Novel calculation of the nucleon form factors with

 Dispersively Improved Chiral EFTJose Manuel Alarcón

Jefferson Lab
OThomas Jefferson National Accelerator Facility

Introduction

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \longrightarrow Moment of the GPD.

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \longrightarrow Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \longrightarrow Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \longrightarrow Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:
- Encodes the response of the nucleon under scalar probes.

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \longrightarrow Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:
- Encodes the response of the nucleon under scalar probes.
- Essential input in EFT of DM detection. [Bishara, et al, JAP 1702 (2017)]

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \longrightarrow Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:
- Encodes the response of the nucleon under scalar probes.
- Essential input in EFT of DM detection. [Bishora, et al, JAP 1702 (2017)]
- Electromagetic FF:

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \longrightarrow Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:
- Encodes the response of the nucleon under scalar probes.
- Essential input in EFT of DM detection. [Bishara, et al, JAP 1702 (2017)]
- Electromagetic FF:
- Encodes the response of the nucleon under electromagnetic probes.

Introduction

- Nucleon FFs parametrize the transition matrix elements of local operators between nucleon states.
- Provide information about the nucleon internal structure.
- Can be related to the spatial distribution of the properties encoded in the operator (transverse densities) \longrightarrow Moment of the GPD.
- A deeper knowledge of the FFs is needed in order to understand the properties of the nucleon in terms of its QCD constituents.
- Scalar FF:
- Encodes the response of the nucleon under scalar probes.
- Essential input in EFT of DM detection. [Bishora, et al, JAP 1702 (2017)]
- Electromagetic FF:
- Encodes the response of the nucleon under electromagnetic probes.
- Important to understand and solve the "Proton Radius Puzzle".

Introduction

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.

Introduction

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q^{2} dependence of the Form Factors.

Introduction

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q^{2} dependence of the Form Factors.

[Kaiser, PRC 68 (2003)]

Introduction

- ChEFT shows important limitations in calculating some interesting quantities like Form Factors.
- Non-perturbative pion dynamics play an essential role in the Q^{2} dependence of the Form Factors.

- Higher order calculations become necessary \longrightarrow Unpractical

Form factors and their analytic structure

Form factors and their analytic structure

- Definitions.

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| O_{\sigma}(0)|N(p, s)\rangle=\sigma(t) \bar{u}\left(p^{\prime}, s^{\prime}\right) u(p, s) \\
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| J_{\mu}(0)|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}(t)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}(t)\right] u\left(p^{\prime}, s^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& O_{\sigma}(x) \equiv \hat{m} \sum_{q=u, d, w} \bar{q}(x) q(x) \\
& J_{\mu}(x) \equiv \sum_{q=u, d, \ldots} e_{q} \bar{q}(x) \gamma_{\mu} q(x)
\end{aligned}
$$

Form factors and their analytic structure

- Definitions.

$$
\begin{array}{cr}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| O_{\sigma}(0)|N(p, s)\rangle=\sigma(t) \bar{u}\left(p^{\prime}, s^{\prime}\right) u(p, s) & O_{\sigma}(x) \equiv \hat{m} \sum_{q=u, d, \ldots} \bar{q}(x) q(x) \\
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| J_{\mu}(0)|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}(t)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}(t)\right] u\left(p^{\prime}, s^{\prime}\right) & J_{\mu}(x) \equiv \sum_{q=u, d, \ldots} e_{q} \bar{q}(x) \gamma_{\mu} q(x) \\
G_{E}(t)=F_{1}(t)+\frac{t}{4 m_{N}^{2}} F_{2}(t) \quad G_{M}(t)=F_{1}(t)+F_{2}(t) & G_{E, M}^{V, S} \equiv \frac{1}{2}\left(G_{E, M}^{p} \mp G_{E, M}^{n}\right)
\end{array}
$$

Form factors and their analytic structure

- Definitions.

$$
\begin{array}{ll}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| O_{\sigma}(0)|N(p, s)\rangle=\sigma(t) \bar{u}\left(p^{\prime}, s^{\prime}\right) u(p, s) \\
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| J_{\mu}(0)|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}(t)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}(t)\right] u\left(p^{\prime}, s^{\prime}\right) & O_{\sigma}(x) \equiv \hat{m} \sum_{q=u, d_{1, \ldots}} \bar{q}(x) q(x) \\
G_{E}(t)=F_{1}(t)+\frac{t}{4 m_{N}^{2}} F_{2}(t) \quad G_{M}(t)=F_{1}(t)+F_{2}(t)
\end{array}
$$

Form factors and their analytic structure

- Definitions.

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| O_{\sigma}(0)|N(p, s)\rangle=\sigma(t) \bar{u}\left(p^{\prime}, s^{\prime}\right) u(p, s) \quad O_{\sigma}(x) \equiv \hat{m} \sum_{q=u, d, \ldots} \bar{q}(x) q(x) \\
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| J_{\mu}(0)|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}(t)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}(t)\right] u\left(p^{\prime}, s^{\prime}\right) \quad J_{\mu}(x) \equiv \sum_{q=u, d, \ldots} e_{q} \bar{q}(x) \gamma_{\mu} q(x) \\
& G_{E}(t)=F_{1}(t)+\frac{t}{4 m_{N}^{2}} F_{2}(t) \quad G_{M}(t)=F_{1}(t)+F_{2}(t) \quad G_{E, M}^{V, S} \equiv \frac{1}{2}\left(G_{E, M}^{p} \mp G_{E, M}^{n}\right) \\
& \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \sigma_{\pi}^{*}(t) f_{+}^{0}(t) \\
& \operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{\{+,-\}}^{1}(t)
\end{aligned}
$$

Form factors and their analytic structure

- Definitions.

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| O_{\sigma}(0)|N(p, s)\rangle=\sigma(t) \bar{u}\left(p^{\prime}, s^{\prime}\right) u(p, s) \\
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| J_{\mu}(0)|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}(t)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}(t)\right] u\left(p^{\prime}, s^{\prime}\right) \\
& O_{\sigma}(x) \equiv \hat{m} \sum_{q=u, d, \ldots} \bar{q}(x) q(x) \\
& J_{\mu}(x) \equiv \sum_{q=u, d, \ldots} e_{q} \bar{q}(x) \gamma_{\mu} q(x) \\
& G_{E}(t)=F_{1}(t)+\frac{t}{4 m_{N}^{2}} F_{2}(t) \quad G_{M}(t)=F_{1}(t)+F_{2}(t) \quad G_{E, M}^{V, S} \equiv \frac{1}{2}\left(G_{E, M}^{p} \mp G_{E, M}^{n}\right) \\
& \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \sigma_{\pi}^{*}(t) f_{+}^{0}(t) \\
& \pi \text { Form Factor } \\
& \operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{\{+,-\}}^{1}(t) \\
& \pi \text { Form Factor }
\end{aligned}
$$

Form factors and their analytic structure

- Definitions.

Form factors and their analytic structure

- Definitions.

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| O_{\sigma}(0)|N(p, s)\rangle=\sigma(t) \bar{u}\left(p^{\prime}, s^{\prime}\right) u(p, s) \quad O_{\sigma}(x) \equiv \hat{m} \sum_{q=u, d, \ldots} \bar{q}(x) q(x) \\
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| J_{\mu}(0)|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}(t)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}(t)\right] u\left(p^{\prime}, s^{\prime}\right) \quad J_{\mu}(x) \equiv \sum_{q=u, d, \ldots} e_{q} \bar{q}(x) \gamma_{\mu} q(x) \\
& G_{E}(t)=F_{1}(t)+\frac{t}{4 m_{N}^{2}} F_{2}(t) \quad G_{M}(t)=F_{1}(t)+F_{2}(t) \quad G_{E, M}^{V, S} \equiv \frac{1}{2}\left(G_{E, M}^{p} \mp G_{E, M}^{n}\right) \\
& \pi \pi \rightarrow \bar{N} N \mathrm{PW} \\
& \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \sigma_{\pi}^{*}(t) f_{+}^{0}(t) \\
& \pi \text { Form Factor }
\end{aligned}
$$

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{gathered}
\operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \longrightarrow \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)}\left|\Gamma_{\pi}(t)\right|^{2} \frac{f_{+}^{0}(t)}{\Gamma_{\pi}(t)} \\
\operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
\quad[\text { Frazer and Fulco, Phys. Rev. } 1 \mid 7,1609(1960)]
\end{gathered}
$$

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{gathered}
\operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \\
\operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
\quad \text { [Frazer and Fulco, Phys. Rev. } 1 / 7,1609(1960)]
\end{gathered}
$$

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{aligned}
& \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \\
& \operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
& \quad \text { [Frazer and Fulco, Phys. Rev. } 1 / 7,1609(1960)]
\end{aligned}
$$

-The spectral function is factorized into two parts:

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{aligned}
& \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \\
& \operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{\left.\operatorname{lm} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)}\left|\Gamma_{\pi}(t)\right|^{2} \frac{f_{+}^{0}(t)}{\Gamma_{\pi}(t)}\right) J_{+}^{0}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
& \quad \quad \text { Frazer and Fulco, Phys. Rev. } 117,1609(1960)]
\end{aligned}
$$

-The spectral function is factorized into two parts:

- $J_{ \pm}^{J}$: Only left hand cut, free of πT re-scattering \longrightarrow Calculable in ChEFT.

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{aligned}
& \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \\
& \operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{}{\left.\operatorname{lm} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \right\rvert\, \Gamma_{\pi}(t) \|^{2} \frac{f_{+}^{0}(t)}{\Gamma_{\pi}(t)} J_{+}^{0}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
& \quad \text { [Frazer and Fulco, Phys. Rev. } 1 / 7,1609(1960)]
\end{aligned}
$$

-The spectral function is factorized into two parts:

- $J_{ \pm}^{J}$: Only left hand cut, free of πT re-scattering \longrightarrow Calculable in ChEFT. - F_{π} : Contains the π r re-scattering \longrightarrow Experiment, dispersion theory, LQCD.

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{aligned}
& \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \\
& \operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{}{\left.\operatorname{lm} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \right\rvert\, \Gamma_{\pi}(t) \|^{2} \frac{f_{+}^{0}(t)}{\Gamma_{\pi}(t)} J_{+}^{0}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
& \quad \text { [Frazer and Fulco, Phys. Rev. } 1 / 7,1609(1960)]
\end{aligned}
$$

-The spectral function is factorized into two parts:

- $J_{ \pm}^{J}$: Only left hand cut, free of πT re-scattering \longrightarrow Calculable in ChEFT. - F_{π} : Contains the π Tr re-scattering \longrightarrow Experiment, dispersion theory, LQCD.
- We calculate $J_{ \pm}^{J}$ with ChEFT.

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{gathered}
\operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \\
\operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
\quad \text { [Frazer and Fulco, Phys. Rev. } 1 / 7,1609(1960)]
\end{gathered}
$$

-The spectral function is factorized into two parts:

- $J_{ \pm}^{J}$: Only left hand cut, free of πT re-scattering \longrightarrow Calculable in ChEFT.
- F_{π} : Contains the π Tr re-scattering \longrightarrow Experiment, dispersion theory,

LQCD.

- We calculate $J_{ \pm}^{J}$ with ChEFT.
\bullet LO \longrightarrow Born Terms + Contact Terms (from πN)

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{gathered}
\left.\left.\operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \longrightarrow \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \right\rvert\, \Gamma_{\pi}(t)=\frac{f_{+}^{0}(t)}{\Gamma_{\pi}(t)}\right) J_{+}^{0} \\
\operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
\left.\quad \longrightarrow \quad \operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} \right\rvert\, F_{\pi}(t) 2^{\frac{f_{ \pm}^{1}(t)}{F_{\pi}(t)}} J_{ \pm}^{1}
\end{gathered}
$$

-The spectral function is factorized into two parts:

- $J_{ \pm}^{J}$: Only left hand cut, free of $\pi \pi$ re-scattering \longrightarrow Calculable in ChEFT.
- F_{π} : Contains the π Tr re-scattering \longrightarrow Experiment, dispersion theory,

LQCD.

- We calculate $J_{ \pm}^{J}$ with ChEFT.
\cdot LO \longrightarrow BornTerms + Contact Terms (from πN)
\bullet NLO \rightarrow Contact Terms (from πN, subtracting contribution of tchannel resonances from the c_{i} [Berarad, Koiser and Meibner, NPA 615 (19977])

Form factors and their analytic structure

- We use unitarity to find a convenient representation

$$
\begin{gathered}
\left.\operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \Gamma_{\pi}^{*}(t) f_{+}^{0}(t) \longrightarrow \operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)} \right\rvert\, \Gamma_{\pi}(t)\left(\frac{f_{+}^{0}(t)}{\Gamma_{\pi}(t)}\right) J_{+}^{0} \\
\operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}} F_{\pi}^{*}(t) f_{ \pm}^{1}(t) \\
{[\text { Frazer and Fulco, Phys. Rev. } 117,1609(1960)]}
\end{gathered}
$$

-The spectral function is factorized into two parts:

- $J_{ \pm}^{J}$: Only left hand cut, free of $\pi \pi$ re-scattering \longrightarrow Calculable in ChEFT.
- F_{π} : Contains the π Tr re-scattering \longrightarrow Experiment, dispersion theory,

LQCD.

- We calculate $J_{ \pm}^{J}$ with ChEFT.
\cdot LO \longrightarrow Born Terms + Contact Terms (from πN)
- NLO \Rightarrow Contact Terms (from πN, subtracting contribution of tchannel resonances from the c_{i} [Berarad, Koiser and Meibner NPA 615 (19977])
- N2LO partially included \rightarrow One unknown coefficient for each $J_{ \pm}^{J}$.

Form factors and their analytic structure

- $J_{ \pm}^{J}$ is used to reconstruct the spectral functions up to $\mathrm{t}<1 \mathrm{GeV}^{2}$

Form factors and their analytic structure

- $J_{ \pm}^{J}$ is used to reconstruct the spectral functions up to $t<1 \mathrm{GeV}^{2}$

Form factors and their analytic structure

- $J_{ \pm}^{J}$ is used to reconstruct the spectral functions up to $\mathrm{t}<1 \mathrm{GeV}^{2}$

- Electromagnetic FF: Since $t>\mid \mathrm{GeV}^{2}$ is far away from the space-like region, we parametrize the contribution from this region by an effective pole P_{V} :

$$
\operatorname{Im} G_{E, M}^{V}=-\pi a_{E, M}^{P_{V}} \delta\left(t-M_{P_{V}}^{2}\right)
$$

Form factors and their analytic structure

- $J_{ \pm}^{J}$ is used to reconstruct the spectral functions up to $\mathrm{t}<1 \mathrm{GeV}^{2}$

- Electromagnetic FF: Since $t>\mid \mathrm{GeV}^{2}$ is far away from the space-like region, we parametrize the contribution from this region by an effective pole P_{V} :

$$
\operatorname{Im} G_{E, M}^{V}=-\pi a_{E, M}^{P_{V}} \delta\left(t-M_{P_{V}}^{2}\right)
$$

- We fix the free parameters by imposing:

Form factors and their analytic structure

- $J_{ \pm}^{J}$ is used to reconstruct the spectral functions up to $\mathrm{t}<1 \mathrm{GeV}^{2}$

- Electromagnetic FF: Since $t>\mid \mathrm{GeV}^{2}$ is far away from the space-like region, we parametrize the contribution from this region by an effective pole P_{V} :

$$
\operatorname{Im} G_{E, M}^{V}=-\pi a_{E, M}^{P_{V}} \delta\left(t-M_{P_{V}}^{2}\right)
$$

- We fix the free parameters by imposing:

Form factors and their analytic structure

- $J_{ \pm}^{J}$ is used to reconstruct the spectral functions up to $\mathrm{t}<1 \mathrm{GeV}^{2}$

- Electromagnetic FF: Since $t>\mid \mathrm{GeV}^{2}$ is far away from the space-like region, we parametrize the contribution from this region by an effective pole P_{V} :

$$
\operatorname{Im} G_{E, M}^{V}=-\pi a_{E, M}^{P_{V}} \delta\left(t-M_{P_{V}}^{2}\right)
$$

- We fix the free parameters by imposing:
- Electromagnetic FF $G_{E, M}^{V}(0)=\frac{1}{\pi} \int_{4 M N_{\pi}}^{\infty} \frac{d t^{\prime}}{\operatorname{Im} G_{E, M}^{V}\left(t^{\prime}\right)} t^{\prime} \quad\left\langle r_{E, M}^{2}\right\rangle^{V}=\frac{6}{\pi} \int_{4 M{ }_{\pi}^{2}}^{\infty} d t^{\operatorname{Im} G_{E, M}^{V}\left(t^{\prime}\right)} \underset{t^{\prime 2}}{ }$
- Scalar FF $\quad \sigma(0)=\frac{1}{\pi} \int_{4 w_{T}^{2}}^{1 \operatorname{Cev}^{2}} \frac{t^{2} \operatorname{Im} \sigma\left(t^{\prime}\right)}{t^{\prime}}$

Form factors and their analytic structure

- Higher order corrections are important for $t>0.2 \mathrm{GeV}^{2}$.
- Error bands shown correspond to the uncertainties in the LECs.
- Systematic errors are inferred from the difference between NLO and NLO $+p N 2 L O$.
[]. M. Alarcón, C. Weiss, 17 I 0.06430 ; in preparation]

[I] Höhler, in Landolt-Börnstein, 9b2, ed. H. Schopper (Springer, Berlin, 1983)

Form factors and their analytic structure

- Pion scalar FF

Form factors and their analytic structure

- Pion scalar FF
- No direct determination from experimental information
- Dispersion Theory $\longrightarrow \pi \pi$ phase shifts
- LQCD
- We take the dispersive result from
[A. Celis, V. Cirigliano and E. Passemar, PRD 89 (2014)]

Form factors and their analytic structure

- Pion scalar FF
- No direct determination from experimental information
- Dispersion Theory $\longrightarrow \pi \pi$ phase shifts
- LQCD
- We take the dispersive result from
[A. Celis, V. Cirigliano and E. Passemar, PRD 89 (20| 4)]

Form factors and their analytic structure

- Pion scalar FF
- No direct determination from experimental information
- Dispersion Theory $\longrightarrow \pi \pi$ phase shifts
- LQCD
- We take the dispersive result from
[A. Celis, V. Cirigliano and E. Passemar, PRD 89 (2014)]

- Pion EM FF

Form factors and their analytic structure

- Pion scalar FF
- No direct determination from experimental information
- Dispersion Theory $\longrightarrow \pi \pi$ phase shifts
- LQCD
- We take the dispersive result from
[A. Celis, V. Cirigliano and E. Passemar, PRD 89 (20| 4)]

- Pion EM FF \rightarrow related to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi \pi$ cross sections
- Related to measured quantities.
- Dispersion Theory \rightarrow TाT phase shifts.
- LQCD
- We use the GS parametrization of
[Lorenz, Hammer, Meißner,EPJ A 48 (20 I 2)]

Form factors and their analytic structure

- Pion scalar FF
- No direct determination from experimental information
- Dispersion Theory $\longrightarrow \pi \pi$ phase shifts
- LQCD
- We take the dispersive result from
[A. Celis, V. Cirigliano and E. Passemar, PRD 89 (20| 4)]

- Pion EM FF \rightarrow related to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi \pi$ cross sections
- Related to measured quantities.
- Dispersion Theory $\rightarrow \boldsymbol{\pi} \pi$ phase shifts.
- LQCD
- We use the GS parametrization of
[Lorenz, Hammer, Meißner,EPJ A 48 (20 I 2)]

Spectral Functions

DIXEFT

[J. M. Alarcón, C. Weiss, PRC 96 (20 1 7)]

$\operatorname{Im} \sigma(t)=\frac{3 k_{c m}}{4 \sqrt{t}\left(m_{N}^{2}-t / 4\right)}\left|\Gamma_{\pi}(t)\right|^{2} J_{+}^{0}(t)$
$\operatorname{Im} G_{\{E, M\}}^{V}(t)=\frac{k_{c m}^{3}}{\left\{m_{N}, \sqrt{2}\right\} \sqrt{t}}\left|F_{\pi}(t)\right|^{2} J_{ \pm}^{1}(t)$
[1] Hoferichter, Ditsche, Kubis, Meißner, JHEP 063 (2012)
[2] Belushkin, Hammer and Meißner, PRC 75 (2007)
[3] Hoferichter, Kubis, Ruiz de Elvira, Hammer, Meißner EPJA
52 (2016)

[J. M. Alarcón, C. Weiss, in preparation]

D1XEFT

- Comparison with respect to the old results

- Conclusions:
- Brute force calculations are hopeless.
- Non-perturbative effects are visible in the near-threshold region.
- Based on unitarity one achieves a factorization suitable for perturbative calculations.

Scalar Form Factor

DIXEFT

[J. M. Alarcón, C. Weiss, PRC 96 (20 1 7)]

	LO	NLO	NLO+N2LO	GLS $[1]$	HKMS[2]	
$\left\langle r^{2}\right\rangle_{S}\left(\mathrm{fm}^{2}\right)$	$(\sigma(0)=59 \mathrm{MeV})$	1.06	$1.40-1.67$	$1.03-1.13$	-	$1.07(4)$
$(\sigma(0)=45 \mathrm{MeV})$	1.38	$1.83-2.19$	$1.34-1.49$	1.6	-	

	LO	NLO	NLO+N2LO	GLS [3]	HDKM [4]	ChPT $\mathcal{O}\left(p^{3}\right)$	$\operatorname{ChPT} \mathcal{O}\left(p^{4}\right)$
$\Delta_{\sigma}(\mathrm{MeV})$	13.3	$17.4-20.6$	$13.3-14.5$	$15.2(4)$	$13.9(3)$	4.6	$14.0+4 M_{\pi}^{4} \bar{e}_{2}$

[1] Gasser, Leutwler, Sainio, PLB 253 260-264, [2] Hoferichter, Klos, Menéndez, Schwenk PRD 94 (2016)
[3] Gasser, Leutwyler, Sainio, PLB 253 252-259, [4] Hoferichter, Ditsche, Kubis, Meißner, JHEP I 206 (20 I 2)

Electromagnetic Form Factor

D1XEFT

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.

D1XEFT

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
- One cannot apply the same approach as in the isovector case.

DIXEFT

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
- One cannot apply the same approach as in the isovector case.
- We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation + higher mass pole P_{S}.

DIXEFT

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
- One cannot apply the same approach as in the isovector case.
- We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation + higher mass pole P_{S}.

$$
\operatorname{Im} G_{E, M}^{S}=-\pi \sum_{V=\omega, P_{S}} a_{i}^{E, M} \delta\left(t-M_{i}^{2}\right)
$$

DIXEFT

- To compute the EM form factors of proton and neutron, we need the isoscalar component as well.
- One cannot apply the same approach as in the isovector case.
- We parametrize the isoscalar spectral function through the ω exchange in the narrow with approximation + higher mass pole P_{S}.

$$
\operatorname{Im} G_{E, M}^{S}=-\pi \sum_{V=\omega, P_{S}} a_{i}^{E, M} \delta\left(t-M_{i}^{2}\right)
$$

- We fix the couplings by imposing the charge and radii sum rules:

$$
G_{E, M}^{S}(0)=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} G_{i}^{S}\left(t^{\prime}\right)}{t^{\prime}} \quad\left\langle r_{E, M}^{2}\right\rangle^{S}=\frac{6}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} G_{E, M}^{S}\left(t^{\prime}\right)}{t^{\prime 2}}
$$

DIXEFT

- Reconstructing the form factors with $G_{E, M}^{p, n}(t)=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d t^{\frac{\operatorname{Im}}{} \frac{\operatorname{G} G_{E, M}^{p, n}\left(t^{\prime}\right)}{t^{\prime}-t-i 0^{+}}}$

DIXEFT

- Reconstructing the form factors with $G_{E, M}^{p, n}(t)=\frac{1}{\pi} \int_{4 M M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} G_{E, M}^{p, n}\left(t^{\prime}\right)}{t^{\prime}-t-i 0^{+}}$

DIXEFT

- Reconstructing the form factors with $G_{E, M}^{p, n}(t)=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} G_{E, M}^{p, n}\left(t^{\prime}\right)}{t^{\prime}-t-i 0^{+}}$

DIXEFT

- Moments

$$
\begin{gathered}
G_{E}\left(Q^{2}\right)=1-\frac{\left\langle r_{E}^{2}\right\rangle}{3!} Q^{2}+\frac{\left\langle r_{E}^{4}\right\rangle}{5!} Q^{4}-\frac{\left\langle r_{E}^{6}\right\rangle}{7!} Q^{6}+\frac{\left\langle r_{E}^{8}\right\rangle}{9!} Q^{8}+\ldots \\
\frac{G_{M}\left(Q^{2}\right)}{\mu_{N}}=1-\frac{\left\langle r_{M}^{2}\right\rangle}{3!} Q^{2}+\frac{\left\langle r_{M}^{4}\right\rangle}{5!} Q^{4}-\frac{\left\langle r_{M}^{6}\right\rangle}{7!} Q^{6}+\frac{\left\langle r_{M}^{8}\right\rangle}{9!} Q^{8}+\ldots
\end{gathered}
$$

DIXEFT

- Moments

$$
\begin{gathered}
G_{E}\left(Q^{2}\right)=1-\frac{\left\langle r_{E}^{2}\right\rangle}{3!} Q^{2}+\frac{\left\langle r_{E}^{4}\right\rangle}{5!} Q^{4}-\frac{\left\langle r_{E}^{6}\right\rangle}{7!} Q^{6}+\frac{\left\langle r_{E}^{8}\right\rangle}{9!} Q^{8}+\ldots \\
\frac{G_{M}\left(Q^{2}\right)}{\mu_{N}}=1-\frac{\left\langle r_{M}^{2}\right\rangle}{3!} Q^{2}+\frac{\left\langle r_{M}^{4}\right\rangle}{5!} Q^{4}-\frac{\left\langle r_{M}^{6}\right\rangle}{7!} Q^{6}+\frac{\left\langle r_{M}^{8}\right\rangle}{9!} Q^{8}+\ldots
\end{gathered}
$$

	G_{E}^{p}	G_{E}^{n}	G_{M}^{p}	G_{M}^{n}
$\left\langle r^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$	$(0.70059,0.767638)$	$(-0.079362,-0.14641)$	$(0.688927,0.764926)$	$(0.740108,0.775516)$
$\left\langle r^{4}\right\rangle\left(\mathrm{fm}^{4}\right)$	$(1.47274,1.6019)$	$(-0.635304,-0.506146)$	$(1.67591,1.78208)$	$(2.04528,2.04238)$
$\left\langle r^{6}\right\rangle\left(\mathrm{fm}^{6}\right)$	$(8.51876,8.96183)$	$(-6.10983,-5.66675)$	$(11.525,11.5793)$	$(15.2307,15.6446)$
$\left\langle r^{8}\right\rangle\left(10^{2} \mathrm{fm}^{8}\right)$	$(1.26893,1.29627)$	$(-1.1587,-1.13137)$	$(1.83446,1.8822)$	$(2.59672,2.69128)$
$\left\langle 1^{10}\right\rangle\left(10^{3} \mathrm{fm}^{10}\right)$	$(3.93325,3.96482)$	$(-3.86593,-3.83435)$	$(5.70736,5.90496)$	$(8.27382,8.58060)$
$\left\langle r^{12}\right\rangle\left(10^{5} \mathrm{fm}^{12}\right)$	$(2.04126,2.04851)$	$(-2.03856,-2.03131)$	$(2.90303,3.00426)$	$(4.23250,4.38216)$
$\left\langle r^{14}\right\rangle\left(10^{7} \mathrm{fm}^{14}\right)$	$(1.55741,1.56055)$	$(-1.55921,-1.55608)$	$(2.15788,2.2296)$	$(3.14973,3.2547)$
$\left\langle 1^{16}\right\rangle\left(10^{9} \mathrm{fm}^{16}\right)$	$(1.62407,1.62627)$	$(-1.62604,-1.62384)$	$(2.19083,2.25977)$	$(3.19849,3.2992)$
$\left\langle r^{18}\right\rangle\left(10^{11} \mathrm{fm}^{18}\right)$	$(2.20993,2.21213)$	$(-2.21208,-2.20988)$	$(2.90451,2.99138)$	$(4.24059,4.36742)$
$\left\langle r^{20}\right\rangle\left(10^{13} \mathrm{fm}^{20}\right)$	$(3.79638,3.79932)$	$(-3.79931,-3.79637)$	$(4.86668,5.00572)$	$(7.1054,7.30839)$

DIXEFT

- Moments

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =1-\frac{\left\langle r_{E}^{2}\right\rangle}{3!} Q^{2}+\frac{\left\langle r_{E}^{4}\right\rangle}{5!} Q^{4}-\frac{\left\langle r_{E}^{6}\right\rangle}{7!} Q^{6}+\frac{\left\langle r_{E}^{8}\right\rangle}{9!} Q^{8}+\ldots \\
\frac{G_{M}\left(Q^{2}\right)}{\mu_{N}} & =1-\frac{\left\langle r_{M}^{2}\right\rangle}{3!} Q^{2}+\frac{\left\langle r_{M}^{4}\right\rangle}{5!} Q^{4}-\frac{\left\langle r_{M}^{6}\right\rangle}{7!} Q^{6}+\frac{\left\langle r_{M}^{8}\right\rangle}{9!} Q^{8}+\ldots
\end{aligned}
$$

	G_{E}^{p}	G_{E}^{n}	G_{M}^{p}	G_{M}^{n}
$\left\langle r^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$	$(0.70059,0.767638)$	$(-0.079362,-0.14641)$	$(0.688927,0.764926)$	$(0.740108,0.775516)$
$\left\langle r^{4}\right\rangle\left(\mathrm{fm}^{4}\right)$	$(1.47274,1.6019)$	$(-0.635304,-0.506146)$	$(1.67591,1.78208)$	$(2.04528,2.04238)$
$\left\langle r^{6}\right\rangle\left(\mathrm{fm}^{6}\right)$	$(8.51876,8.96183)$	$(-6.10983,-5.66675)$	$(11.525,11.5793)$	$(15.2307,15.6446)$
$\left\langle r^{8}\right\rangle\left(10^{2} \mathrm{fm}^{8}\right)$	$(1.26893,1.29627)$	$(-1.1587,-1.13137)$	$(1.83446,1.8822)$	$(2.59672,2.69128)$
$\left\langle r^{10}\right\rangle\left(10^{3} \mathrm{fm}^{10}\right)$	$(3.93325,3.96482)$	$(-3.86593,-3.83435)$	$(5.70736,5.90496)$	$(8.27382,8.58060)$
$\left\langle r^{12}\right\rangle\left(10^{5} \mathrm{fm}^{12}\right)$	$(2.04126,2.04851)$	$(-2.03856,-2.03131)$	$(2.90303,3.00426)$	$(4.23250,4.38216)$
$\left\langle r^{14}\right\rangle\left(10^{7} \mathrm{fm}^{14}\right)$	$(1.55741,1.56055)$	$(-1.55921,-1.55608)$	$(2.15788,2.2296)$	$(3.14973,3.2547)$
$\left\langle r^{16}\right\rangle\left(10^{9} \mathrm{fm}^{16}\right)$	$(1.62407,1.62627)$	$(-1.62604,-1.62384)$	$(2.19083,2.25977)$	$(3.19849,3.2992)$
$\left\langle r^{18}\right\rangle\left(10^{11} \mathrm{fm}^{18}\right)$	$(2.20993,2.21213)$	$(-2.21208,-2.20988)$	$(2.90451,2.99138)$	$(4.24059,4.36742)$
$\left\langle r^{20}\right\rangle\left(10^{13} \mathrm{fm}^{20}\right)$	$(3.79638,3.79932)$	$(-3.79931,-3.79637)$	$(4.86668,5.00572)$	$(7.1054,7.30839)$

- Higher order moments governed by the near-threshold region

$$
\left\langle r^{2 n}\right\rangle=\frac{(2 n+1)!}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} G\left(t^{\prime}\right)}{t^{\prime n+1}}
$$

[J. M. Alarcón, C. Weiss, I 7 I 0.06430]

DIXEFT

- Moments $\quad G_{E}\left(Q^{2}\right)=1-\frac{\left\langle r_{E}^{2}\right\rangle}{3!} Q^{2}+\frac{\left\langle r_{E}^{4}\right\rangle}{5!} Q^{4}-\frac{\left\langle r_{E}^{6}\right\rangle}{7!} Q^{6}+\frac{\left\langle r_{E}^{8}\right\rangle}{9!} Q^{8}+\ldots$

$$
\frac{G_{M}\left(Q^{2}\right)}{\mu_{N}}=1-\frac{\left\langle r_{M}^{2}\right\rangle}{3!} Q^{2}+\frac{\left\langle r_{M}^{4}\right\rangle}{5!} Q^{4}-\frac{\left\langle r_{M}^{6}\right\rangle}{7!} Q^{6}+\frac{\left\langle r_{M}^{8}\right\rangle}{9!} Q^{8}+\ldots
$$

	G_{E}^{p}
$\left\langle r^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$	$(0.70059,0.767638)$
$\left\langle r^{4}\right\rangle\left(\mathrm{fm}^{4}\right)$	$(1.47274,1.6019)$
$\left\langle r^{\circ}\right\rangle\left(\mathrm{fm}^{6}\right)$	$(8.51876,8.96183)$
$\left\langle r^{8}\right\rangle\left(10^{2} \mathrm{fm}^{8}\right)$	$(1.26893,1.29627)$
$\left\langle r^{10}\right\rangle\left(10^{3} \mathrm{fm}^{10}\right)$	$(3.93325,3.96482)$
$\left\langle r^{12}\right\rangle\left(10^{5} \mathrm{fm}^{12}\right)$	$(2.04126,2.04851)$
$\left\langle r^{14}\right\rangle\left(10^{7} \mathrm{fm}^{14}\right)$	$(1.55741,1.56055)$
$\left\langle r^{16}\right\rangle\left(10^{9} \mathrm{fm}^{16}\right)$	$(1.62407,1.62627)$
$\left\langle r^{18}\right\rangle\left(10^{11} \mathrm{fm}^{18}\right)$	$(2.20993,2.21213)$
$\left\langle r^{20}\right\rangle\left(10^{13} \mathrm{fm}^{20}\right)$	$(3.79638,3.79932)$

- Higher order moments governed by the near-threshold region
$\left\langle r^{2 n}\right\rangle=\frac{(2 n+1)!}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} G\left(t^{\prime}\right)}{t^{\prime n+1}}$
[J. M. Alarcón, C. Weiss, I 7 I 0.06430]

Nucleon Densities

Nucleon Densities

- Charge and magnetization densities reveal the the spatial distribution of charge and magnetization inside the nucleon.

Nucleon Densities

- Charge and magnetization densities reveal the the spatial distribution of charge and magnetization inside the nucleon.
- For relativistic system as the nucleon is necessary to project into the transverse plane to avoid any ambiguity.

Nucleon Densities

- Charge and magnetization densities reveal the the spatial distribution of charge and magnetization inside the nucleon.
- For relativistic system as the nucleon is necessary to project into the transverse plane to avoid any ambiguity.

Nucleon Densities

- Charge and magnetization densities reveal the the spatial distribution of charge and magnetization inside the nucleon.
- For relativistic system as the nucleon is necessary to project into the transverse plane to avoid any ambiguity.

$$
\left\langle B^{\prime}\right| J^{+}(b)|B\rangle=[\ldots]\left[\rho_{1}(b)+\left(2 S^{y}\right) \cos \phi \tilde{\rho}_{2}(b)\right]
$$

Nucleon Densities

- Charge and magnetization densities reveal the the spatial distribution of charge and magnetization inside the nucleon.
- For relativistic system as the nucleon is necessary to project into the transverse plane to avoid any ambiguity.

$$
\begin{aligned}
& \left\langle B^{\prime}\right| J^{+}(b)|B\rangle=[\ldots]\left[\rho_{1}(b)+\left(2 S^{y}\right) \cos \phi \tilde{\rho}_{2}(b)\right] \\
& \rho_{1}(b)=\int_{0}^{\infty} d \Delta_{T} \frac{\Delta_{T} J_{0}\left(\Delta_{T} b\right)}{2 \pi} F_{1}^{B}\left(t=-\Delta_{T}^{2}\right)=\int_{t_{\mathrm{thr}}}^{\infty} d t \frac{K_{0}(\sqrt{t} b)}{2 \pi} \frac{\operatorname{Im} F_{1}^{B}(t)}{\pi} \\
& \tilde{\rho}_{2}(b)=\int_{0}^{\infty} d \Delta_{T} \frac{-\Delta_{T}^{2} J_{1}\left(\Delta_{T} b\right)}{4 \pi m_{B}} F_{2}^{B}\left(t=-\Delta_{T}^{2}\right)=\int_{t_{\text {thr }}}^{\infty} d t \frac{-\sqrt{t} K_{1}(\sqrt{t} b)}{4 \pi m_{B}} \frac{\operatorname{Im} F_{2}^{B}(t)}{\pi}
\end{aligned}
$$

Nucleon Densities

- Charge and magnetization densities reveal the the spatial distribution of charge and magnetization inside the nucleon.
- For relativistic system as the nucleon is necessary to project into the transverse plane to avoid any ambiguity.

$$
\begin{aligned}
& \left\langle B^{\prime}\right| J^{+}(b)|B\rangle=[\ldots]\left[\rho_{1}(b)+\left(2 S^{y}\right) \cos \phi \tilde{\rho}_{2}(b)\right] \\
& \rho_{1}(b)=\int_{0}^{\infty} d \Delta_{T} \frac{\Delta_{T} J_{0}\left(\Delta_{T} b\right)}{2 \pi} F_{1}^{B}\left(t=-\Delta_{T}^{2}\right)=\int_{t_{\mathrm{thr}}}^{\infty} d t \frac{K_{0}(\sqrt{t} b)}{2 \pi} \frac{\operatorname{Im} F_{1}^{B}(t)}{\pi} \\
& \tilde{\rho}_{2}(b)=\int_{0}^{\infty} d \Delta_{T} \frac{-\Delta_{T}^{2} J_{1}\left(\Delta_{T} b\right)}{4 \pi m_{B}} F_{2}^{B}\left(t=-\Delta_{T}^{2}\right)=\int_{t_{\mathrm{thr}}}^{\infty} d t \frac{-\sqrt{t} K_{1}(\sqrt{t} b)}{4 \pi m_{B}} \frac{\operatorname{Im} F_{2}^{B}(t)}{\pi}
\end{aligned}
$$

- The input necessary to compute the densities can be taken from experimental data (parametrizations) or theory.

Nucleon Densities

- Densities are more sensitive to near-threshold contributions for b >1 fm:

$$
K_{0,1}(\sqrt{t} b) \sim \frac{e^{-\sqrt{t} b}}{(\sqrt{t} b)^{1 / 2}} \quad(\sqrt{t} b \gg 1)
$$

Nucleon Densities

- Densities are more sensitive to near-threshold contributions for b $>$ | fm:

$$
K_{0,1}(\sqrt{t} b) \sim \frac{e^{-\sqrt{t} b}}{(\sqrt{t} b)^{1 / 2}}
$$

$$
(\sqrt{t} b \gg 1) \longrightarrow \text { Suited for ChEFT! }
$$

Nucleon Densities

- Densities are more sensitive to near-threshold contributions for b> | fm:

$$
K_{0,1}(\sqrt{t} b) \sim \frac{e^{-\sqrt{t} b}}{(\sqrt{t} b)^{1 / 2}}
$$

$$
(\sqrt{t} b \gg 1) \longrightarrow \text { Suited for ChEFT! }
$$

Nucleon Densities

- Charge Densities

- Magnetization Densities

[J. M. Alarcón, C. Weiss, in preparation]

Summary and Conclusions

Summary and Conclusions

-Through unitarity, it is possible to find a representation suited for ChEFT \rightarrow Predictions of the Nucleon Form factors.

- The results improve previous ChEFT calculations and are competitive with dispersion theory calculations.
- EM FFs have a much complex structure that what it seems.
- DIXEFT implements the constrains that allow to reconstruct the FFs with its full complexity:
- Analyses of FF data.
- Two photon exchange corrections to e^{-p} scattering.
- Results used to understand "Proton Radius Puzzle" (PRad).
- Learn about the partonic structure of the nucleon.
- New promising method to compute nucleon matrix elements from first principles (EM tensor, D-term, extension to G-parity odd, ...).

Spares

DIXEFT

- Reconstructing the form factors with $G_{E, M}^{p, n}(t)=\frac{1}{\pi} \int_{4 M M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} G_{E, M}^{p, n}\left(t^{\prime}\right)}{t^{\prime}-t-i 0^{+}}$

DIXEFT

- Comparison with respect to the old results

[T. Bauer, J. Bernauer, S. Scherer, PRC 86 (20| 2)]

J. M. Alarcón (JLab)

Nucleon Form Factors in DIXEFT

DIXEFT

$\left(Q^{2}{ }_{\text {max }}=0.2 \mathrm{GeV}^{2}\right) \chi_{\text {red }^{2}}{ }^{2}$: green <1.08, blue <1.10, red <1.14

Is lowest reduced chi-squared $\chi_{\mathrm{red}}{ }^{2}$ the answer?
If not, why not?
Are there systematic problems with the MAMI data?

Clearly: $\mathrm{P} \& P$ prediction $0.6(3)=$ No Go
I. Sick \& D. Trautmann: 2.01 (5) PRC 2017
M. Distler: $2.6 \mathrm{fm}^{4}$

Note the $R_{\mathrm{e}} \mathrm{vs}\left\langle\mathrm{r}^{4}\right\rangle$ e correlation !!

DIXEFT

Talk by Marko Horbatsch (JLab, 12/8/2017)

Is it consistent for the higher moments?
J.A \& C.W arXiv 1710.06430

(Courtesy of Marko Horbatsch)

DIXEFT

- We study the naturalness of the isovector moments by defining:

$$
a_{n}=\frac{\left\langle r^{2 n}\right\rangle^{V}}{(2 n+1)!}=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} G^{V}\left(t^{\prime}\right)}{t^{\prime n+1}}
$$

- If the integral were dominated by a certain region t^{\prime}, the ratio $\frac{a_{n+1}}{a_{n}}$ would be given by the average of $1 / t^{\prime}$ over this region.

J. M. Alarcón (JLab)

Nucleon Form Factors in DIXEFT

