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• Atomic nuclei are complex quantum many-body systems 
of strongly interacting fermions (nucleons) displaying 
interesting properties: shell structure, pairing, deformation, 
strong clustering, etc

Nuclear forces: very complicated problem to derive in terms of quarks and gluons

• Historically research on the nuclear force has proceeded along different ways for example:

Phenomenological approach:

χEFT approach:

• QCD is the underlying theory of the strong interaction 
but nucleons are the relevant degree of freedom for the 
low-energy nuclear physics       nuclear interactions 

use the general form of a potential allowed by the symmetries (rotation, 
translation, isospin, etc); 
potential terms are responsible to describe various phenomena remarked in NN 
interactions: for example the tensor term is important for the long-range part of 
potential and arises naturally from pion-exchange
In these potentials, the IR and SR parts are usually determined in a fully 
phenomenological way while for the LR part, an OPEP is often used

pions, nucleons, Δ’s as degrees of freedom
construct their interactions consistently with the symmetries of the 
underlying theory, low-energy QCD

Nuclear Physics in a Nutshell:



Collection of point-like particles whose dynamics is dictated by:

Models of nuclear interactions: • phenomenological: Argonne (NN) + Urbana-Illinois (NNN) 
• local, chiral effective field theory: χEFT (NN+NNN+...)

Atomic nuclei:

• Ab initio approaches are aimed at solving the many-body Schrödinger equation 
associated with the nuclear Hamiltonian

H Ψ(R; s1, .., sA; t1, .., tA) = EΨ(R; s1, .., sA; t1, .., tA)

• Our many-body method of choice is Quantum Monte Carlo (in particular VMC 
and GFMC) which allows for solving the nuclear Schrödinger equation with the 
required 1-2% accuracy level for both the ground- and the low-lying excited 
states of A ≤ 12 nuclei
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Vijk•          : 3NF fitted on properties of light nuclei
• 2NF > 3NF > 4NF >...

• Calculations of the properties of light nuclei 
based upon the bare nuclear forces shown that 
3NFs are important

Numerical methods:



Nuclear Models: NN phenomenological potentials
• is a r-space potential controlled by ~4300 np and pp scattering data below 
350 MeV of the Nijmegen database with a total χ2 ≅ 1
• it is expressed as a sum of EM and OPE terms and phenomenological 
intermediate- and short-range parts

• The AV18 model has a total of 42 independent 
parameters. While the fit was made up to 350
MeV, the phase shifts are qualitatively good up to much 
larger energies ≥ 600 MeV
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2NF Argonne V18 (AV18):
Wiringa. Stoks, Schiavilla 

PRC 51, 38 (1995)

S12 = 3σ1 · r̂σ2 · r̂− σ1 · σ2OtT
12 = S12 T12, and T12 = 3 τ1zτ2z − τ1 · τ2



• an Hamiltonian which only includes AV18 does not provide enough 
binding in the light nuclei
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3NF Urbana-Illinois (UIX-IL7): 

Good description for s-shell nuclei (A=3,4); inadequate description of 
the absolute binding energies and spin-orbit splitting of heavier nuclei

Good description for light nuclei up to A=12; inadequate description 
of the neutron star matter equation of state

Urbana IX:
contains the attractive Fujita and
Miyazawa two-pion exchange interaction
and a phenomenological repulsive term;
the two parameters were obtained by 
fitting the binding energy of 3H and the 
density of nuclear matter in conjunction 
with the AV18

J. Carlson et al. NP A401, 59 (1983)

Illinois 7:
also includes terms originating from
three-pion rings containing one or two Δs 
and the two-pion S-wave contribution;
the four parameters were searched to 
obtain a best fit, in conjunction with the 
AV18, for energies of about 20 nuclear 
ground and low-lying excited states in 
A≤10 nuclei

S. Pieper et al. PRC 64, 014001 (2001)

Nuclear Models: NNN phenomenological potentials
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Figure 1: GFMC values of binding energies for AV18+IL7 compared to experiment. See Ref. [35]
and references therein.

alone or in combination with the IL7 3N potential, compared to the experimental values. Even
though the phenomenological AV18 reproduces the Nijmegen NN scattering data up to a laboratory
energy of 350 MeV with a χ2/datum of 1.09, it significantly underbinds these nuclei, indicating the
empirical need for many-body forces. The full AV18+IL7 Hamiltonian is in excellent agreement
with experiment with an rms error of only 600 keV for 51 states.

Until very recently, only phenomenological models of nuclear interactions were used in GFMC
and AFDMC calculations; the main reason for this was due to the strong non-locality of the original
chiral interactions. In the last few years, local chiral potentials have been developed, enabling
AFDMC calculations of the neutron matter equation of state [36]. In this context, using the same
chiral interactions, a study of the binding energies and radii of 3H and 4He and of neutron-4He
(n-α) scattering has been carried out within GFMC [37, 38]. The LECs of this class of local chiral
potentials have been fixed by fitting the np phase shifts from the Nijmegen partial-wave analysis
up to 150 MeV laboratory energy; a systematic analysis of the scattering data was not performed.

More recently, we and collaborators have developed a local chiral interaction including the ∆-
isobar degrees of freedom [14, 15]. The most immediate advantage of an explicit account of the ∆ is
the numerical consistency between the values of the low-energy constants inferred from either πN
or NN scattering. Such a theory also naturally leads to the Fujita-Miyazawa three-nucleon forces
as well as to two-nucleon electroweak currents. The inclusion of N3LO contact terms allowed a fit
to the Granada database of pp and np scattering up to 200 MeV laboratory energy with χ2 � 1.4
for all the cutoff values considered. The deuteron binding energy and the nn singlet scattering
length are also fitted to their corresponding experimental values.

Under the SciDAC-3 NUCLEI grant, co-investigator Piarulli and colleagues are currently de-
veloping the corresponding 3N interactions at the N2LO order. A preliminary version of this
interaction, used in combination with the ∆-full two-body force described above, gives a satisfac-

4

• Very good description of several nuclear binding energies using AV18+IL7 (GFMC 
ground-state: uncertainties within 1-2%)

Pros:

Cons: • Phenomenological interactions are phenomenological, not clear how to improve their quality
• They do not provide rigorous schemes to consistently derive 2N and 3N forces and compatible 
electroweak currents

Pieper & Wiringa

AV18/IL7: the structure of light nuclei



The nuclear χEFT approach:

• In χEFT, the symmetries of quantum chromodynamics (QCD), including its approximate chiral-
symmetry, are employed to constrain the interactions of pions (π) among themselves, with baryons (N 
and Δ-isobars) or with external fields (such as electroweak)

• In particular, π’s couple to baryons by powers of its momentum Q, and the Lagrangian ( Leff ) can be 
expanded systematically in powers of Q/Λ (according to a power counting scheme); (Q << Λ ≈ 1 GeV 
is the chiral-symmetry breaking scale and Q~mπ)

Leff = L(0) + L(1) + L(2) + ...

• χEFT allows for a perturbative treatment in terms of powers of a Q- as opposed to a coupling 
constant- expansion

• The unknown coefficients in this perturbative expansion are called LEC’s and are fixed by 
comparison with experimental data

• The χ-expansion provides a practical calculation scheme to construct two- and many-body potential 
as well as external currents, capable (in principle) of systematic improvements 

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett B295, 114 (1992)
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Figure 23: Chiral 2NF without and with ∆-isobar degrees of freedom. Arrows indicate the shift of strength when explicit ∆’s

are added to the theory. Note that the ∆-full theory consists of the diagrams involving ∆’s plus the ∆-less ones. Double lines

represent ∆-isobars; remaining notation as in Fig. 1.

relevant to our present discussion)

�L∆i=0
∆ = ∆̄(i∂0 −∆M)∆− hA

2fπ

�
N̄T�S∆+ h.c.

�
·∇π −DT N̄τ�σN ·

�
N̄T�S∆+ h.c.

�
, (6.1)

where ∆ is a four-component spinor in both spin and isospin space representing the ∆-isobar and hA and

DT are LECs.5 Moreover, Si are 2 × 4 spin transition matrices which satisfy SiSj† = (2δij − i�ijkσk)/3
and T a are similar isospin matrices with T aT b† = (2δab − i�abcτ c)/3. Notice that, due to the heavy baryon

expansion, the mass of the ∆-isobar, M∆, has disappeared and only the small mass difference ∆M enters.

The LECs of the πN Lagrangian are usually extracted in the analysis of π-N scattering data and clearly

come out differently in the ∆-full theory as compared to the ∆-less one. While in the ∆-less theory, the

magnitude of the LECs c3 and c4 is about 3-5 GeV−1 (cf. Table 2), they turn out to be around 1 GeV−1 in

the ∆-full theory [221].

In the 2NF, the virtual excitation of∆-isobars requires at least one loop and, thus, the contribution occurs

first at ν = 2 (NLO), see Fig. 23. The ∆ contributions to the 2PE were first evaluated in Refs. [53, 54, 220]

using time-ordered perturbation theory and later by Kaiser et al. [56] in covariant perturbation theory.

5Our convention for hA is consistent with Refs. [54, 56, 70, 107] and differs by a factor of two from Refs. [218, 221, 223].
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Figure 24: The 3NF without and with ∆-isobar degrees of freedom. Arrows indicate the shift of strength when explicit ∆’s
are added to the theory. Note that the ∆-full theory consists of the diagrams involving ∆’s plus the ∆-less ones. Double lines
represent ∆-isobars; remaining notation as in Fig. 1.

Recently, also the NNLO contributions have been worked out [221]. Krebs et al. [221] verified the consistency
between the ∆-full and ∆-less theories by showing that the contributions due to intermediate ∆-excitations,
expanded in powers of 1/∆M , can be absorbed into a redefinition of the LECs of the ∆-less theory. The
corresponding shift of the LECs c3, c4 is given by

c3 = −2c4 = − h2
A

9∆M
. (6.2)

Using hA = 3gA/
√
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the ∆

resonance.
The studies of Refs. [56, 221] confirm that a large amount of the intermediate-range attraction of the 2NF

is shifted from NNLO to NLO with the explicit introduction of the ∆-isobar. However, it is also found that
the NNLO 2PE potential of the ∆-less theory provides a very good approximation to the NNLO potential
in the ∆-full theory.

The ∆ isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO.
In the ∆-full theory, this term has the same mathematical form as the corresponding term in the ∆-less
theory, Eqs. (5.2) and (5.3), provided one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the
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Figure 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and

dashed lines pions. Small dots, large solid dots, solid squares, triangles, diamonds,

and stars denote vertices of index ∆ = 0, 1, 2, 3, 4, and 6, respectively. Further

explanations are given in the text.

The ability to calculate observables (in principle) to any degree of accuracy gives the

theory its predictive power.

3.2. The ranking of nuclear forces

As shown in Fig. 1, nuclear forces appear in ranked orders in accordance with the power

counting scheme.

The lowest power is ν = 0, also known as the leading order (LO). At LO we

have only two contact contributions with no momentum dependence (∼ Q0). They are
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Chiral 2N potentials: some recent developments

Nonlocalities due to contact interactions and to regulator functions

Many of the available versions of chiral potentials are formulated in momentum-
space and are strongly nonlocal:                              hard to use in QMC methods

Note:
p → −i∇

p

p�Regularization 
schemes for NN interactions

V3NV

p�
1 p�

2

p1 p2

Separation of long- and 
short-range physics

p = (p1 − p2)/2

p� = (p�
1 − p�

2)/2

q = (p1 − p�
1)

VNN(p,p�) → exp

�
− [(p2 + p�2)/Λ2]n

�
VNN(p,p�)

VNN(p,p�) → exp

�
− [(p� − p)2/Λ2]n

�
VNN(p,p�)

Nonlocal regulator

Local regulator

• First generation of chiral NN potential up to N3LO:
    Entem-Machleidt PRC 68, 041001 2003; Epelbaum-Gloeckle-Meissner JNP A747, 362 2005 
• Optimized N2LO NN potential (πN LECs are tuned to NN peripheral scattering):
    Ekström et al. PRL 110, 192502 2013; JPG 42, 034003 2015
• N2LO potential: a simultaneous fit of NN and 3N forces to low NN data (Elab=35 MeV), 
   deuteron BE, BE and CR of hydrogen, helium, carbon and oxygen isotopes;
    Carlsson et al. PRC 91, 051301(R) 2015
• New generation of chiral NN potentials up to N4LO: improved choice of the regulator, no SFR;
    Epelbaum et al. PRL 112, 102501 2014; EPJ A51, 53 2015; PRL 115, 122301 2015
• Chiral 2π and 3π exchange up to N4LO and up to N5LO in NN peripheral scattering;
    Entem et al. PRC 91, 014002 2015; PRC 92, 064001 2015, arXiv:1703.05454 2017
• The LENPIC collaboration arXiv: 1705.01530v1
• .........

• Local NN potentials up to N2LO:
     Gezerlis et al. PRL 111, 032501 2013; PRC 90, 054323 2014; Lynn et al. PRL 113, 192501 2014
• Minimally nonlocal/local NN potentials including N2LO Δ contributions;
    Piarulli et al. PRC 91, 024003 2015; PRC 94, 054007 2016



Local chiral NN potential:
v12 = vEM

12 + vL12 + vS12

: long-range component includingvL12

vEM
12 : EM component including Coulomb, DF, VP and MM interactions

LO : Q0

NLO : Q2

N2LO : Q3

k

p -p
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vS12 : short-range component including

(a) (b)

(c) (d) (e) (f) (g) (h) (i)

NLO : Q2
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(c) (d) (e) (f) (g) (h) (i)

LO : Q0 N3LO : Q4
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Contact terms of type k×K or k2 K2 still persist: they can not Fierz-transformed away 

• dependence only on the momentum 
transfer k=p′-p

• known LECs:     ,     ,       Dependence on gA,
Fπ and hA = 3 gA/

√
2

Dependence on gA,
Fπ and hA = 3 gA/

√
2

Dependence on gA,
Fπ and hA = 3 gA/

√
2

b3 + b8 (L(2)
πN∆)

c1, c2, c3, c4 (L(2)
πN )• unknown LECs:                               

taken from π-N scattering 
(Krebs at al. EPJ A32, 127 2007)

b3 + b8 (L(2)
πN∆)

c1, c2, c3, c4 (L(2)
πN )

At NLO and N3LO strongly nonlocal contact terms: proportional to K2 and K4 where K=(p′+p)/2; we 
use Fierz rearrangements to remove these nonlocalities (see also Gezerlis et al. PRL 111, 032501 2013; PRC 
90, 054323 2014)

(2) (7) (15)

The local chiral NN potential we designed can be written as:



Coordinate-space      :Coordinate-space vL12:

v
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L (r)OσT
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In coordinate-space the long-range part of the interaction can be written as

O
l=1,...,6
12 = [1 , σ1 · σ2 , S12]⊗ [1 , τ1 · τ2]! !!

OσT
12 = σ1 · σ2 T12

OtT
12 = S12T12

• Charge-independent  part:

• Charge-dependent part:

r [fm]

C
R

L
(r
)

The radial functions have divergencies of type                            ; we need a regulator function which 
ensures that the short-distance part of the long-range potential at r smaller than RL are smoothly cut 
off

1/rn , 1 ≤ n ≤ 6

RL = (0.8, 1.0, 1.2) fm

aL = RL/2

OtT
12 = S12 T12, and T12 = 3 τ1zτ2z − τ1 · τ2

CRL(r) = 1− 1

(r/RL)6 e(r−RL)/aL + 1
• 



Coordinate-space     :Coordinate-space vS12:
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O
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O
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O
l=7,...,11
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• Static part:

• Spin-orbit, (Spin-orbit)2, L2 part:

• Charge-dependent  part:

In coordinate-space the short-range part of the interaction can be written as

In order to a have a fully nonlocal interaction, we are neglecting p2-terms of type

{ vpS(r) + vpσS (r)σ1 · σ2 + vptS (r)S12 + vptτS (r)S12 τ 1 · τ 2 , p2 }• 

The FT of the single contact terms is carried out with a Gaussian regulator, depending only on the 
momentum transfer k, such that
�CRS(k)=e−R2

Sk
2/4 −→ CRS(r) =

1

π3/2R3
S

e−(r/RS)
2• 

ΛS = 2/RS

RS = (0.6, 0.7, 0.8) fmRL = (0.8, 1.0, 1.2) fm

(700, 600, 500)MeV

In combination with                                     we consider                                     corresponding to typical 
momentum-space cutoff                        ΛS = 2/RS

RS = (0.6, 0.7, 0.8) fmRL = (0.8, 1.0, 1.2) fm

(700, 600, 500)MeVΛS = 2/RS

RS = (0.6, 0.7, 0.8) fmRL = (0.8, 1.0, 1.2) fm

(700, 600, 500)MeV



Fitting procedure:
The LECs fixed by fitting the pp and np Granada database up to two ranges of  Elab = 125 MeV and 
200 MeV, the deuteron BE and the nn scattering length: we first fit the phase shifts then we refine the 
fit with a direct comparison with the database

To minimizing χ2 the we use the Practical Optimization Using No Derivatives (for Squares), 
POUNDers (M. Kortelainen, PRC 82, 024313 2010) 

Model a :(RL, RS) = (1.2, 0.8)

Model b :(RL, RS) = (1.0, 0.7)

Model c :(RL, RS) = (0.8, 0.6)

model order RL (fm) RS (fm) ELAB (MeV) χ2/datum

Model b LO 1.0 0.7 125 59.88

Model b NLO 1.0 0.7 125 2.18

Model b N2LO 1.0 0.7 125 2.32

Model b N3LO 1.0 0.7 125 1.07

Model a N3LO 1.2 0.8 125 1.05

Model c N3LO 0.8 0.6 125 1.11

Model �a N3LO 1.2 0.8 200 1.37

Model �b N3LO 1.0 0.7 200 1.37

Model �c N3LO 0.8 0.6 200 1.40

Model a :(RL, RS) = (1.2, 0.8)

Model b :(RL, RS) = (1.0, 0.7)

Model c :(RL, RS) = (0.8, 0.6)

model order RL (fm) RS (fm) ELAB (MeV) χ2/datum

Model b LO 1.0 0.7 125 59.88

Model b NLO 1.0 0.7 125 2.18

Model b N2LO 1.0 0.7 125 2.32

Model b N3LO 1.0 0.7 125 1.07

Model a N3LO 1.2 0.8 125 1.05

Model c N3LO 0.8 0.6 125 1.11

Model �a N3LO 1.2 0.8 200 1.37

Model �b N3LO 1.0 0.7 200 1.37

Model �c N3LO 0.8 0.6 200 1.40



Local chiral 3N potential:

c1 c3 c4 cE

π
π

π

Δ
π

π

 Inclusion of 3N forces at N2LO:

Note: 
same regulator functions and   
cutoff used in the NN interaction

same as NN interaction need to be fixed

Fit to:
• 3H binding energy
• nd scattering length  
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Fit to B(3H)=8.475 MeV
Fit to and=0.645 fm

cD

cE

courtesy of Laura E. Marcucci (Universita’ di Pisa)

Model cD cE
Ia 3.666 –1.638
Ib –2.061 –0.982
IIa 1.278 –1.029
IIb –4.480 –0.412



Quantum Monte Carlo (QMC) methods:
• Encompasses a large family of computational methods whose common aim is the study of complex 
quantum systems  

VMC, GFMC: sampling in coordinate space

AFDMC: sampling in coordinate space + spin-isospin coordinate

limited number of nucleons A=12

larger nuclei A~50 & nuclear matter

CVMC: sampling in coordinate space + cluster expansion

closed shell nuclei (+/- 1): A=40

• Provide a reliable solution (or an accurate approximation) of the quantum many-body problem

Pieper, et al., Phys. Rev. C 46, 1741 (1992)
Lonardoni, et al., arXiv:1705.04337

R.B. Wiringa, PRC 43, 1585 (1991)
Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

Smith and Fantoni, Phys. Lett. B 446, 99 (1999)
Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

https://en.wikipedia.org/wiki/Quantum_system
https://en.wikipedia.org/wiki/Quantum_system
https://en.wikipedia.org/wiki/Many-body_problem
https://en.wikipedia.org/wiki/Many-body_problem
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://arxiv.org/abs/1705.04337
https://arxiv.org/abs/1705.04337
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741


QMC: Variational Monte Carlo (VMC)

• Minimize the expectation value of H:

ET =
�ΨT |H|ΨT �
�ΨT |ΨT �

≥ E0

• Trial wave function (involves variational parameters): 

|ΨT � =
�
1 +

�

i<j<k

Uijk

� �
S
�

i<j

(1 + Uij)
�
|ΨJ�

(s-shell nuclei): Jastrow wave function, fully antisymmetric|ΨJ� =
��

i<j fc(rij)
�
|Φ(JMTTz)� (s-shell nuclei): Jastrow wave

function, fully antisymmetric
S
�

i<j represents a symmetrized product: represents a symmetrized product

Uij =
�

p=2,6

up(rij)O
p
ij : pair correlation operators

Uijk =
�

x

�x V
x
ijk : three-body correlation operators

• The search in the parameter space is made using COBYLA (Constrained Optimization BY Linear 
Approximations) algorithm available in NLopt library 
• The typical number of variational parameters for s-shell nuclear wave functions is about two dozen 
for a two-body potential; four to six parameters are added if a three-body potential is included in the 
Hamiltonian 

R.B. Wiringa, PRC 43, 1585 (1991)

|ΨT � are spin-isospin vectors in 3A dimension with 2A
�

A
Z

�



QMC: Green’s function Monte Carlo (GFMC)

• The diffusion Monte Carlo (DMC) method such as GFMC, overcomes the limitation of VMC 
calculation by using a projection technique to enhance the true ground-state component of a starting trial 
wave function

• The method relies on the observation that the trial wave function can be expanded in the complete 
set of eigenstates of the Hamiltonian according to

|ΨT � =
�

n

cn|Ψn� H|Ψn� = En|Ψn�

which implies

|Ψ(τ = 0)� = |ΨT �lim
τ→∞

|Ψ(τ)� = lim
τ→∞

e−(H−E0) τ |ΨT � = c0|Ψ0�

where τ is the imaginary time. The GFMC projects out lowest energy state from the best 
variational trial wave function 

J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015)

• The evaluation of Ψ(τ) is done stochastically in small time steps Δτ (τ = n Δτ) using a Green’s 
function formulation

• it is carried out with a simplified version H’ of the full Hamiltonian H; H’ is a projection of H on the 
first eight-operator preserving the potential in all S and P waves as well as the deuteron channel; the 
remaining terms are calculated perturbatively

Propagator does not contain p2 , L2, (L . S)2



QMC for A≤6 with only local NN interaction
• The A≤6 ground- and excited state energies with only local NN chiral interaction compared with the 
corresponding GFMC results obtained with AV18 and experimental values

3N interactions are needed!!

• For A=3, 4, and 6 the energies differ by about 0.2-0.3, 1.0, and 0.5-1.3 MeV, respectively, from the 
corresponding ones obtained using the AV18
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• For A=3, 4 benchmark with the HH calculations

Piarulli et al. PRC 94, 054007 20016



QMC for A≤12 with local NN+NNN interactions
• The A≤12 ground- and excited state energies with local NN+NNN chiral interaction, AV18+IL7, 
and the corresponding experimental values

• Compared to the AV18+UIX, these local chiral potentials give better description for absolute binding 
energies and spin-orbit splitting for p-shell nuclei
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• Polarization observables in pd elastic scattering at 3 MeV, obtained in HH calculations with the 
NV2+3 models Ia-Ib (IIa-IIb), are shown by the green (blue) band. The black dashed line are results 
obtained with only the two-body interaction NV2-Ia

 subleading contact terms in 3N interaction??? Additional 10 LECs 



Conclusions:
• We have constructed a family of local NN potential with chiral TPE including Δ-isobar up to 
N2LO and contact interactions up to N3LO in the chiral expansion

• Three versions of this NN chiral potential for three different cutoff values have been developed 
with good fits to np and pp Granada database

• Corresponding local NNN chiral interaction up N2LO have been also developed; they involve two 
new LECs fixed by fitting the binding energy of 3H and nd scattering length  

• A subset of these local NN and NN+NNN chiral interactions have been used to in HH and QMC 
calculations of binding energies and rms proton radii for some nuclei with A≤12

• Comprehensive treatment of radii, moments, electroweak transitions in VMC/GFMC including 
exchange currents

• Test other versions of NV2+3 with different energy fits and regulators and compare

• Studies of the effect of subleading 3N contact interactions in light nuclei

Plans:

• Different strategies to fit 3NI


