Dispersive analysis of πK scattering and resonances

A.Rodas

Based on:

J.R.Peláez and AR, Pion-kaon scattering amplitude constrained with forward dispersion relations up to 1.6GeV, Phys.Rev.D **93**, no. 7, 074025 (2016) [arXiv:1602.08404 [hep-ph]], J.R.Peláez, AR and J.Ruiz de Elvira, Strange resonance poles from $K\pi$ scattering below 1.8GeV, Eur.Phys.J.C **77**, no. 2, 91 (2017) [arXiv:1612.07966 [hep-ph]], J.R.Peláez and AR. Work in preparation.

Universidad Complutense de Madrid

June 13, 2018

Index

Introduction

2 Motivation

- Data
- Scattering Lengths

3 Method

- FDR
- HDR

4 Spectroscopy

5 Future prospects

æ

()

Introduction

- Scalar octet \rightarrow pseudo-Goldstone Boson.
- Lightest quark constituents.

• Scattering \Rightarrow Mandelstam variables $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$.

A.Rodas

Table of Content

Introduction

2 Motivation

- Data
- Scattering Lengths

Method

- FDR
- HDR

4 Spectroscopy

Future prospects

< 3 > < 3 >

Motivation

- πK scattering appears as final state in almost all hadronic strange processes.
- Examples: $B o K^*(o \pi K)\mu\mu$, D decays, CP violation

- π, K are pseudo-Goldstone Bosons of QCD \implies test of Chiral Symmetry Breaking
- Lowest energy test of SU(3) chiral dynamics \implies Scattering Lengths
- Strange resonances ightarrow spectroscopy ightarrow ${\cal K}_0^*(800)/\kappa$
- Higher energies → Most resonances are not well determined, results come to be incompatible, pole vs Breit-Wigner definition.

- UChPT → Good description in many previous works: Oller, Oset (1999).Dobado, Peláez (1997). Oller, Oset, Peláez (1999). Jamin, Oller, Pich (2000). Gomez Nicola, Peláez (2002).
- Experimental groups ask for simple but consistent parameterizations to be used at LHCb for CP violating processes.
- Also necessary for au decays.
- Crossed channel $\pi\pi \to K\bar{K}$ first inelasticity of $\pi\pi$.
- Input in nucleon form factors, g 2 contribution etc...

Table of Content

Introduction

2 Motivation• Data

Scattering Lengths

3 Method

- FDR
- HDR

4 Spectroscopy

Future prospects

< 3 > < 3 >

Data: πK scattering

- 1.5×10^5 events used of $\approx 10^6$ total events collected.
- To extract scattering one has to extrapolate from $t < 0 \rightarrow t = m_{\pi}^2$, virtual $\pi \rightarrow \text{real } \pi$.
- Good resolution and low momentum of the recoiling baryon.

Data: πK scattering

- LASS experiments from the 80's, compatible in a big energy region
 → no systematics.
- Some incosistency close to the $K_0^*(800)$ region and at high energies.

A.Rodas

Data: πK scattering

 \bullet Huge systematics \rightarrow we need to select the correct solution.

Data: D^+ semileptonic decay

- Good control over electroweak vertex.
- 20k events.
- \bullet Compatible with production \rightarrow huge uncertainties give no information.

Data: D^+ and η_c decays

- New experiments.
- Data on the Dalitz much more precise.
- However, the determination relays on some models.

Data: final picture

- Clearly incompatible with production.
- Analysis carried out in a too simple way (isobars, no unitarity implementation, big systematics...).
- Still low number of events (10k).

A.Rodas

Data: $\pi\pi \to K\bar{K}$ scattering

- Three main experiments done in the 80's.
- None of them can separate the measurement of g_0^0 and g_2^0 .
- Different systematic and contamination sources.

A.Rodas

Dispersive analysis of πK scattering

Data: $\pi\pi \to K\bar{K}$ scattering

- Clearly incompatible.
- Only one of them is compatible with $\pi\pi$ scattering.
- Some data violates Watson's theorem.

Table of Content

Introduction

2 Motivation

- Data
- Scattering Lengths

Method • FDR

• HDR

4 Spectroscopy

Future prospects

э

< 3 > < 3 >

Scattering Lengths

- Two independent amplitudes I=1/2, 3/2.
- Can be written as a combination of a symmetric and antisymmetric amplitudes under s ↔ u exchange.

$$egin{aligned} T^+(s,t) &= rac{1}{3} T^{1/2}(s,t) + rac{2}{3} T^{3/2}(s,t), \ T^-(s,t) &= rac{1}{3} T^{1/2}(s,t) - rac{1}{3} T^{3/2}(s,t). \end{aligned}$$

• With the usual decomposition in partial waves

$$T'(s,t) = 16\pi \sum_{\ell} (2\ell+1) t'_{\ell}(s) P(z_s(t)),$$

with
$$z_s(t) = 1 + \frac{2t}{q^2(s)}$$

Scattering lengths

$$T'(s_{th}, 0) = 8\pi m_+ a_0',$$

where $m_+ = m_\pi + m_K$

At LO

$$a_0^- \propto rac{1}{f_\pi^2} \qquad \qquad a_0^+ = \mathcal{O}(m_+^4).$$

 \bullet NLO \longrightarrow LECs L_{1-8}

$$a_0^- \propto rac{L_5}{f_\pi^4} \qquad \qquad a_0^+ o 7L_i.$$

• NNLO $\longrightarrow 32C_i$, $a_0^- \to 10C_i$, $a_0^+ \to 23C_i$.

3

• • = • • = •

Scattering Lengths

- Clear tension between Lattice Predictions and ChPT based calculations.
- SU(3) ChPT does not seem to be converging well.
- All of them compatible with the Unique measurement \rightarrow DIRAC

A.Rodas

Dispersive analysis of πK scattering

Scattering Lengths

- Phenomenological analysis \rightarrow scarcity of data at low energies.
- Huge systematic uncertainties lead to no information.
- Analiticity, crossing and unitarity need to be applied to get some predictability ⇒ DISPERSION RELATIONS.

A.Rodas

Table of Content

Introduction

2 Motivation

- Data
- Scattering Lengths

4 Spectroscopy

Future prospects

э

3 K K 3 K

Dispersion relations

- UNITARITY $SS^{\dagger} = I \Rightarrow T T^{\dagger} = TT^{\dagger}$.
- CAUSALITY ⇒ ANALITICITY in first Riemann sheet ⇒ resonance poles second Riemann sheet.
- ANALITICITY \Rightarrow Cauchy theorem.

Table of Content

Introduction

2 Motivation

- Data
- Scattering Lengths

4 Spectroscopy

Future prospects

э

3 K K 3 K

- We will take for our analysis t = 0, they are called FDR.
- For the symmetric $s \leftrightarrow u$ amplitude one subtraction is needed

$$\begin{aligned} &\operatorname{Re} \, T^{+}(s) = T^{+}(s_{th}) + \frac{(s - s_{th})}{\pi} \\ & P \! \int_{s_{th}}^{\infty} \! ds' \left[\frac{\operatorname{Im} \, T^{+}(s')}{(s' - s)(s' - s_{th})} - \frac{\operatorname{Im} \, T^{+}(s')}{(s' + s - 2\Sigma_{\pi K})(s' + s_{th} - 2\Sigma_{\pi K})} \right] \\ & \text{where } \Sigma_{\pi K} = m_{\pi}^{2} + m_{K}^{2}. \end{aligned}$$

• For the antisymmetric amplitude no subtraction is needed

$$\operatorname{Re} T^{-}(s) = \frac{(2s - 2\Sigma_{\pi K})}{\pi} P \int_{s_{th}}^{\infty} ds' \frac{\operatorname{Im} T^{-}(s')}{(s' - s)(s' + s - 2\Sigma_{\pi K})}.$$

• We use the unitary functional form for the partial waves

$$t_l'(s) = rac{1}{\sigma(s)} rac{1}{\cot \delta_l'(s) - i},$$

where
$$\sigma(s) = rac{2q(s)}{\sqrt{s}}$$
 and

$$\cot \delta'_l(s) = rac{\sqrt{s}}{2q^{2l+1}} \sum B_n \omega(s)^n,$$

- with $\omega(s) = \frac{\sqrt{y(s)} \alpha \sqrt{y(s0) y(s)}}{\sqrt{y(s)} + \alpha \sqrt{y(s0) y(s)}}$ as our new variable (conformal mapping).
- Here $y(s) = (\frac{s-su}{s+su})^2$ defines the circular cut on the next figure.
- ω used to maximize the analyticity domain.

Unconstrained Fits (UFD):Elastic region

- Structure of the PW with different masses.
- α is used to center the point of energy s_c for the expansion.

Unconstrained Fits (UFD): Elastic region

 S^{1/2}, S^{3/2} and P^{1/2} phase shifts, the I=3/2 is elastic in the entire region, while the others are only elastic below the Kη threshold.

Dispersive analysis of πK scattering

Unconstrained Fits (UFD):Inelastic region

- In the inelastic region $t_l^{I} = \frac{\eta_l^{\prime}(s)e^{2i\delta_l^{\prime}(s)}-1}{2i} = |t_l^{I}|e^{i\phi_l^{I}}.$
- We use complex rational functions that near each resonance look like BW.
- We impose matching conditions on the inelastic ηk threshold.
- We use up to $F^{1/2}$ which is very small and neglect $G^{1/2}$ in the studied energy region.
- Although we use for our analysis the $P^{3/2}$, $D^{3/2}$ and the $F^{1/2}$ their contribution is small. Not shown here.

Unconstrained Fits (UFD):Inelastic region

• Incompatibilities between Aston and Estabrooks sets of data.

Dispersion relations

- We construct tha amplitudes using the whole tower of partial waves.
- For $K\pi$ scattering we have two independent amplitudes $T^{1/2}$ and $T^{3/2}$, we study both combinations T^+ and T^- .
- Room for improvement \rightarrow Constrained fits.
- Above 1.8 GeV the discrepancies are too big.

Dispersion relations

- The change in the symmetric amplitude around 1 1.2 GeV is caused by the change of the S^{3/2}-wave.
- The huge change of the antisymmetric one is caused by the Regge πK factorization constant.
- Now the amplitudes are fairly compatible with the analyticity requirements.
- The partial waves are now suitable to be used in our analysis.

Constrained Fits

- S^{3/2} clearly different from inital fit.
- Changes above that point, the CFD solution starts to be incompatible with the UFD.

э

Scattering Lengths

- Compatible with NNLO but no with Lattice.
- Allowed band in the a_0^- direction, a_0^+ bad predictability.
- a_0^+ cannot be imposed to determine a UNIQUE solution.
- Scarcity of data on $S^{1/2}$ do not help.

A.Rodas

Table of Content

Introduction

2 Motivation

- Data
- Scattering Lengths

Spectroscopy

Future prospects

э

< 3 > < 3 >

HDR

- Tension between FDR and Lattice.
- There is an universal band in the a_0^-, a_0^+ plane for $a_0^+ \Rightarrow$ no unique solution [Ananthanarayan et al. (2001)].
- Scattering lengths directly determined from scarcity of πK data.
- $K_0^*(800)$ pole out of FDR range of validity.

イロト イ押ト イヨト イヨト

HDR

- We build dispersion relation with the relation (s a)(u a) = b.
- a fixed to maximize the region where they can be applied.
- Relation between $\pi K, \pi \pi, K \overline{K}$ to determine scattering lengths.
- \bullet Sub-threshold expansion \Rightarrow Universal band not so universal.

$\pi\pi \to K\bar{K}$

• Usual HDR for a crossed channel partial wave with one substraction

$$\begin{split} g_0^0(t) &= \frac{\sqrt{3}}{2} m_+ a_0^+ + \frac{t}{\pi} \int_{4m_\pi^2}^\infty \frac{lmg_0^0(t')}{t'(t'-t)} dt' + \\ \frac{t}{\pi} \sum_l \int_{4m_\pi^2}^\infty \frac{dt'}{t'} G_{0,2l-2}^0(t,t') lmg_{2l-2}^0(t') + \sum_l \int_{m_+^2}^\infty ds' G_{0,l}^+(t,s') lmf_l^+(s') \\ &= \frac{t}{\pi} \int_{4m_\pi^2}^\infty \frac{lmg_0^0(t')}{t'(t'-t)} dt' + \Delta_0^0(t). \end{split}$$

- $\Delta_0^0(t)$ contains the left cut. We can rewrite a dispersion relation for $g_0^0(t) \Delta_0^0(t)$.
- We do not know the value of the partial wave $g_I^I(t)$ below $K\bar{K}$ threshold.
- The solution comes from the definition of the function $f'_{l}(t) = \frac{g'_{l}(t) \Delta'_{l}(t)}{\Omega'_{l}(t)} \text{ with } \Omega'_{l}(t) = e^{\frac{t}{\pi} \int_{4m_{\pi}^{2}}^{t_{m}} \frac{\phi'_{l}(t')}{t'(t'-t)} dt'} \text{ applied to the previos function.}$

Omnès-Muskhelishvili problem

 The set of final Omnès-Muskhelishvili DR with as less subtractions as possible are

$$\begin{split} g_0^0(t) &= \Delta_0^0(t) + \frac{t\Omega_0^0(t)}{t_m - t} \left[\alpha + \frac{t}{\pi} \int_{4m_\pi^2}^{t_m} dt' \frac{(t_m - t')\Delta_0^0(t')\sin\phi_0^0(t')}{\Omega_{0,R}^0(t')t'^2(t' - t)} \right] \\ &+ \frac{t}{\pi} \int_{t_m}^{\infty} dt' \frac{(t_m - t')|g_0^0(t')|\sin\phi_0^0(t')}{\Omega_{0,R}^0(t')t'^2(t' - t)} \right], \\ g_1^1(t) &= \Delta_1^1(t) + \Omega_1^1(t) \left[\frac{1}{\pi} \int_{4m_\pi^2}^{t_m} dt' \frac{\Delta_1^1(t')\sin\phi_1^1(t')}{\Omega_{1,R}^1(t')(t' - t)} \right] \\ &+ \frac{1}{\pi} \int_{t_m}^{\infty} dt' \frac{|g_1^1(t')|\sin\phi_1^1(t')}{\Omega_{1,R}^1(t')(t' - t)} \right]. \end{split}$$

• Evaluating these DR with s real we recover the value of $|g_l(t)|$.

A.Rodas

• Simple integral equation, $\pi\pi \to K\bar{K}$ needed.

$$f_{0}^{+}(s) = \frac{m_{+}a_{0}^{+}}{2} + \frac{1}{\pi} \int_{4m_{+}^{2}}^{\infty} \frac{lmf_{0}^{+}(s')}{s'(s'-s)} ds' + \frac{t_{b}}{\pi} \sum_{l} \int_{4m_{\pi}^{2}}^{\infty} \frac{dt'}{t'} KG_{0,2l}^{+}(s,t') Img_{2l}^{0}(t') + \sum_{l} \int_{m_{+}^{2}}^{\infty} ds' K_{0,l}^{+}(s,s') Imf_{l}^{+}(s').$$

• We recover $\operatorname{Re} f_0^+(s)$ for real s.

A B M A B M

$\pi\pi ightarrow Kar{K}$

- Both solutions come out to be compatible with HDR.
- Only solution *B* is compatible with $\pi\pi$ scattering \Rightarrow favoured.
- Also favored From πK

$\pi\pi \to K\bar{K}$

- Different $f_0(980)$ behaviors.
- Incompatible close to the $f_0(500)$ region.
- Sum rule coming from this channel predicts $a_0^- = 0.226 \pm 0.022$, not compatible with RS $a_0^- = 0.269 \pm 0.015$.

Scattering Lengths

- PRELIMINARY RESULT FROM πK .
- Compatible with Lattice results.
- Solution still compatible with previous one due to the data.
- $a_0^- = 0.248 \pm 0.02$ compatible with previous sum rule. The set of $a_0^- = 0.248 \pm 0.02$ compatible with previous sum rule.

A.Rodas

Dispersive analysis of πK scattering

Table of Content

Introduction

2 Motivation

- Data
- Scattering Lengths

Method

- FDR
- HDR

4 Spectroscopy

Future prospects

< 3 > < 3 >

- We can study more then 6 resonances appearing in πK scattering.
- Precise determination using model independent techniques.
- Another 4 appearing in $\pi\pi \to K\bar{K}$ scattering.
- Some of the lightest strange and non-strange existing resonances.
- Can be used to determine $\Gamma(f_0(500) \rightarrow K\bar{K})$.

Spectroscopy for the κ particle

- Too broad to be determined using simple models.
- Threshold behavior (ChPT), Adler Zero and LHC play a role in its parameters.
- Problem shared by Lattice.

Spectroscopy for the κ particle

• Due to elastic unitarity

$$S''(z)=\frac{1}{S'(z)}.$$

• Looking for a zero of the scattering matrix in the first sheet.

Spectroscopy for the κ particle

- Several different models and methods used to determine its parameters.
- Clear convergence with the use of dispersive techniques.
- Model dependent determinations not suitable for this scenario.

Spectroscopy for heavier resonances: Padés

- High *L* or wide resonance poles are not stable when calculated trough simple models.
- Usual $(q(s)/q(s_r))^L$ and $B_L(q,q_r) \Rightarrow$ deviations in the width.
- Rigorous dispersive techniques cannot be applied at high energies (inelastic regions).
- The partial wave is described by a Padé approximant in the complex plane.

$$t_l(s) \simeq P_1^N(s,s_0) = \sum_{k=0}^{N-1} a_K(s-s_0)^k + rac{a_N(s-s_0)^N}{1-rac{a_{N+1}}{a_N}(s-s_0)}.$$

- It is a model independent calculation. No specific functional form.
- No a priori relation between residue and pole position.
- The resonance may be surrounded by other non-analytic structures ⇒ more poles have to be included inside our approximants.

- The method is suitable for the calculation of both elastic and inelastic resonances.
- The Padé sequence gives us the continuation to the continuous Riemann Sheet.
- This method was applied for the first time to study the σ and ρ resonances in P. Masjuan and J. J. Sanz-Cillero, Pade approximants and resonance poles, Eur. Phys. J. C 73 (2013) 2594 doi:10.1140/epic/s10052-013-2594-4.

$K^*(892)$ as a test method

• The $K^*(892)$ is the simplest resonance that could be determined through padé approximants. Its parameters come out to be compatible with other determinations (pole) as it is a simple Breit-Wigner like resonance. $\sqrt{s_p} = (892 \pm 1) - i(29 \pm 1)$

Figure: $P^{1/2}$ phase shift.

- First we obtain the difference between s_p^{N-1} and s_p^N for the whole energy region of the fit.
- Run a Montecarlo for every fit to calculate the statistical errors of every resonance.
- We stop at a N (N + 1 derivatives) where the systematic uncertainty is smaller than the statistical one (usually N = 4 is enough).
- For every fit we search the s_0 that gives the minimum difference between N 1 and N.

A.Rodas

Spectroscopy for heavier resonances

• Determinations of $K_0^*(1430)$, $K_1^*(1410)$, $K_2^*(1430)$ and $K_3^*(1780)$ vs PDG best values. A.Rodas Dispersive analysis of πK scattering Dispersive analysis of πK scattering

Table of Content

Introduction

2 Motivation

- Data
- Scattering Lengths

B) Method

- FDR
- HDR

4 Spectroscopy

5 Future prospects

< 3 > < 3 >

Khuri-Treiman analysis

- Already done for $D^+ \rightarrow \pi^+ \pi^+ K^-$ [Niecknig, Kubis (2015)].
- Using πK as input and predicting D^+ decay.

• Can we make it work the other way around η_c decay $\Rightarrow \pi K$ scattering.

- New high precision LCHb/BELLE 2 data?
- KLF proposal?

A.Rodas

- Dispersion relations impose a clear constrain when studying the data.
- Fixing some tension between different SL determinations.
- Provide a simple set of parameterizations that can be applied for other purposes.
- Useful to determine broad resonances $\rightarrow f_0(500), K_0^*(800).$
- Simple method to study heavier resonances in a model independent way.
- TO DO:
- Finish combined analysis, obtain the poles of the $K_0^*(800), K^*(892)$.

Thank you for your attention!

(B)