is performed as a check
on the more general method discussed in Section III.

For each momentum transfer, �2, three ratios of two-
point and three-point functions are required to extract
the form factors at that momentum. At zero momentum
transfer, only the G

1

form factor can be determined. In
terms of the ratios

Ri
jk(~�) = Rjk(~p = ~�, ~p 0 = ~0, t, ⌧, J i) (D1)

for the currents J i =  ̄�i , where Rjk(~p, ~p 0, t, ⌧,O) is

defined in Eq. (14) and dependence on the current and
sink times is suppressed, the generic form of the solution
for the FFs can be expressed as

GX(�2) = MX

X

f=a,b,c

NX,fRX,f . (D2)

Here X = C,M,Q labels the Sachs form factors, which
are related to the basis used in Eq. (21) by

GQ(�
2) = G

1

(�2)�G
2

(�2) + (1 + ⌘)G
3

(Q2),

GM (�2) = G
2

(�2), (D3)

GC(�
2) = G

1

(�2) +
2

3
⌘GQ(�

2) .

One choice of the combinations NX,f for each momen-
tum used, given that only zero sink momentum sequen-
tial propagators were computed, is given in Table III.
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equations (different polarisation and boosts at same 
momentum transfer) 
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Simplest example:  
Transversity GFFs 
One basis (2 vectors)  
|p|=1 (lattice units)
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where the numbers and uncertainties on the right hand side of the equation come from the plateau fits to averaged
ratios obtained as described in the main text. The ordering of the rows is as in Table II.

Appendix D: Direct solution of form factor
decomposition for electromagnetic current

Since only three form factors contribute to matrix el-
ements of the electromagnetic current, a direct solution
of the constraint equations relating ratios of three-point
and two-point functions to the form factors is straight-
forward [18, 19]. This extraction is performed as a check
on the more general method discussed in Section III.

For each momentum transfer, �2, three ratios of two-
point and three-point functions are required to extract
the form factors at that momentum. At zero momentum
transfer, only the G

1

form factor can be determined. In
terms of the ratios

Ri
jk(~�) = Rjk(~p = ~�, ~p 0 = ~0, t, ⌧, J i) (D1)

for the currents J i =  ̄�i , where Rjk(~p, ~p 0, t, ⌧,O) is

defined in Eq. (14) and dependence on the current and
sink times is suppressed, the generic form of the solution
for the FFs can be expressed as

GX(�2) = MX

X

f=a,b,c

NX,fRX,f . (D2)

Here X = C,M,Q labels the Sachs form factors, which
are related to the basis used in Eq. (21) by

GQ(�
2) = G

1

(�2)�G
2

(�2) + (1 + ⌘)G
3

(Q2),

GM (�2) = G
2

(�2), (D3)

GC(�
2) = G

1

(�2) +
2

3
⌘GQ(�

2) .

One choice of the combinations NX,f for each momen-
tum used, given that only zero sink momentum sequen-
tial propagators were computed, is given in Table III.
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Complicated over and under-determined systems of 
equations (different polarisation and boosts at same 
momentum transfer) 

Some GFFs suppressed by orders of magnitude 

Some GFFs related by symmetries at some momenta

Target a subset of  “dominant GFFs”

Simplest example:  
Transversity GFFs 
One basis (2 vectors)  
|p|=1 (lattice units)



Gluonic radii

Example: Spin-indep GFFs, lowest 
non-zero momentum transfer 

3 dominant GFFs, others set  
to 0±10 

Only tightly-constrained bands  
shown in each projection.
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Gluonic radii

One GFF can be resolved for all momenta  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Unpolarised gluon GFFs

Three GFFs can be resolved for all momenta  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Unpolarised quark GFFs 

Three quark GFFs can be resolved for all momenta 

GFF decomposition has precisely the same structure as in 
the spin-independent gluon case

One H(4) irrep.
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Ratio of gluon to quark unpolarised GFFs  
 
 
 
 
 
 
 
 
 
 
 

Gluon vs quark radius is a non-trivial question  
More complicated than intuitive pictures

Gluonic radii
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Gluon structure of nuclei

First investigations: φ meson  
simplest spin-1 system (has fwd limit gluon transversity) 
 
 
 
 

Phenomenologically relevant:  
nucleon, nuclei

‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon
observables that are not from
nucleon degrees of freedom.

Exotic glue operator:
operator in nucleon = 0
operator in nucleus 6= 0

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 3 / 15



Gluon structure of nuclei

Nuclear modification of proton structure (EMC effect) 
 

Important to understand from QCD: nuclear targets 
essential many current experiments (DUNE, …) 

Look for gluon analogue of  
EMC effect 

Target for EIC discovery

Here −Q2 represents the squared four-momentum of the virtual photon that mediates the in-
teraction with coupling strength α and x = Q2/2Mν can be interpreted as the fraction of the
longitudinal nucleon momentum carried by the struck quark, in a frame where the nucleon moves
with infinite momentum in the direction opposite to that of the virtual photon. The variable y
denotes, in the target rest frame , the virtual-photon energy ν with respect to the lepton-beam
energy E.

At leading order in QCD the structure function F2 is defined as the sum of the momentum
distributions q(x,Q2) and q̄(x,Q2) of quarks and anti-quarks of flavor q = u, d, s, ... weighted by
x and z2q, where zq is the quark charge (in units of the elementary charge |e|):

F2(x,Q
2) =

∑

q=u,d,s..

xz2q
[

q(x,Q2) + q̄(x,Q2)
]

. (2)

The quantity

R =
σL

σT
=

F2

2xF1

[

1 +
4M2x2

Q2

]

− 1 =
FL

2xF1
(3)

is the ratio of the longitudinal to transverse virtual-photon cross sections. In the quark-parton
model, R = 0 for the interaction of the virtual photon with a point-like spin-1/2 particle. Quark
transverse momenta, quark masses and gluon radiation cause R to deviate from zero. If R is
independent of the nuclear mass number A (see the discussion in section 4.4), then the ratio of
cross sections for two different nuclei is equal to the ratio of their structure functions F2.

Subsequently, we will always discuss the ratio of structure functions (cross sections) per
nucleon for a nucleus with mass number A (i.e., A nucleons) and the deuteron D. The latter is, to
a good approximation, equal to the proton-neutron averaged structure function FD

2 ≈ (Fp
2+Fn

2)/2.
The x dependence of the structure functions Fp

2 and Fn
2 is different (for free nucleons they are

approximately related by Fn
2/F

p
2 ≈ 1−0.8x). Results for the nuclear structure function FA

2 (cross
section σA) for nuclei with Z protons and N neutrons will always be corrected for neutron excess
by

FA
2 = (

Fp
2 + Fn

2

2
)A ·

[

1−
N− Z

N+ Z
·
1− Fn

2/F
p
2

1 + Fn
2/F

p
2

]

, (4)

where it is assumed that proton and neutron structure functions are modified equally by the
nuclear environment. Thus, FA

2 is the structure function per nucleon for a hypothetical isoscalar
nucleus with an equal number (A2 ) of protons and neutrons.

3 The discovery

The historical result of the EMC effect [1] (updated results were published in [11]) is presented
in the left panel of Fig. 1. It shows the ratio of the structure function F2 per nucleon for iron
and deuterium, both uncorrected for Fermi motion, as a function of x. The shaded area indicates
the range for the errors on the slope of a linear fit to the data, the point-to-point systematic
uncertainties are somewhat larger. In addition there is an overall uncertainty of ±7%.

The ratio is seen to be different from unity. It falls from ∼ 1.15 at x = 0.05 to a value of
∼ 0.89 at x = 0.65 and doesn’t follow the expectations from Fermi-motion calculations. This

2



Gluon structure of nuclei

Clean signals for spin-independent gluon operator in deuteron
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Gluon structure of nuclei

Signals for spin-
independent 
gluon operator 

Deuteron, Di-
neutron, 3He 

One/two state fits 
to extract moment

sink time t

NPLQCD, arXiv:1709.00395



Matrix elements of the Spin-independent gluon operator in nucleon 
and light nuclei 

Present statistics: can’t distinguish from no-EMC effect scenario 

Constraint from momentum sum-rule 

Small additional uncertainty from mixing with quark operators

mπ ~450 MeV mπ ~800 MeV
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Gluonic transversity

‘Exotic’ Glue in the Nucleus

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 3 / 15

‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon
observables that are not from
nucleon degrees of freedom.

Exotic glue operator:
operator in nucleon = 0
operator in nucleus 6= 0

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 3 / 15

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Parton model interpretation

For a target in the infinite momentum frame polarized in the x̂ direction
perpendicular to its momentum,

�(x,Q2) /
Z 1

x

dy

y3

�
g
x̂

(y,Q2) � g
ŷ

(y,Q2)
�

g
x̂,ŷ

(y,Q2): probability of finding a gluon with momentum fraction y
linearly polarized in the x̂, ŷ direction

“How much more momentum of transversely polarized particle carried by
gluons aligned rather than perpendicular to it in the transverse plane”

Phiala Shanahan (MIT) Exotic Glue in the Nucleus July 8, 2016 8 / 23
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Double helicity flip structure function Δ(x,Q2) 

Hadrons: gluonic transversity (parton model interpretation) 
 
 
 
              : probability of finding a gluon with momentum 
fraction y linearly polarised in        direction 

Nuclei: Exotic Glue 

Gluons not associated with  
individual nucleons in nucleus

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

3

where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is

hpE0|Oµ⌫µ1...µn |pEi
= (�2i)n�2 1

2
S [{ (pµE

0⇤
µ1

� pµ1E
0⇤
µ )(p⌫Eµ2 � pµ2E⌫)

+ (µ $ ⌫)} pµ3 . . . pµn ]An(µ2),
(10)

where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and

Mn(Q2) =

Z 1

0
dxxn�1�(x,Q2) (12)

are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),

�(x,Q2) = �↵s(Q2)

2⇡
TrQ2 x2

Z 1

x

dy

y3
�G(y,Q2), (13)

where �G is again renormalized at the scale µ2 = Q2,
and

�G(x, µ2) = gx̂(x, µ
2) � gŷ(x, µ

2). (14)

Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2 This definition of An di↵ers from that in Ref. [7] by a factor of
two, chosen for convenience for the discussion of the So↵er bound
in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)k where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify

⇥
g

x̂

(y,Q2)� g

ŷ

(x,Q2)
⇤



First moment of gluon transversity 
in the deuteron 

First evidence for non-nucleonic 
gluon structure  

mπ ~800 MeV 

Fit systematics large 

Calculations feasible 

Magnitude as expected from large-
Nc (relative to unpol)
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What does we look like? 
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1D         

7

3D         

Courtesy: Alssandro Bacchetta 

Gluons, gluons, gluons….

EIC will dramatically alter our knowledge of the gluonic 
structure of nucleons and nuclei 

Eventually have a complete 3D picture of parton  
structure (PDFs, GPDs, TMDs) 

Δ(x,Q2) has an interesting role 

Purely gluonic 

Non-nucleonic 

Lattice calculations of gluon structure are progressing and 
will be a strong motivator for these experiments 

Address similarities and differences in distributions of  
quark and gluons in hadrons and nuclei 


