Dispersion relation for hadronic light-by-light scattering

Peter Stoffer
Physics Department, UC San Diego

in collaboration with G. Colangelo, M. Hoferichter, and M. Procura

and with G. Colangelo, M. Hoferichter, B. Kubis, and M. Procura

December 13, 2017
Jefferson Lab Theory Seminar, Newport News
Outline

1. Introduction
2. Hadronic contributions to \((g - 2)_\mu\)
3. Lorentz structure of the HLbL tensor
4. Master formula for \((g - 2)_\mu\)
5. Dispersive representation
6. Conclusion and outlook
Overview

1 Introduction

2 Hadronic contributions to $(g - 2)_\mu$

3 Lorentz structure of the HLbL tensor

4 Master formula for $(g - 2)_\mu$

5 Dispersive representation

6 Conclusion and outlook
Magnetic moment

- relation of spin and magnetic moment of a lepton:

\[\vec{\mu}_\ell = g_\ell \frac{e}{2m_\ell} \vec{s} \]

\(g_\ell \): Landé factor, gyromagnetic ratio

- Dirac’s prediction: \(g_e = 2 \)
- anomalous magnetic moment: \(a_\ell = (g_\ell - 2)/2 \)
- helped to establish QED and QFT as the framework for elementary particle physics
- today: probing not only QED but entire SM
Electron vs. muon magnetic moments

- influence of heavier virtual particles of mass M
scales as

$$\frac{\Delta a_\ell}{a_\ell} \propto \frac{m_\ell^2}{M^2}$$

- a_e used to determine α_{QED}

- $(m_\mu/m_e)^2 \approx 4 \times 10^4 \Rightarrow$ muon is much more sensitive to new physics, but also to EW and hadronic contributions

- a_τ experimentally not yet known precisely enough
$\left(g - 2 \right)_\mu$: comparison of theory and experiment

![Diagram showing comparison of $g - 2$ results for various experiments and models.](image)

- HMNT (06)
- JN (09)
- Davier et al, τ (10)
- Davier et al, e^+e^- (10)
- JS (11)
- HLMNT (10)
- HLMNT (11)

Experimental results

- BNL
- BNL (new from shift in λ)

$a_\mu \times 10^{10} = 11659000$

→ Hagiwara et al. 2012
Introduction

\((g - 2)_\mu\): theory vs. experiment

- discrepancy between SM and experiment \(\sim 3\sigma\)
- hint to new physics?
- new experiments (FNAL, J-PARC) aim at reducing the experimental error by a factor of 4
- theory error completely dominated by hadronic effects
Overview

1 Introduction

2 Hadronic contributions to \((g - 2)_\mu\)

3 Lorentz structure of the HLbL tensor

4 Master formula for \((g - 2)_\mu\)

5 Dispersive representation

6 Conclusion and outlook
Hadronic contributions to $(g - 2)_\mu$

Hadronic vacuum polarisation: $\mathcal{O}(\alpha^2)$

- problem: QCD is non-perturbative at low energies
- first principle calculations (lattice QCD) may become competitive in the future
- current evaluations based on dispersion relations and data
Hadronic contributions to $(g - 2)_\mu$

Hadronic vacuum polarisation: $\mathcal{O}(\alpha^2)$

Photon hadronic vacuum polarisation function:

$$\Pi(q^2) = -i(q^2 g_{\mu\nu} - q_\mu q_\nu)\Pi(q^2)$$

Unitarity of the S-matrix implies the optical theorem:

$$\text{Im}\Pi(s) = \frac{s}{e(s)^2}\sigma_{\text{tot}}(e^+ e^- \rightarrow \gamma^* \rightarrow \text{hadrons})$$
Hadronic contributions to $(g - 2)_μ$

Dispersion relation

Causality implies analyticity:

Cauchy integral formula:

$$\Pi(s) = \frac{1}{2\pi i} \oint_\gamma \frac{\Pi(s')}{s' - s} ds'$$

Deform integration path:

$$\Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{\text{Re}}^\infty \frac{\text{Im}\Pi(s')}{(s' - s - i\epsilon) s'} ds'$$
Hadronic contributions to \((g - 2)_\mu\)

Hadronic vacuum polarisation: \(\mathcal{O}(\alpha^2)\)

- basic principles: unitarity and analyticity
- direct relation to experiment: total hadronic cross section \(\sigma_{\text{tot}}(e^+e^- \rightarrow \gamma^* \rightarrow \text{hadrons})\)
- at present: dominant theoretical uncertainty
- can be systematically improved: dedicated \(e^+e^-\) program (BaBar, Belle, BESIII, CMD3, KLOE2, SND)
Hadronic contributions to \((g - 2)_\mu \)

Hadronic light-by-light (HLbL) scattering

- up to now only model calculations
- uncertainty estimate based rather on consensus than on a systematic method
- with recent progress on vacuum polarisation, HLbL starts to dominate theory error
Hadronic contributions to \((g - 2)_\mu\)

SM contributions to \((g - 2)_\mu\)

<table>
<thead>
<tr>
<th></th>
<th>(10^{11} \times a_\mu)</th>
<th>(10^{11} \times \Delta a_\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL E821</td>
<td>116 592 089</td>
<td>63</td>
</tr>
<tr>
<td>QED total</td>
<td>116 584 718.95</td>
<td>0.08</td>
</tr>
<tr>
<td>EW</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>LO HVP</td>
<td>6 949</td>
<td>43</td>
</tr>
<tr>
<td>NLO HVP</td>
<td>-98</td>
<td>1</td>
</tr>
<tr>
<td>NNLO HVP</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>LO HLbL</td>
<td>116</td>
<td>40</td>
</tr>
<tr>
<td>NLO HLbL</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hadronic total</td>
<td>6982</td>
<td>59</td>
</tr>
<tr>
<td>Theory total</td>
<td>116 591 855</td>
<td>59</td>
</tr>
</tbody>
</table>

→ PDG 2016

→ Kinoshita et al. 2012

→ Gnendiger et al. 2013

→ Hagiwara et al. 2011

→ Hagiwara et al. 2011

→ Kurz et al. 2014

→ Jegerlehner, Nyffeler 2009

→ Colangelo et al. 2014
Hadronic contributions to $(g - 2)_\mu$

Model calculations of HLbL

<table>
<thead>
<tr>
<th>Contribution</th>
<th>BPP</th>
<th>HKS</th>
<th>KN</th>
<th>MV</th>
<th>BP</th>
<th>PdRV</th>
<th>N/JN</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0, η, η'</td>
<td>85±13</td>
<td>82.7±6.4</td>
<td>83±12</td>
<td>114±10</td>
<td>–</td>
<td>114±13</td>
<td>99±16</td>
</tr>
<tr>
<td>π, K loops</td>
<td>–19±13</td>
<td>–4.5±8.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–19±19</td>
<td>–19±13</td>
</tr>
<tr>
<td>π, K loops + other subleading in N_c</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0±10</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>axial vectors</td>
<td>2.5±1.0</td>
<td>1.7±1.7</td>
<td>–</td>
<td>22±5</td>
<td>–</td>
<td>15±10</td>
<td>22±5</td>
</tr>
<tr>
<td>scalars</td>
<td>–6.8±2.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–7±7</td>
<td>–7±2</td>
</tr>
<tr>
<td>quark loops</td>
<td>21±3</td>
<td>9.7±11.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.3</td>
<td>21±3</td>
</tr>
<tr>
<td>total</td>
<td>83±32</td>
<td>89.6±15.4</td>
<td>80±40</td>
<td>136±25</td>
<td>110±40</td>
<td>105±26</td>
<td>116±39</td>
</tr>
</tbody>
</table>

→ Jegerlehner, Nyffeler (2009)

- pseudoscalar pole contribution most important
- pion-loop second most important
- differences between models, large uncertainties
How to improve HLbL calculation?

- make use of fundamental principles:
 - gauge invariance, crossing symmetry
 - unitarity, analyticity
- relate HLbL to experimentally accessible quantities
Overview

1. Introduction
2. Hadronic contributions to $(g - 2)_\mu$
3. Lorentz structure of the HLbL tensor
4. Master formula for $(g - 2)_\mu$
5. Dispersive representation
6. Conclusion and outlook
The HLbL tensor: definitions

- **hadronic four-point function:**

\[
\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = -i \int dx dy dz e^{-i(q_1 \cdot x + q_2 \cdot y + q_3 \cdot z)} \langle 0 | T j_{em}^\mu(x) j_{em}^\nu(y) j_{em}^\lambda(z) j_{em}^\sigma(0) | 0 \rangle
\]

- **EM current:**

\[
j^\mu_{em} = \sum_{i=u,d,s} Q_i \bar{q}_i \gamma^\mu q_i
\]
The HLbL tensor: definitions

- helicity amplitudes for the process

\[\gamma^*(q_1, \lambda_1) \gamma^*(q_2, \lambda_2) \rightarrow \gamma^*(-q_3, \lambda_3) \gamma(q_4, \lambda_4) : \]

\[H_{\lambda_1 \lambda_2 \lambda_3 \lambda_4} = \epsilon^{\lambda_1}_{\mu} \epsilon^{\lambda_2}_{\nu} \epsilon^{\lambda_3}_{\lambda} \epsilon^{\lambda_4*}_{\sigma} \Pi^{\mu \nu \lambda \sigma} \]

- Mandelstam variables:

\[s = (q_1 + q_2)^2, \quad t = (q_1 + q_3)^2, \quad u = (q_2 + q_3)^2 \]

- for \((g - 2)_\mu\), the external photon is on shell:

\[q_4^2 = 0, \text{ where } q_4 = q_1 + q_2 + q_3 \]
Lorentz structure of the HLbL tensor

The HLbL tensor

- a priori 138 ‘naive’ Lorentz structures:

\[\Pi_{\mu\nu\lambda\sigma} = g^{\mu\nu} g^{\lambda\sigma} \Pi^1 + g^{\mu\lambda} g^{\nu\sigma} \Pi^2 + g^{\mu\sigma} g^{\nu\lambda} \Pi^3 \]

\[+ \sum_{i,k,l,m} q_i^{\mu} q_j^{\nu} q_k^{\lambda} q_l^{\sigma} \Pi^4_{ijkl} \]

\[+ \sum_{i,j} g^{\lambda\sigma} q_i^{\mu} q_j^{\nu} \Pi^5_{ij} + \ldots \]

- in 4 space-time dimensions: 2 linear relations among the 138 Lorentz structures \(\rightarrow \) Eichmann et al. (2014)

- six dynamical variables, e.g. two Mandelstam variables \(s, t \) and the photon virtualities \(q_1^2, q_2^2, q_3^2, q_4^2 \)
HLbL tensor: gauge invariance

- Ward identities

\[\{ q_1^\mu, q_2^\nu, q_3^\lambda, q_4^\sigma \} \Pi_{\mu\nu\lambda\sigma} = 0 \]

imply 95 linear relations between scalar functions \(\Pi_i \)

- off-shell basis: \(138 - 95 - 2 = 41 \) structures
- corresponding to 41 helicity amplitudes
- relations between \(\Pi_i \) imply kinematic zeros
Lorentz structure of the HLbL tensor

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition, following a recipe by Bardeen, Tung (1968) and Tarrach (1975):

\[\Pi_{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2) \]

- Lorentz structures manifestly gauge invariant
- crossing symmetry manifest: only 7 distinct structures, 47 follow from crossing
- scalar functions \(\Pi_i \) free of kinematic singularities
 ⇒ ideal quantities for a dispersive treatment
Overview

1 Introduction

2 Hadronic contributions to $(g - 2)_\mu$

3 Lorentz structure of the HLbL tensor

4 Master formula for $(g - 2)_\mu$

5 Dispersive representation

6 Conclusion and outlook
Master formula: contribution to \((g - 2)_\mu\)

- from gauge invariance:
\[
\Pi_{\mu\nu\lambda\rho} = -q_4^\sigma \frac{\partial}{\partial q_4^\rho} \Pi_{\mu\nu\lambda\sigma}
\]

- for \((g - 2)_\mu\): afterwards take \(q_4 \to 0\)

- no kinematic singularities in scalar functions: perform these steps with the derived Lorentz decomposition

- only 12 linear combinations of the scalar functions \(\Pi_i\) contribute to \((g - 2)_\mu\)
Master formula: contribution to \((g - 2)_{\mu}\)

\[
a_{\mu}^{\text{HLbL}} = e^6 \int \frac{d^4 q_1}{(2\pi)^4} \frac{d^4 q_2}{(2\pi)^4} \sum_{i=1}^{12} \hat{T}_i(q_1, q_2; p) \hat{\Pi}_i(q_1, q_2, -q_1 - q_2) \\
\frac{q_1^2 q_2^2 (q_1 + q_2)^2 [(p + q_1)^2 - m_{\mu}^2][(p - q_2)^2 - m_{\mu}^2]}{(q_1^2 q_2^2 (q_1 + q_2)^2 [(p + q_1)^2 - m_{\mu}^2][(p - q_2)^2 - m_{\mu}^2]}
\]

- \(\hat{T}_i\): known integration kernel functions
- five loop integrals can be performed with Gegenbauer polynomial techniques
- Wick rotation possible even in the presence of anomalous thresholds
Master formula: contribution to \((g - 2)_\mu\)

\[
a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \\
\times \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)
\]

- \(T_i\): known integration kernels
- \(\bar{\Pi}_i\): linear combinations of the scalar functions \(\Pi_i\)
- Euclidean momenta: \(Q_i^2 = -q_i^2\)
- \(Q_3^2 = Q_1^2 + Q_2^2 + 2Q_1Q_2\tau\)
Overview

1 Introduction

2 Hadronic contributions to \((g - 2)_\mu\)

3 Lorentz structure of the HLbL tensor

4 Master formula for \((g - 2)_\mu\)

5 Dispersive representation

6 Conclusion and outlook
Analytic properties of scalar functions

- right- and left-hand cuts in each Mandelstam variable
- double-spectral regions (box topologies)
- anomalous thresholds for large photon virtualities
Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

\[
\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \ldots
\]
Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \ldots$$

one-pion intermediate state:
Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

\[
\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0}\text{-pole} + \Pi_{\mu\nu\lambda\sigma}^{\text{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \ldots
\]

two-pion intermediate state in both channels:
Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

\[\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \ldots \]

two-pion intermediate state in first channel:
Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

\[\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \cdots \]

future work: higher intermediate states
Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

\[
\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \ldots
\]

- the limit \(q_4 \to 0 \) for \((g - 2)_\mu \) is taken in the end
\[\Pi_{1}^{\pi^0}\text{-pole} = \frac{\mathcal{F}_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)\mathcal{F}_{\pi^0\gamma^*\gamma}(q_3^2, 0)}{s - M_{\pi}^2} \]

\[\Pi_{2,3}^{\pi^0}\text{-pole} \text{ via crossing symmetry} \]

- input: doubly-virtual and singly-virtual pion transition form factors \(\mathcal{F}_{\gamma^*\gamma^*\pi^0} \) and \(\mathcal{F}_{\gamma^*\gamma\pi^0} \)
- pion is on shell
- dispersive analysis of transition form factor:
 \[\rightarrow \text{Hoferichter et al., EPJC 74 (2014) 3180} \]
Box contributions

- simultaneous two-pion cuts in two channels
- Mandelstam representation explicitly constructed

\[\Pi_i^{\pi\text{-box}} = \frac{1}{\pi^2} \int ds' dt' \frac{\rho_{st}^{i}(s', t')}{(s' - s)(t' - t)} + (t \leftrightarrow u) + (s \leftrightarrow u) \]

- \(q^2 \)-dependence: pion vector form factors \(F^V_\pi(q^2_i) \) for each off-shell photon factor out
Dispersive representation

Box contributions

- sQED loop projected on BTT basis fulfills the same Mandelstam representation
- only difference are factors of F_π^V
- \Rightarrow box topologies are identical to FsQED:

\[
\equiv F_\pi^V (q_1^2) F_\pi^V (q_2^2) F_\pi^V (q_3^2)
\]

- model-independent definition of pion loop
Box contributions

Very simple expressions for box contributions in terms of Feynman parameter integrals

\[
\Pi_{\pi}^{\text{box}}(q_1^2, q_2^2, q_3^2) = F^V_\pi (q_1^2) F^V_\pi (q_2^2) F^V_\pi (q_3^2) \\
\times \frac{1}{16\pi^2} \int_0^1 dx \int_0^{1-x} dy I_i(x, y),
\]

with e.g.

\[
I_7(x, y) = -\frac{4}{3} \frac{(1 - 2x)^2(1 - 2y)^2y(1 - y)}{\Delta^3_{123}},
\]

\[
\Delta_{ijk} = M^2_\pi - xyq_i^2 - x(1 - x - y)q_j^2 - y(1 - x - y)q_k^2.
\]
Pion-box saturation with photon virtualities

Pion-box saturation in %

cutoff on the virtualities in GeV
Box contributions

F_{π}^{V}: fit of dispersive representation to time- and space-like data

Result: $a_{\mu}^{\pi-\text{box}} = -15.9(2) \times 10^{-11}$
Helicity formalism and sum rules

- construction of singly-on-shell basis: unphysical helicity amplitudes drop out, 27 elements remain
- uniform asymptotic behaviour of the full tensor together with BTT tensor decomposition leads to 15 HLbL sum rules:

\[0 = \int ds' \text{Im} \tilde{\Pi}_i(s') \bigg|_{t=q_2^2, q_4^2=0} \]

- can be expressed in terms of helicity amplitudes
Rescattering contribution

- neglect left-hand cut due to multi-particle intermediate states in crossed channel
- two-pion cut in only one channel:

\[
\Pi_{i\pi\pi} = \frac{1}{2} \left(\frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} dt' \frac{\text{Im}\Pi_{i\pi\pi}(s, t', u')}{t' - t} + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} du' \frac{\text{Im}\Pi_{i\pi\pi}(s, t', u')}{u' - u} \right) + \text{fixed-}t + \text{fixed-}u
\]
Rescattering contribution

- unitarity gives imaginary parts in terms of helicity amplitudes for $\gamma^*\gamma^{(*)} \to \pi\pi$
- basis change to helicity amplitudes calculated
- expansion into partial waves
- framework valid for arbitrary partial waves
- resummation of PW expansion reproduces full result: checked for pion box
Convergence of partial-wave expansion

Relative deviation from full result: \(1 - \frac{a_{\pi-\text{box}, J_{\max}}}{a_{\mu-\text{box}}} \)

<table>
<thead>
<tr>
<th>(J_{\max})</th>
<th>fixed-(s)</th>
<th>fixed-(t)</th>
<th>fixed-(u)</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0%</td>
<td>-6.2%</td>
<td>-6.2%</td>
<td>29.2%</td>
</tr>
<tr>
<td>2</td>
<td>26.1%</td>
<td>-2.3%</td>
<td>7.3%</td>
<td>10.4%</td>
</tr>
<tr>
<td>4</td>
<td>10.8%</td>
<td>-1.5%</td>
<td>3.6%</td>
<td>4.3%</td>
</tr>
<tr>
<td>6</td>
<td>5.7%</td>
<td>-0.7%</td>
<td>2.1%</td>
<td>2.4%</td>
</tr>
<tr>
<td>8</td>
<td>3.5%</td>
<td>-0.4%</td>
<td>1.3%</td>
<td>1.5%</td>
</tr>
<tr>
<td>10</td>
<td>2.3%</td>
<td>-0.2%</td>
<td>0.9%</td>
<td>1.0%</td>
</tr>
<tr>
<td>12</td>
<td>1.7%</td>
<td>-0.1%</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>14</td>
<td>1.3%</td>
<td>-0.1%</td>
<td>0.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>16</td>
<td>1.0%</td>
<td>-0.0%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
The subprocess

Helicity amplitudes for $\gamma^* \gamma^* \rightarrow \pi \pi$: dispersive solution of the S-wave unitarity relation with Omnès methods

- pion-pole approximation to left-hand cut
 \[q^2 \]-dependence again given by F_V^π

- phase shifts based on modified inverse-amplitude method

- low-energy properties accurately reproduced, including $f_0(500)$ parameters

- fully consistent with π^\pm polarisabilities

- result for S-waves: $a_{\mu,J=0}^{\pi \pi,\pi^\text{-pole LHC}} = -8(1) \times 10^{-11}$
Topologies in the rescattering contribution

Omnès solution for $\gamma^* \gamma^* \rightarrow \pi\pi$ provides the following:

\[
\begin{align*}
\text{recursive} \quad \text{and} \quad \text{PWE, no LHC}
\end{align*}
\]

Two-pion contributions to HLbL:

\[
\begin{align*}
\text{pion box} \quad \text{and} \quad \text{rescattering contribution}
\end{align*}
\]
Overview

1. Introduction
2. Hadronic contributions to $(g - 2)_\mu$
3. Lorentz structure of the HLbL tensor
4. Master formula for $(g - 2)_\mu$
5. Dispersive representation
6. Conclusion and outlook
Results for two-pion contributions

Pion-box contribution:

\[a_{\mu}^{\pi-\text{box}} = -15.9(2) \times 10^{-11} \]

\textit{S}-wave rescattering contribution:

\[a_{\mu, J=0}^{\pi\pi, \pi-\text{pole LHC}} = -8(1) \times 10^{-11} \]
Conclusion and outlook

Summary

- our dispersive approach to HLbL scattering is based on fundamental principles:
 - gauge invariance, crossing symmetry
 - unitarity, analyticity
- we take into account the lowest intermediate states: π^0-pole and $\pi\pi$-cuts
- relation to experimentally accessible (or again with data dispersively reconstructed) quantities
- precise numerical evaluation of two-pion contributions
- a step towards a model-independent calculation of a_μ
Conclusion and outlook

Outlook

- higher pseudoscalar poles can be included directly
- two-particle intermediate states:
 - include kaons in a coupled-channel system
 - numerics for D-waves
 - generalisation to heavier left-hand cuts
- higher intermediate states in direct channel
 - framework needs to be extended
 - e.g. $3\pi \Rightarrow$ axials
- match the total to OPE/pQCD constraints
Backup
HLbL tensor: BTT Lorentz decomposition

Problem: find a decomposition

\[\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_i T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2) \]

with the following properties:

- Lorentz structures \(T_i^{\mu\nu\lambda\sigma} \) manifestly gauge invariant:
 \[\{ q_1^\mu, q_2^\nu, q_3^\lambda, q_4^\sigma \} T_i^{\mu\nu\lambda\sigma} = 0 \]

- scalar functions \(\Pi_i \) free of kinematic singularities and zeros
HLbL tensor: BTT Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):

- construct gauge projectors:

\[I_{12}^{\mu\nu} = g^{\mu\nu} - \frac{q_2^\mu q_1^\nu}{q_1 \cdot q_2}, \quad I_{34}^{\lambda\sigma} = g^{\lambda\sigma} - \frac{q_4^\lambda q_3^\sigma}{q_3 \cdot q_4} \]

- gauge invariant themselves, e.g.

\[q_1^\mu I_{12}^{\mu\nu} = 0 \]

- leave HLbL tensor invariant, e.g.

\[I_{12}^{\mu\mu'} \Pi_{\mu'\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma} \]
HLbL tensor: BTT Lorentz decomposition

Following Bardeen, Tung (1968):

• apply gauge projectors to the 138 initial structures: 95 immediately project to 0
• remove $1/q_1 \cdot q_2$ and $1/q_3 \cdot q_4$ poles by taking appropriate linear combinations
• BT basis: degenerate in the limits

$q_1 \cdot q_2 \rightarrow 0$, $q_3 \cdot q_4 \rightarrow 0$
HLbL tensor: BTT Lorentz decomposition

According to Tarrach (1975):

- degeneracies in the limits $q_1 \cdot q_2 \to 0$, $q_3 \cdot q_4 \to 0$:

$$\sum_k c^i_k T^\mu_\nu_\lambda_\sigma_k = q_1 \cdot q_2 X^\mu_\nu_\lambda_\sigma_i + q_3 \cdot q_4 Y^\mu_\nu_\lambda_\sigma_i$$

- extend basis by additional structures $X^\mu_\nu_\lambda_\sigma_i$, $Y^\mu_\nu_\lambda_\sigma_i$ taking care of remaining kinematic singularities

- equivalent: implementing crossing symmetry
$(g - 2)_\mu$ integration region in polar coordinates
A roadmap for HLbL

\[e^+ e^- \rightarrow e^+ e^- \pi^0 \]
\[e^+ e^- \rightarrow \pi^0 \gamma \]

Pion transition form factor
\[F_{\pi^0 \gamma^* \gamma^*} (q_1^2, q_2^2) \]

\[e^+ e^- \rightarrow 3\pi \]
\[\omega, \phi \rightarrow 3\pi \]

\[\gamma \pi \rightarrow \pi \pi \]
\[\pi \pi \rightarrow \pi \pi \]

Pion vector form factor \(F_V^{\pi} \)
\[\omega, \phi \rightarrow \pi^0 \gamma^* \]

Partial waves for \(\gamma^* \gamma^* \rightarrow \pi \pi \)
\[e^+ e^- \rightarrow \pi \pi \gamma \]
\[e^+ e^- \rightarrow e^+ e^- \pi \pi \]

\[\omega, \phi \rightarrow \pi \pi \gamma \]

Pion polarizabilities
\[\gamma \pi \rightarrow \gamma \pi \]

→ flowchart by M. Hoferichter