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High energy particles traveling through matter lose energy via

successive bremsstrahlung and pair production:

[Oversimplification: Only electromagnetic shower shown.]
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Part 1
THE LPM EFFECT IN QED

| LPM = Landau, Pomeranchuk, Migdal |
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Review of high-energy
bremsstrahlung

Collisions with the medium —
generate chances for bremsstrahlung ﬁ@’
Naively,

prob of emission ~ o per collision
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BUT
Light can't resolve features on small scales.

Non-relativistic:

both look like if AL >>d.

Extremely relativistic, nearly-collinear motion:
Similar effect, but size of fuzziness stretched out.

J\I)

formation length

ltorm OX VE  (forfixed x)
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—“1:, indistinguishable from —&’

L

- . =
formation length

So

prob of emission ~ « per formation length /sy X V E

Calculated quantitatively by

LPM for QED (1950s)
BDMPS-Z for QCD (1990s)

and investigated in many ways by many people since.

Consequence: At high enough energy, the effective
bremsstrahlung rate in medium is reduced by factor « vV E

[ For QED, “high enough” energy means 200 PeV for air and 4 TeV for Lead
for hard bremsstrahlung ]



5/26

The LPM Eftect (QED)

Warm-up: Recall that light cannot resolve details smaller than its wavelength.

[Photon emission from different scatterings have same phase - coherent.]

Now: Just Lorentz boost above picture by a lot! w



6/26

The LPM Eftect (QED)

— e - i

= =
formation length

Note: (1) bigger Erequires bigger boost —» more time dilation — longer formation length
(2) big boost — this process is very collinear.
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Experimental Measurement of LPM (QED)
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Part 2

A new puzzle tor LPM calculations
in the 2010's

We could talk about this in QED, but we'll see that it's much more interesting
to switch to a QCD application...
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Consider cartoon of

In-medium evolution of a jet
In a quark-gluon plasma

(initial vacuum-like ‘ﬁ
radiation not shown) *® z >
ﬁ (hadronization not shown)

QGP

For this talk, simplify discussion by focusing on ...
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Cascades that stop in-medium

s

QGP

 Qualitative points we'll discuss generalize.
* Formalism generalizable as well.



An idealized Monte Carlo picture
of iIn-medium evolution

As time passes,
roll classical dice for probability of each splitting

weighted by the quantum calculation of the single splitting rate

drbrem
dx

for each vertex /— shown above.

\—I LPM effect included in this rate! I

10/26
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An idealized Monte Carlo picture
of iIn-medium evolution

Built-in assumption:

Consecutive splittings are quantum-mechanically independent.

(Are they ?)
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Remember from previous discussion:

Chance of brem ~ o performation time

because

—&i, indistinguishable from —&’

e

formation length




Consecutive emissions

Chance of brem ~ o performation time

means that two consecutive splittings will typically look like

formation length formation length

— - WM. R
WA o 5 . s

~ formation length
o

So chance of overlap (i.e. “rolling dice separately” breaking down) is

— g IRy .
STttt B AN N
ey

oC O

How big is “o” 22
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How big is og?

Nothing to do with whether medium is

sQGP / perfect liquid
[ 0s(T) big ]

VS.

weakly-coupled QGP
[ 0s(71") small ]

os on previous slide associated with emission vertex:

costs roughly 0,5(Q) with Q ~ (¢E)"* < afew GeV

panic and/or fool around
with AdS/CFT energy loss

[ at5(Q,) big ]

VS.

LPM-based analysis

[ as(Q ) small ] ﬁ
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Does the wisdom of the ages tell us
If og(few GeV) Is small?

Particle physics in vacuum:

Small for some things, like matching lattice calculations
to continuum MS-bar o

High-temperature physics:

Bad news (except possibly if one does sophisticated
resummations of perturbation series)

Overlapping formation times effects on cascade:

f“—:’?"#';'-f‘f‘i‘" L% L ™ =
e e o« o  effect on
& 2

We should calculate it and see.
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Characterizing the medium: q

distance L

= !
PYT T T

Random kicks from medium change pt by tiny amounts << E

Dy

— Random walk in transverse momentum plane:

(pJ_)rms X \/Nkicks X \/Z

g

Cj defined as this proportionality constant

It's the only characteristic of the medium that matters for the problem under discussion.
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Soft emission

Soft emissions are generally enhanced by logs.
Path-breaking authors found small-x-like double logs in this case,

o

6" 2 (&
7 L X 055 ln A
TS q Tmfp

Blaizot & Mehtar-Tani; Iancu; Wu (2014)

This is a BIG effect for large E.
But they found soft emission effects could be absorbed into the

medium parameter N o
following Liou, Mueller, Wu (2013)

Refined question

What about overlap effects that can't be absorbed into g ?
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Our program

Compute the effect of the overlap for hard emissions

hard

W o X
» »>
»

B

IR 7

s

har(\

= relative O(o) correction
due to overlap effects

In broad brush: interesting and fun field theory problem.
In calculational detail: a pain in the ass.
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First: How we draw diagrams
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First: How we draw diagrams

Ry | F +

time time

implicitly including interactions with the medium (in invisible ink above):

B = interaction with medium

= === = correlations in medium
(relatively localized in time)

time taken from

« perturbation theory
* AdS/CFT

« or phenom. fit to ¢
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Medium-averaged evolution can be treated (at high energy) as
(non-Hermitian) 2-dim quantum mechanics problem in transverse plane.

High-energy splitting vertices can be taken from QFT

(DGLAP splitting amplitudes).

B = interaction with medium

= === = correlations in medium
(relatively localized in time)

time taken from

« perturbation theory
* AdS/CFT

« or phenom. fit to ¢

A 4
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Double Splitting Diagrams

%, *

xE VE yE xXE
time
[calculated with Shahin Igbal and Han-Chih Chang]
Infrared Issue: 4T o? g

(for y S ),

dvdy w32V E

giving power-law IR-divergent contributions to energy loss, etc.



Part 2
VIRTUAL CORRECTIONS




Need virtual corrections to
single splitting

—%+—%+ %O%J,

SxNaNu-~as

2

EEE—

These have UV divergences that
renormalize o in leading diagram.

21/26
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Our calculations vs. small-x DIS

Small-x Deep Inelastic Scattering: Hanninen, Lappi, Paatelainen (2016,2017); Beuf (2016,2017)

very Lorentz-contracted medium (medium width << formation length)

2 Im -iwrm%-/v'w -im&\w\ AR =
Y Y

S
2 Re Yi\:% | m R (in our own notation)

v —qq V7" — qqyg

Our problem: (e.g.) all propagators in medium! (medium width << formation length)




What we've actually done, as a warm-up [arXiv:1806.08796, two weeks ago]: 23126

Large-N; QED

e O O O O

Calculate these diagrams using dimensional regularization.

Remember: All time evolution is in medium background, statistically averaged
over medium fluctuations.



What we've actually done, as a warm-up [arXiv:1806.yesterday]: 24/26

Large-N; QED

| | |

Related by conservation of probability because for these diagrams
the important piece of

W\Noww ~  probability photon does not split




What we've actually done, as a warm-up [arXiv:1806.yesterday]: 25/26

Large-N; QED

e — eee

But this (UV-divergent) diagram is complicated and also generates
the renormalization of «:

a — a/)
with

/i ~ (hard particle transverse separation) ™
~ QJ_ ~ (Cjtforma’l;ion)1/2 ~ (QE)1/4
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Conclusion

Reminder

Ultimate goal: figure out whether rolling independent dice for
in-medium QCD shower is good, bad, or ugly for slightly-small o.

Our Recent Progress

Using large-N; QED as an example, we've shown

we can compute necessary virtual corrections to +
single emission. <

Sanity check: The divergent part of these calculations correctly reproduces
the known renormalization of a.. ¢/

What about QCD?

We think that we have now done everything difficult and that results for (large-Nc) QCD
can now be obtained by a combination of

(I) simple and simple-ish transformations of other QCD diagrams previously
calculated, the simplest transformation being the “conservation of probability” I

(2) adaptation of large-Nf QED diagrams now calculated by just changing to QCD group

factors, QCD DGLAP splitting functions, etc.
Stay tuned.



Super fun bonus material!
Packet A

Framework for LPM calculations



A0

Medium-averaged evolution can be treated (at high energy) as
(non-Hermitian) 2-dim quantum mechanics problem in transverse plane.

High-energy splitting vertices can be taken from QFT

(DGLAP splitting amplitudes).

B = interaction with medium

= === = correlations in medium
(relatively localized in time)

time taken from

« perturbation theory
* AdS/CFT

« or phenom. fit to ¢

A 4
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Formalism for LPM: single brem

Recall

% = +

time time

Focus on first diagram, and use simpler graphics:

time

=

Can (formally) interpret this as 3 particles moving forward in time [Zakharov 1990's]:

2 particles from the amplitude (evolving with e~
1 particle from the conjugate amplitude (evolving with e*#)



Will show that evolution in can be described by

3-particle non-relativistic Quantum Mechanics in 2 dimensions

2 2 2
p p p

Heg = —= + —2 4+ —=2 4 V(by, ba, b3)
211 219 2ms3

with weird properties:
e M3+ mz+m3z=0
® V x —1 (i.e. H is non-Hermitian)

= interference vanishes as At — oo, as it must!

At

A2



A3

Kinetic terms:

P

2p.

Energy of a high-p_particle: €Ep = \/ pz + pﬁ_ ~ p. +
2

Evolution of is e “with

1
2 2 2
Pl 4 P2 4 P3
2P>21 2Pz2  2D»3

Hkin — T €p, + €ps + €p; =

_p2¢1 i pi ., 4 Pia
2FE  2(1—x)E 2zFE

conjugate evolves
with e+iHt

2

’,.xE
E—-"'.“- (I—.I)E

This is 2-dimensional non-relativistic QM with
(ml, mao, m3) = (—E, (1—:13)E, {BE)

As promised,
my1 +mz +m3z =0

Potential term:

V (b,,b,,b,) incorporates (statistically averaged) effect of collisions with the medium.



Potential terms: A4

To motivate form, think of something else...

A classical Boltzman analysis of scattering:

d dl'. dl'.
af(lu) =L f(pL—q.1) p : —f(PL)/q :

1 qg.1L n qu_
gain term loss term
Fourier transform:
d dl'c .
_ f(b) — f(b) [Fel(b) — I‘el(O)} with Fel(b) — / 1 e—zb-QJ_
dt q.1 qu_

This looks like a Schrodinger-ish equation:

d
i— f=Hoowsf  with Moo, = — [rel(()) _ I‘el(b)]

In our problem, this physics gives V: 2

V =—1% [Fel(o) — I‘el(bz_bl)} (QED) :



How to put the calculation together:

(1) Solve for propagation in 3-particle QM in shaded region.

(2) Tie together with QFT matrix elements for vertices

x v/ DGLAP splitting functions

A5



A6
Simplifcation: 3-particle QM — 1-particle QM

Can use various symmetries of problem to get rid of 2 d.o.f.

2
_ PB
H=—=—+ V(B) [ BDMPS-Z (1990's) ]
2M
Method 1. Can solve numerically. [ Zakharov (2004+); Caron-Huot & Gale (2010) ]

Simplifcation: Harmonic Oscillator

Method 2. High energies — very collinear — b 's small.

So make small B approximation to V (B) — a harmonic oscillator problem
2

1
H = ﬁ - EMQ(Z)Bz [ Baier et al . (1998) ]

(anon-Hermitian one: 932 oc —i )
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Formalism for LPM: double brem

Example of an interference contribution:
- X

-

-
-t 1‘!""1 .y

i*

( P )**

To compute: Sew together QFT matrix element
for vertices with QM evolution in between.

Simplify : Using symmetries, as before.

g B



Super tun bonus material!

Packet B
QED vs. QCD (qualitative)



An alternative picture of
LPM Effect (QED)

versus

—»— .- . P \VaVaVASAnN

Are these two possibilities in phase? Or does the interference average to zero?

Bl

IN PHASE if (i) everything is nearly collinear v
(ii) particle and photon have nearly same velocity v (speed of light)




B2

The LPM Effect (QCD)

There is a qualitative difference for soft bremsstrahlung.:

QED

Softer brem photon — longer wavelength
— less resolution
— more LPM suppression

QCD

Unlike a brem photon, a brem gluon can easily scatter from the medium.

Softer brem gluon  — easier for brem gluon to scatter
— less collinearity
— less LPM suppression

Upshot: Soft brem more important in QCD than in QED (for high- E particles in a medium)



Super tun bonus material!
Packet C

Light Cone Perturbation Theory



\

To work with only transverse photons, need to integrate out longitudinal ones.

Transverse polarization... what about longitudinal?

Light-cone gauge — new interactions that are instantaneous in light-cone time x*
— need

T IC sy

Cl1



- PRI




C3

Yet more diagrams?

When you integrate out all the non-physical polarizations, Light-Cone Perturbation
Theory also has x*-instantaneous interactions

in addition to the previous

which generates the additional loop diagrams

Fortunately, Lappi and Paatelainen (2016) taught me that, when masses are ignorable,

Wﬁw =0 in dimensional regularization in vacuum.

In medium, one can argue that such loops are suppressed by some power of 1/E.



Other random back-up slides




Published Work [ all for g— gg — ggg]

- X -“y -
- et + permutations

Still in progress

L \d

« .

a .
LTy

e virtual corrections, e.g. ( )* correct single brem rate

e 4-gluon vertices, e.g.

[parts of which included in y << x << 1 work of earlier refs.]

 Putting it all together to compute physical, infrared-safe characteristics of shower
development (including earlier authors' resummation of soft bremsstrahlung).



Results

(]l]j1 . (130?

A — correction to double brem due ek
—  to overlapping formation times T

2 9 Y 0.15%

— f(aj y) CAOéS 0.10;

’ 7T2£Ey3/2 0.052-

0.00i

(y <z <l—z—y) | | .

where f(x,y) varies from 1.05 to -0.90 and is
shown on the right. al:

10721

Qualitative Point

Effect of overlapping formation times enhances 107
the rate except when one gluon is very soft. |

1074 E1
107




Monte Carlo (MC)

How to account for correction from

Add a g — ggg Monte Carlo possibility to account for correction:

dl’

A
dx dy




yE xE xE xE
[ << <]
zE zE zE

dr ]
dx dy MC
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