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Motivation for this study

Reactions with beams of 7Li with energies of
tens of MeV s on targets of 12C have been

thoroughly studied.

So...

Why did I do this?
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Motivation for this study

The elastic differential cross section is well explained, but all of its observables of
polarization have not been properly described.

There exist many potentials, and combinations among them, proposed for this
interaction. Radial (spherical and deformed) and tensor forms.

There are several models for the 7Li internal structructure. Colective, cluster and
single nucleon motion.

Polarized reactions offer a lot of information about the nuclei of the reaction and its
mechanisms of interaction.
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Characteristics of the reactions studied

Elastic unpolarized reaction

The differential cross section of the reaction 12C
(
7Li, 7Li

)
12C at

Elab
(
7Li
)

= 34 MeV in the 0◦ < θc.m. < 180◦ angular region.

Elastic/Inelastic polarized reaction

The analysing powers (of order 1, 2 and 3) of the polarized reactions

12C
(

7 ~Li, 7Li
)

12C

12C

(
7 ~Li, 7Li∗

(1/2−, 0.4776MeV )

)
12C

at Elab

(
7 ~Li
)

= 34 MeV in the θc.m. < 90◦ angular region.
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Characteristics of the reactions studied

The experiment

The spin of a polarized nucleus can be spatially manipulated in the laboratory by
means of rotations using magnetic fields.

The theory

The density matrix formalism is used to describe the polarization in a projectile-target
system.

⇓

Every element of the density matrix will contain certain information about the
polarization of the system.

The numerical calculations

The computational code Fresco of coupled reaction channel calculations was employed
to generate the adjustments to the data.
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Theoretical formalism of the analyzing powers

Madison and Transverse reference systems

Systems of reference used to orient the axis of spin (projectile’s spin “direction” in the
laboratory).

Madison system Transverse system
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Theoretical formalism of the analyzing powers

Wave function of a completely polarized nucleus - Pure states

The wave function of a nucleus, or projectile, completely polarized is pure

|ψip 〉 =

ip∑
mip=−ip

a
ip
mip
|ip,mip 〉

where the probability amplitudes are given by

a
ip
mip

= 〈ip,mip |ψip 〉

Density matrix

ρ =

ip∑
mip=−ip

ip∑
m′ip

=−ip

ρmip ,m
′
ip
|ip,mip 〉〈ip,m

′
ip
|

whose elements are
ρmip ,m

′
ip

= a
ip
mip

a
ip
m′ip

∗

The axis of spin direction diagonalizes the density matrix of the polarized nuclei in
any reference system when it coincides with its z axis.
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Theoretical formalism of the analyzing powers

The axis of spin can be rotated according to a reference system (active rotation) or
the system can be rotated (passive rotation).

Rotation operator - Active rotation

Ra(α, β, γ) = exp

(
−iα

Iz

~

)
exp

(
−iβ

Iy

~

)
exp

(
−iγ

Iz

~

)

Elements of the Wigner D-matrix - Active rotation

D
ip
µip ,mip

(α, β, γ) = 〈ip, µip |R
a(α, β, γ)|ip,mip 〉

α, β and γ are the Euler angles.
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Theoretical formalism of the analyzing powers

Probability amplitudes of a rotated wave function - Active rotation

a′
ip
mip

=

ip∑
µip=−ip

D
ip
µip ,mip

(α, β, γ)a
ip
mip

Rotated elements of the density matrix - Active rotation

ρ′µip ,µ
′
ip

=

ip∑
mip=−ip

ip∑
m′ip

=−ip

Diµip ,mip
(α, β, γ)D

ip
µ′ip

,m′ip
(α, β, γ)

∗
ρmip ,m

′
ip

An inconvenient

Rotations of the density matrix are more “complicated” than rotations of the wave
function.

How to deal with it

Irreducible tensor operators are used instead of the density matrix of the system
because they are “easier” to rotate.
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Theoretical formalism of the analyzing powers

Irreducible tensor operator - Definition

An active rotation of one of the 2k + 1 independent element Ok,q of an irreducible

spherical tensor operator Ok of rank k is written as

Ra(α, β, γ)Ok,qRa(α, β, γ)−1 =
k∑

q′=−k
Dkq,q′ (α, β, γ)

∗
Ok,q′

Wigner-Eckart theorem

〈l,m|Ok,q |l′,m′〉 ≡
1

√
2l + 1

〈l′,m′; k, q|l,m〉〈l||Ok||l′〉

where
|l − l′| ≤ k ≤ l + l′ y m = m′ + q

Therefore, the elements Ok,q are decomposed in:

Geometric part → Clebsch-Gordan coeficient.

Part that depends on the internal dynamics of the system → Reduced matrix
element.

The reduced matrix element is independent of the angular momentum orientation.
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Theoretical formalism of the analyzing powers

Elements of the tensor of polarization tk

Using the Wigner-Eckart theorem and properties of the Clebsch-Gordan coefficients,
the elements of the polarization spherical tensor tk of the system are written as

tk,q =
√

2ip + 1

ip∑
mip=−ip

ip∑
m′ip

=−ip

(−1)
ip−mip 〈ip,m′ip ; ip,−mip |k, q〉ρmi,m′i

where the elements of a geometric tensor τk,q can be defined as

(τk,q)m′ip ,mip
=
√

2ip + 1 (−1)
ip−mip 〈ip,m′ip ; ip,−mip |k, q〉

therefore
tk,q = Tr[ρ τk,q ] = 〈τk,q〉

Rotated element of the polarization tensor - Active rotation

t′k,q =
k∑

q′=−k
Dkq,q′ (α, β, γ)

∗
tk,q′
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Theoretical formalism of the analyzing powers

Components of the polarization tensor (ip = 3/2) - Axis of spin parallel to Z

t1,0 =

√
9

5

(
ρ 3

2
, 3
2
− ρ− 3

2
,− 3

2

)
+

1
√

5

(
ρ 1

2
, 1
2
− ρ− 1

2
,− 1

2

)
t2,0 =

(
ρ 3

2
, 3
2

+ ρ− 3
2
,− 3

2

)
−
(
ρ 1

2
, 1
2

+ ρ− 1
2
,− 1

2

)
t3,0 =

1
√

5

(
ρ 3

2
, 3
2
− ρ− 3

2
,− 3

2

)
−
√

9

5

(
ρ 1

2
, 1
2
− ρ− 1

2
,− 1

2

)
Polarization in the source

The ρmip ,mip is related to the probability of finding projectiles with spin projection
mip .

Population fractions - Experimental measurement

Nmip = ρmip ,mip
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Theoretical formalism of the analyzing powers

What are the analysing powers?

The analysing powers (Tk,q) show how sensitivity are reaction channels with
respect to polarization states.

⇓

They quantify the effect of the tk,q on the scattering.

Probability of finding a state of polarization

ω
(

tk
)

= C

2ip∑
k=0

k∑
q=−k

tk,qTk,q
∗

where C is a constant of normalization.
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Analysing powers in polarized cross sections

Polarized differential cross section - Just projectile polarization

dσp

dΩ
=
dσnp

dΩ

2ip∑
k=0

k∑
q=−k

tk,q Tk,q
∗

Where:
dσp
dΩ
↔ Polarized differential cross section.

dσnp
dΩ
↔ Unpolarized differential cross section.

tk,q ↔ Elements of the tensor of polarization.

Tk,q ↔ Analysing powers.
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Analysing powers in polarized cross sections

Polarized differential cross section - Madison system

Due to properties of the tk,q and Tk,q we have that

dσp

dΩ
=
dσnp

dΩ

3∑
k=0

k∑
q=−k

√
4π

2k + 1
Re
(
εkYk,q(β, φ)tZk,0

)
εkTk,q

where

εk =

{
1 if k is even

i if k is odd

dσp
dΩ
dσnp
dΩ

=1 +
√

2 sin(β) cos(φ)t
Z
1,0iT1,1 +

1

2

(
3 cos

3
(β) − 1

)
t
Z
2,0T2,0+

√
3

2
sin(2β) sin(φ)t

Z
2,0T2,1 −

√
3

2
sin

2
(β) cos(2φ)t

Z
2,0T2,2+

√
3

2
sin(β)

(
5 cos

2
(β) − 1

)
cos(φ)t

Z
3,0iT3,1+

√
15

8
sin(β) sin(2β) sin(2φ)t

Z
3,0iT3,2 −

√
5

2
sin

3
(β) cos(3φ)t

Z
3,0iT3,3

The tZk,0 represent the polarization of the beam at the “source” and β and φ are
measured at the target using the Madison system.
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Analysing powers in polarized cross sections

Polarized differential cross section - Transverse system

Due to properties of the T tk,q and TTk,q we have that

dσp

dΩ
=
dσnp

dΩ

3∑
k=0

k∑
q=−k

(−1)q
√

4π

2k + 1
Yk,q(Ψ, ρ) T tZk,0

TTk,−q

dσp
dΩ
dσnp
dΩ

=1 + cos(Ψ) T t
Z
1,0

TT1,0 +
1

2

(
3 cos2(Ψ)− 1

)
T t
Z
2,0

TT2,0+

√
6

4
sin2(Ψ) T t

Z
2,0

(
exp(−2iρ)TT2,2 + exp(2iρ)TT2,−2

)
+

1

2

(
5 cos3(Ψ)− 3 cos(Ψ)

)
T t
Z
3,0

TT3,0+

√
30

4
sin2(Ψ) cos(Ψ) T t

Z
3,0

(
exp(−2iρ)TT3,2 + exp(2iρ)TT3,−2

)

The T tZk,0 represent the polarization of the beam at the “source” and Ψ and ρ are
measured at the target using the Transverse system.

17 / 35



Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Analysing powers in polarized cross sections

Asymptotic form of the scattered wave function of a reaction

|Ψβ(rβ , θcm, φcm)〉
rβ →∞
=====⇒ A0f(θcm, φcm)

exp(ikβrβ)

rβ
(|ψE〉 ⊗ |ψR〉)

where f(θcm, φcm) is the scattering amplitude.

Theoretical differential cross section

dσβ

dΩ
(θcm, φcm) ∝ |f(θcm, φcm)|2

Theoretical analysing powers

Tk,q(θcm) =
Tr
[
f(θcm, φcm) τk,q f(θcm, φcm)†

]
Tr
[
f(θcm, φcm) f(θcm, φcm)†

]
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Nuclear potentials

To deform a nuclear potential, its real and imaginary average radius of interaction
are deformed by an expansion in spherical harmonics.

Deformed interaction radius

Rdefi,j = Ri,j +RProji

∞∑
λ=0

βλYλ,0
(
r̂′α
)

where

RProji =
Ui ri,u +Wi ri,w

Ui +Wi
A

1/3
P

and λ is related to the type of the deformation.

The deformation length

δiλ = βProjλ RProji

The subscript i represents the type of potential (c, v, s and so) and j its real or
imaginary part (v and w).
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Nuclear potentials

Deformed nuclear radius and potential

Vdef = Vsph + ∆V

Where
Vsph =

∑
i=c,v,s,so

Vi(r)

and if only quadrupole deformation (λ = 2) are supposed

∆V = −
∑
i=v,s

d Vi(r)

dr

2∑
µ=−2

δiλ=2D
λ=2
µ,0 (α, β, 0)Yλ=2,µ (θ, ϕ)

The subscripts c, v, s and so represent the Coulomb, volumetric Woods-Saxon,
superficial Woods-Saxon and Spin-Orbit potential respectively.

Due to limitations in the computational code, just the volumetric and superficial
Woods-Saxon potential were deformed.
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Use of a Generalized Woods-Saxon Potential to Describe Unpolarized and Polarized Interactions

Nuclear potentials

Woods-Saxon distribution function

F (r,Ri,j , ai,j) =
1

1 + exp
(
r−Ri,j
ai,j

)

Where:

r ↔ relative position of nuclei.

Ri,j = ri,j(A
1/3
P +A

1/3
T ) ↔ mean interaction radius.

ai,j ↔ diffuseness of the potential.
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Nuclear potentials

Coulomb potential

Vc(r) =

 1
4πε0

ZPZT e
2

2RTc

(
3 −

(
r
RTc

)2)
if r ≤ RTc

1
4πε0

ZPZT e
2

r
if r > RTc

Volumetric Woods-Saxon potential

Vv(r) = −UvF (r,Rv,v , av,v)− iWvF (r,Rv,w, av,w)

Superficial Woods-Saxon potential

Vs(r) = −i4Wsas,w
d

dr
F (r,Rs,w, as,w)

Spin-Orbit potential

Vso(r) = −
(

~

mπc

)2 1

2r

(
Uso

d

dr
F (r, Rso,v, aso,v)+

iWso
d

dr
F (r, Rso,w, aso,w)

)
LP · IP
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Schrödinger coupled channel equation

Coupling scheme of angular momenta

LP + IP = JP and JP + IT = JT

Where other types of couplings are not recommendable because they do not
diagonalize the spin-orbit potential.

Coupled channel Schrödinger equation

(
Ep,t + Tlp − Vsph

)
|RJT ,Jp,lp 〉 =

∑
lp′,ip′

〈(lp, ip)Jp|∆V |(lp′, ip′)Jp〉 |RJT ,Jp,lp′ 〉

Being
Ep,t = Ecm − εp − εt

and

Tlp
=

~2

2m

 d2

dr2
−
lp(lp + 1)

r2


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Schrödinger coupled channel equation

Coupling potential - Reorientations and transitions (quadrupole deformation)

〈(lp, ip)Jp|∆V |(lp
′
, ip
′
)Jp〉 = C

Jp,λ=2

lp,ip;lp′,ip′
∑
i=v,s

dVi(r)

dr
〈ip||δ̂

i
λ=2||ip

′〉

Where

C
Jp,λ=2

lp,ip;lp′,ip′
=

1
√

4π
(−1)

1+Jp−ip′−lp+lp
′√

2lp + 1
√

2lp′ + 1

〈lp, 0; lp
′
, 0|λ = 2, 0〉W

(
lp, lp

′
, ip, ip

′
;λ = 2, Jp

)

If the 7Li is consider to have a quadrupole deformation (λ = 2) with a deformation

parameter of βProj2 = −0.934 (reported by Weller et al.) and its four lowest states
belong to a rotational band with K = 1/2 (as sugested by El-Batanoni and Kresnin),
then

〈ip||δ̂
i
λ=2||ip

′〉 ≡ f
ip,ip′

√
2ip′ + 1 〈ip

′
, K = 1/2;λ = 2, 0|ip,K = 1/2〉 δiλ=2

and

f
ip,ip′

= (−1)

(
ip
′−ip+

∣∣∣ip′−ip∣∣∣)/2
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Results

Effect of the generalized Woods-Saxon
potential and the coupled channel calculation
employing the rotational model on the elastic

and inelastic analysing powers.
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Results
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Figure: Experimental elastic differential cross section reported by Vineyard et al. Upper panel: Adjustment of the
complex Woods-Saxon volumetric potential plus a real spin-orbit potential reported by Vineyard et al. and
Momotyuk et al. respectively. Lower panel: Adjustment of the couple channel calculation hereby presented, the
solid and dash line represent the adjustments with all the couplings to the 3 and 4 internal state of 7Li respectively.
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Results
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Figure: Imaginary potentials. The black line represents the addition of the Woods-Saxon volumetric and
superficial imaginary spherical potentials hereby presented. The red line represents the imaginary potential reported
by Vineyard et al.
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Results
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Figure: Experimental elastic analysing powers reported by Bartosz et al. The theoretical adjustments correspond
to the complex Woods-Saxon volumetric potential plus a real spin-orbit potential reported by Vineyard et al. and
Momotyuk et al. respectively. 28 / 35
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Results

Potential parameters - Other works
Potential U (MeV ) rv (fm) av (fm) W (MeV ) rw (fm) aw (fm)

WS v. Vineyard et al. 290.0 0.64 0.64 10.71 1.22 0.97
SO Bartosz et al. 1.75 1.2 0.45 - - -

Potential parameters - This work
Potential U (MeV ) rv (fm) av (fm) W (MeV ) rw (fm) aw (fm) βProjλ=2 of 7Lig.s.

WS v. 290.0 0.7 0.69 7.25 1.16 1.0 −0.934
WS s. - - - 6.75 0.9 0.65 −0.934

SO 2.75 0.925 0.525 0.1 1.075 0.4 -

The difference in the parameter W in the Woods-Saxon volumetric potentials led
to the introduction of the superficial potential.
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Results
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Figure: Experimental elastic analysing powers reported by Bartosz et al. The solid and dash line represent the

adjustments with all the couplings to the 3 and 4 internal state of 7Li respectively. 30 / 35
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Results

0 10 20 30 40 50 60 70 80 90
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

iT
1,

1

0 10 20 30 40 50 60 70 80 90
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

T 2,
0

0 10 20 30 40 50 60 70 80 90
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

T 2,
1

0 10 20 30 40 50 60 70 80 90

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T 2,
2

0 10 20 30 40 50 60 70 80 90

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

iT
3,

1

0 10 20 30 40 50 60 70 80 90
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

iT
3,

2
0 10 20 30 40 50 60 70 80 90

θc.m. (deg)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

iT
3,

3

0 10 20 30 40 50 60 70 80 90

θc.m. (deg)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T T 2,
0

0 10 20 30 40 50 60 70 80 90

θc.m. (deg)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

T T 3,
0

Figure: Experimental inelastic analysing powers reported by Bartosz et al. The solid and dash line represent the

adjustments with all the couplings to the 3 and 4 internal state of 7Li respectively. 31 / 35
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The problem

Aye, there’s the rub...

The theoretical calculations of the elastic analysing powers T2,0, T2,1, T2,2,
T T2,0, iT3,1, iT3,2, iT3,3, T T3,0 had to be multiplied by −1 after the
introduction of the reorientation.
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The solution?

So, is this the tie?...

Wave functions corresponding to odd A nuclei for the 7Li must be used in the
calculation of the reduced matrix element in the coupling potentials.

or

The 7Li has a prolate form in its ground state.
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Conclusions

The scattering of 7Li on 12C at the energy studied requires a surface potential
because its interaction is stronger at the surface of these nuclei.

The ground state reorientation of the 7Li plays an essential role in the description of
the second rank analysing powers, as it has been reported in other works using other
interaction models.

Couplings to the lowest 3 and 4 internal states of 7Li using the rotational model help
to describe the third rank analysing powers.
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Maréchal and K. Rusek, Phys. Rev. C 64 (2001), 014606.

A. Weller, P. Egelhof, R. Caplar, O. Karban, D. Kramer, K. Mobius, Z. Moroz, K.
Rusek, E. Steffens, G. Tungate, K. Blatt, I. Koenig and D. Fick, Phys. Rev. Lett.
55 (1985), 480-483.

F. El-Batanoni and A. A. Kresnin, Nucl. Phys. 89 (1966), 577.

35 / 35


	Motivation for this study
	Characteristics of the reactions studied
	Theoretical formalism of the analyzing powers
	Analysing powers in polarized cross sections
	Nuclear potentials
	Schrödinger coupled channel equation
	Results
	The problem
	The solution?
	Conclusions

