Quantum Interference in Showering:

The LPM effect, what is is, and why its theoretical development is still interesting 60 years later

Peter Arnold

University of Virginia

Reporting (eventually) on recent work with

Shahin Iqbal

High energy particles traveling through matter lose energy via successive bremsstrahlung and pair production:

[Oversimplification: Only electromagnetic shower shown.]

High energy particles traveling through matter lose energy via successive bremsstrahlung and pair production:

[Oversimplification: Only electromagnetic shower shown.]

High energy particles traveling through matter lose energy via successive bremsstrahlung and pair production:

Part 1 THE LPM EFFECT IN QED

[LPM = Landau, Pomeranchuk, Migdal]

Review of high-energy bremsstrahlung

Collisions with the medium generate chances for bremsstrahlung

Naively,

prob of emission ~ α per collision

BUT

Light can't resolve features on small scales.

Non-relativistic:

Extremely relativistic, nearly-collinear motion:

Similar effect, but size of fuzziness stretched out.

4/26

So

prob of emission ~ α per <u>formation length</u> $l_{\rm form} \propto \sqrt{E}$

Calculated quantitatively by

LPM for QED (1950s) BDMPS-Z for QCD (1990s)

and investigated in many ways by many people since.

<u>**Consequence</u>**: At high enough energy, the effective bremsstrahlung rate in medium is reduced by factor $\propto \sqrt{E}$ </u>

[For QED, "high enough" energy means 200 PeV for air and 4 TeV for Lead for <u>hard</u> bremsstrahlung]

The LPM Effect (QED)

Warm-up: Recall that light cannot resolve details smaller than its wavelength.

[Photon emission from different scatterings have same phase \rightarrow coherent.]

Now: Just Lorentz boost above picture by a lot!

Note: (1) **bigger** *E* requires bigger boost \rightarrow more time dilation \rightarrow **longer formation length** (2) big boost \rightarrow this process is **very collinear**.

Experimental Measurement of LPM (QED)

<u>Part 2</u>

A new puzzle for LPM calculations in the 2010's

We could talk about this in QED, but we'll see that it's much more interesting to switch to a QCD application...

Consider cartoon of

In-medium evolution of a jet in a quark-gluon plasma

For this talk, simplify discussion by focusing on ...

Cascades that stop in-medium

- Qualitative points we'll discuss generalize.
- Formalism generalizable as well.

An idealized Monte Carlo picture of in-medium evolution

As time passes,

roll classical dice for probability of each splitting

weighted by the quantum calculation of the single splitting rate

An idealized Monte Carlo picture of in-medium evolution

Built-in assumption:

Consecutive splittings are quantum-mechanically independent.

(Are they ?)

10/26

Remember from previous discussion:

Chance of brem ~ α per formation time

because

Consecutive emissions

Chance of brem ~ α per formation time

means that two consecutive splittings will typically look like

So chance of overlap (i.e. "rolling dice separately" breaking down) is

How big is " α " ??

How big is α_s ?

Nothing to do with whether medium is

 $\underline{\alpha}_{s}$ on previous slide associated with emission vertex:

Does the wisdom of the ages tell us^{14/26} if α_s (few GeV) is small?

Particle physics in vacuum:

Small for some things, like matching lattice calculations to continuum MS-bar α_{s}

High-temperature physics:

Bad news (except possibly if one does sophisticated resummations of perturbation series)

Overlapping formation times effects on cascade:

Contraction of the second

 ∞ **c** effect on

We should calculate it and see.

Characterizing the medium: \hat{q}

Random kicks from medium change p_T by tiny amounts << E

It's the only characteristic of the medium that matters for the problem under discussion.

Soft emission

Soft emissions are generally enhanced by logs. Path-breaking authors found small-*x*-like double logs in this case,

$$\infty \alpha_{\rm s} \ln^2 \left(\frac{E}{\hat{q} \tau_{\rm mfp}}\right)$$

Blaizot & Mehtar-Tani; Iancu; Wu (2014)

This is a BIG effect for large *E*. But they found soft emission effects could be absorbed into the medium parameter $\hat{q} \rightarrow \hat{q}_{\text{eff}}(E) \propto E^{\#\sqrt{\alpha_s}}$

following Liou, Mueller, Wu (2013)

Refined question

What about overlap effects that can't be absorbed into \hat{q} ?

Our program

Compute the effect of the overlap for hard emissions

In broad brush: interesting and fun field theory problem. In calculational detail: a pain in the ass.

First: How we draw diagrams

First: How we draw diagrams

First: How we draw diagrams

First: How we draw diagrams $\frac{1}{2} = \underbrace{time}_{time} + \underbrace{time}_{time}$

implicitly including interactions with the medium (in invisible ink above):

- = interaction with medium
- -- = correlations in medium
 (relatively localized in time)
 taken from
 - perturbation theory
 - AdS/CFT
 - ullet or phenom. fit to \hat{q}

Medium-averaged evolution can be treated (at high energy) as (non-Hermitian) 2-dim quantum mechanics problem in transverse plane.

time

High-energy splitting vertices can be taken from QFT (DGLAP splitting amplitudes).

- perturbation theory
- AdS/CFT
- ullet or phenom. fit to \hat{q}

Double Splitting Diagrams

[calculated with Shahin Iqbal and Han-Chih Chang]

$$\frac{\text{Infrared Issue:}}{dx \, dy} \sim \frac{\alpha_{\rm s}^2}{xy^{3/2}} \sqrt{\frac{\hat{q}}{E}} \qquad (\text{for } y \lesssim x),$$

giving power-law IR-divergent contributions to energy loss, etc.

Part 2 VIRTUAL CORRECTIONS

Need virtual corrections to single splitting

Our calculations vs. small-x DIS

Small-x Deep Inelastic Scattering: Hänninen, Lappi, Paatelainen (2016,2017); Beuf (2016,2017)

What we've actually done, as a warm-up [arXiv:1806.08796, two weeks ago]:

Large-N_f QED

Calculate these diagrams using dimensional regularization.

Remember: All time evolution is in medium background, statistically averaged over medium fluctuations.

23/26

What we've actually done, as a warm-up [arXiv:1806.yesterday]:

Large-N_f QED

What we've actually done, as a warm-up [arXiv:1806.yesterday]:

 $e \rightarrow e \overline{e} e$

 $e \rightarrow \gamma e$

But this (UV-divergent) diagram is **complicated** and *also* generates the **renormalization of** α :

$$\alpha \to \alpha(\mu)$$

with

 $\mu \sim (\text{hard particle transverse separation})^{-1} \\ \sim Q_{\perp} \sim (\hat{q}t_{\text{formation}})^{1/2} \sim (\hat{q}E)^{1/4}$

Conclusion

<u>Reminder</u>

Ultimate goal: figure out whether rolling independent dice for in-medium QCD shower is good, bad, or ugly for slightly-small α_s .

Our Recent Progress

Using large- $N_{\rm f}$ QED as an example, we've shown we can compute necessary virtual corrections to single emission.

Sanity check: The divergent part of these calculations correctly reproduces the known renormalization of α .

What about QCD?

We *think* that we have now done everything difficult and that results for (large-Nc) QCD can now be obtained by a combination of

(I) simple and simple-ish transformations of other QCD diagrams previously calculated, the simplest transformation being the "conservation of probability"

(2) adaptation of large-Nf QED diagrams now calculated by just changing to QCD group factors, QCD DGLAP splitting functions, etc.

Stay tuned.

Super fun bonus material! Packet A

Framework for LPM calculations

Medium-averaged evolution can be treated (at high energy) as (non-Hermitian) 2-dim quantum mechanics problem in transverse plane.

time

High-energy splitting vertices can be taken from QFT (DGLAP splitting amplitudes).

- = correlations in medium (relatively localized in time) taken from
 - perturbation theory
 - AdS/CFT
 - $f \cdot$ or phenom. fit to \hat{q}

Formalism for LPM: single brem

Recall

Can (formally) interpret this as 3 particles moving forward in time [Zakharov 1990's]:

2 particles from the amplitude (evolving with e^{-iHt}) 1 particle from the conjugate amplitude (evolving with e^{+iHt}) Will show that evolution in

3-particle non-relativistic Quantum Mechanics in 2 dimensions

$$\mathcal{H}_{ ext{eff}} = rac{p_{\perp 1}^2}{2m_1} + rac{p_{\perp 2}^2}{2m_2} + rac{p_{\perp 3}^2}{2m_3} + V(b_1, b_2, b_3)$$

with weird properties:

- $m_1 + m_2 + m_3 = 0$
- $V \propto -i$ (i.e. \mathcal{H} is non-Hermitian)

 \Rightarrow interference vanishes as $\Delta t \rightarrow \infty$, as it must!

Kinetic terms:

This is 2-dimensional non-relativistic QM with

$$(m_1, m_2, m_3) = (-E, (1-x)E, xE)$$

As promised,

$$m_1 + m_2 + m_3 = 0$$

Potential term:

 $V(b_1, b_2, b_3)$ incorporates (statistically averaged) effect of collisions with the medium.

Potential terms:

To motivate form, think of something else...

<u>A classical Boltzman analysis of scattering:</u>

$$rac{d}{dt}f(p_{\perp}) = \int_{q_{\perp}}f(p_{\perp} - q_{\perp}) \, rac{d\Gamma_{
m el}}{dq_{\perp}} - f(p_{\perp}) \int_{q_{\perp}} rac{d\Gamma_{
m el}}{dq_{\perp}} \, .$$

Fourier transform:

$$rac{d}{dt}f(b)=f(b)\left[\Gamma_{
m el}(b)-\Gamma_{
m el}(0)
ight] \hspace{0.2cm} ext{with} \hspace{0.2cm} \Gamma_{
m el}(b)\equiv \int_{q_{\perp}}rac{d\Gamma_{
m el}}{dq_{\perp}}\,e^{-ib\cdot q_{\perp}}$$

This looks like a Schrodinger-ish equation:

$$irac{d}{dt}\,f=\mathcal{H}_{
m boltz}\,f$$
 with $\mathcal{H}_{
m boltz}=-i\Big[\Gamma_{
m el}(0)-\Gamma_{
m el}(b)\Big]$

In our problem, this physics gives *V*:

$$V = -i \Big[\Gamma_{\rm el}(0) - \Gamma_{\rm el}(b_2 - b_1) \Big] \qquad (\text{QED})$$

How to put the calculation together:

(1) Solve for propagation in 3-particle QM in shaded region.

(2) Tie together with QFT matrix elements for vertices

 $\propto \sqrt{\text{DGLAP splitting functions}}$

$$\propto \sqrt{P_{i
ightarrow j}(x)}$$

<u>Simplification: 3-particle QM \rightarrow 1-particle QM</u>

Can use various symmetries of problem to get rid of 2 d.o.f.

$$\mathcal{H}=rac{P_B^2}{2M}+V(B)$$

[BDMPS-Z (1990's)]

Method 1. Can solve numerically.

[Zakharov (2004+); Caron-Huot & Gale (2010)]

Simplifcation: Harmonic Oscillator

Method 2. High energies \rightarrow very collinear \rightarrow *b* 's small.

So make small *B* approximation to $V(B) \rightarrow$ a harmonic oscillator problem

$$\mathcal{H}=rac{P_B^2}{2M}+rac{1}{2}M\Omega_0^2B^2$$
 [Baier et al. (1998)]

(a non-Hermitian one: $\Omega_0^2 \propto -i$)

Formalism for LPM: <u>double</u> brem

Example of an interference contribution:

effectively effectively 1-particle 1-particle OM OM

To compute : Sew together QFT matrix element for vertices with QM evolution in between.

Simplify: Using symmetries, as before.

<u>Super fun bonus material!</u> Packet B

QED vs. QCD (qualitative)

Are these two possibilities in phase? Or does the interference average to zero?

IN PHASE if (i) everything is nearly collinear	\checkmark
(ii) particle and photon have nearly same velocity	✓ (speed of light)

The LPM Effect (QCD)

There is a qualitative difference for *soft* bremsstrahlung.:

<u>QED</u>

QCD

Unlike a brem photon, a brem gluon can easily scatter from the medium.

Softer brem gluon \rightarrow easier for brem gluon to scatter \rightarrow less collinearity \rightarrow less LPM suppression $\nu s.$

Upshot: Soft brem more important in QCD than in QED (for high-*E* particles in a medium)

Super fun bonus material! Packet C

Light Cone Perturbation Theory

To work with only transverse photons, need to integrate out longitudinal ones.

Light-cone gauge \rightarrow new interactions that are instantaneous in light-cone time x^+ \rightarrow need

Yet more diagrams?

When you integrate out all the non-physical polarizations, Light-Cone Perturbation Theory also has x⁺-instantaneous interactions

Fortunately, Lappi and Paatelainen (2016) taught me that, when masses are ignorable,

 $\mathbf{\mathbf{D}} = \mathbf{0}$ in dimensional regularization in *vacuum*.

In *medium*, one can argue that such loops are suppressed by some power of 1/*E*.

Other random back-up slides

Published Work

[all for $g \rightarrow gg \rightarrow ggg$]

• Putting it all together to compute physical, infrared-safe characteristics of shower development (including earlier authors' resummation of soft bremsstrahlung).

Results

where f(x,y) varies from 1.05 to -0.90 and is shown on the right.

Qualitative Point

Effect of overlapping formation times enhances the rate except when one gluon is very soft.

x

How to account for correction from

Add a $g \rightarrow ggg$ Monte Carlo possibility to account for correction:

