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Hadron Structure
Why are we Interested

I One of the major goals of the nuclear physics
community is to understand the structure and
behaviour of strongly interacting matter

I We wish to understand this in terms of its most
basic constituents - Quarks and Gluons

I Important to this goal is understanding the
internal structure of the nucleon and how all
these internal constituents interact.

(EIC white paper [1212.1701])
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Experiments on Hadron Structure

Jefferson Lab
The Jefferson Lab’s Continuous Electron
Beam Accelerator Facility explores the
internal structure of hadronic through
I Electric and magnetic Elastic form

factors
I Deeply Virtual Compton scattering
I Parity Violation
I and many more experiments
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Experiments on Hadron Structure

COMPASS
The CERN COMPASS experiment at the
Super Proton Synchrotron aims to
I Discover more about how the property

of spin arises in protons and neutrons
I how much spin is contributed by the

gluons
I Uses Muons fired at polarized targets

Jacob Bickerton (UofA) Introduction and Motivation 3 / 48



Experiments on Hadron Structure

Mainz
The A1 - Electron Scattering group at Mainz
uses three high-resolution focussing
magnetic spectrometers investigating
I Form Factors in electron-proton elastic

scattering
I Radiative inelastic scattering, with

response described in terms of
polarizabilities and spatial distributions
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Hadron Structure
Two types of e − p scattering are

Elastic Scattering

⇒ Form Factors

Deep Inelastic Scattering

⇒ Structure Functions
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Hadron Structure
Two types of e − p scattering are

Elastic Scattering
Elastic Scattering
I Maps out the charge and density

distributions inside the nucleon
I 4-momentum transfer

q = k − k ′ = P ′ − P
I Final state of the nucleon remains

intact with recoil
I We compare the cross section with that

of a point particle

dσ
dΩ

=
( dσ
dΩ

)
point
|F(q2)|2
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Elastic Scattering

I Elastic scattering cross-section from spin-1/2 target with extended structure

dσ
dΩ

=
( dσ
dΩ

)
Mott

[
G2
E (Q2) + τG2

M (Q2)

1 + τ
+ 2τG2

M (Q2)tan2θ
2

]
where τ = Q2

4M2

I Here
GE (Q2) = F1(Q2)− τF2(Q2)

GM (Q2) = F1(Q2) + F2(Q2)

are the Sachs electric and magnetic form factors
I By rewriting this in terms of the virtual photon’s longitudinal polarisation and using

Rosenbluth separation to vary scattering angles, we can extract GE and GM
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Elastic Scattering

I GE , GM → different charge and
magnetisation distributions

I Initial and final states have the same
internal state→ Fourier transforms of
these form factors are the density
distributions

I But M is finite so we need to consider
nucleon recoil effects of elastic
scattering→ initial and final states now
measured in different frames

I One of the ways we get around this is
by considering the Infinite momentum
frame

arXiv:1707.00168v2 [hep-ph]
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Density Distributions

I Considering the Infinite momentum frame where
|P |= |P ′ |

I The initial and final states have momenta with
equal magnitude,to a Lorentz contraction

I F1(Q2) can be interpreted as the Fourier
transform of the charge distribution

f(b2
⊥) ≡

∫
d2∆⊥
(2π2)

e−ib⊥.∆⊥f(t = −∆2
⊥)

where ∆⊥ is the transverse momentum transfer
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Transverse Spin Density

Jacob Bickerton (UofA) Transverse Spin Density Equation 8 / 48



Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

M. Diehl and P. Hagler [hep-ph/0504175]

ρn(b⊥,s⊥,S⊥)=

∫ 1

−1
dx xn−1ρ(x ,b⊥,s⊥,S⊥)

=
1
2
{An0(b2

⊥) + s i⊥S
i
⊥

(
ATn0(b2

⊥)− 1
4m2

4b⊥ÃTn0(b2
⊥)

)
+
b j
⊥ε

ji

m

(
S i
⊥B
′
n0(b2

⊥) + s i⊥B
′
Tn0(b2

⊥)
)

+ s i⊥
(
2b i
⊥b

j
⊥ − b2

⊥δ
ij
)
S j
⊥

1
m2

Ã ′′Tn0(b2
⊥)}

I Where b⊥ is the distance from the center of momentum
I s⊥ is the transverse spin of the quark
I S⊥ is the transverse spin of the nucleon
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Ã ′′Tn0(b2
⊥)}

I Where b⊥ is the distance from the center of momentum
I s⊥ is the transverse spin of the quark
I S⊥ is the transverse spin of the nucleon

Jacob Bickerton (UofA) Transverse Spin Density Equation 9 / 48



Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

M. Diehl and P. Hagler [hep-ph/0504175]

ρn(b⊥,s⊥,S⊥) =

∫ 1

−1
dx xn−1ρ(x ,b⊥,s⊥,S⊥)

=
1
2
{An0(b2

⊥) + s i⊥S
i
⊥

(
ATn0(b2

⊥)− 1
4m2
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Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

For n = 1, this generalised form factor A10(b2
⊥) is the

fourier transformed Dirac Electric form factor

A10(Q2) = F1(Q2)

〈
N(p ′ ,s ′)

∣∣∣jµ(q)
∣∣∣N(p ,s)

〉
= u(p ′ ,s ′) [ γµF1(Q2) +

iσµνqν

2mB
F2(Q2) ]u(p ,s)

arXiv:1611.07265v2 [hep-ph]
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Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

Flavour Form Factors
I Experimental results are for the proton
I We wish to separate form factors into individual

quark contributions
I To obtain these we:

I Assume Charge Symmetry

Fp ,u
1/2 = Fn ,d

1/2

Fp ,d
1/2 = Fn ,u

1/2

arXiv:1611.07265v2 [hep-ph]
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Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

Flavour Form Factors
I Experimental results are for the proton
I We wish to separate form factors into individual

quark contributions
I To obtain these we:

I Assume Strange FF = 0
I decompose p and n FFs

Fp
1/2 =

2
3
Fu

1/2 −
1
3
Fd

1/2

Fn
1/2 =

2
3
Fd

1/2 −
1
3
Fu

1/2

I Solve for u and d form factors arXiv:1611.07265v2 [hep-ph]
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Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

M. Diehl and P. Hagler [hep-ph/0504175]

ρn(b⊥,s⊥,S⊥) =

∫ 1

−1
dx xn−1ρ(x ,b⊥,s⊥,S⊥)

=
1
2

[
An0(b2

⊥)+s i⊥S
i
⊥

(
ATn0(b2

⊥)− 1
4m2

4b⊥ÃTn0(b2
⊥)

)
+

b j
⊥ε

ji

m

(
S i
⊥B
′
n0(b2

⊥)+s i⊥B
′
Tn0(b2

⊥)
)

+s i⊥
(
2b i
⊥b

j
⊥ − b2

⊥δ
ij
)
S j
⊥

1
m2

Ã ′′Tn0(b2
⊥)

]
Nucleon Spin Polarisation
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Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

For n = 1, this form factor B ′10(b2
⊥) is the first

derivative of the Fourier transformed Pauli Magnetic
form factor B10(Q2) = F2(Q2)

〈
N(p ′ ,s ′)

∣∣∣jµ(q)
∣∣∣N(p ,s)

〉
= u(p ′ ,s ′) [ γµF1(Q2) +

iσµνqν

2mB
F2(Q2) ]u(p ,s)

B ′10(b2
⊥) = ∂

∂b2B10(b2
⊥) arXiv:1611.07265v2 [hep-ph]
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Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

M. Diehl and P. Hagler [hep-ph/0504175]

ρn(b⊥,s⊥,S⊥) =

∫ 1

−1
dx xn−1ρ(x ,b⊥,s⊥,S⊥)

=
1
2

[
An0(b2

⊥)+s i⊥S
i
⊥

(
ATn0(b2

⊥)− 1
4m2

4b⊥ÃTn0(b2
⊥)

)
+

b j
⊥ε

ji

m

(
S i
⊥B
′
n0(b2

⊥) + s i⊥B
′
Tn0(b2

⊥)
)

+s i⊥
(
2b i
⊥b

j
⊥ − b2

⊥δ
ij
)
S j
⊥

1
m2

Ã ′′Tn0(b2
⊥)

]
Quark Spin Polarisation
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Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

For n=1, the form factor B
′
T10(b2

⊥) is the first derivative of a fourier transformed
combination of the tensor form factors BT10 ≈ 2ÃT10 +BT10 and acts like an anomalous
tensor magnetic moment similar to F2(Q2)

〈
N(p ′ ,s ′)

∣∣∣ψ(0)iσµνψ(0)
∣∣∣N(p ,s)

〉
=

ū(p ′ ,s ′)

[
iσµνAT10(Q2) +

P̄ [µ∆ν]

m2
ÃT10(Q2) +

γ [µ P̄ ν]

2m
BT10(Q2)

]
u(p ,s)
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Transverse Spin Density Equation
In order to determine the spin density, we require each of the following form factors in terms of b⊥

For n=1, the form factor B
′
T10(b2

⊥) is the first derivative of a fourier transformed
combination of the tensor form factors BT10 ≈ 2ÃT10 +BT10 and acts like an anomalous
tensor magnetic moment similar to F2(Q2)

〈
N(p ′ ,s ′)

∣∣∣ψ(0)iσµνψ(0)
∣∣∣N(p ,s)

〉
=

ū(p ′ ,s ′)

[
iσµνAT10(Q2) +

P̄ [µ∆ν]

m2
ÃT10(Q2) +

γ [µ P̄ ν]

2m
BT10(Q2)

]
u(p ,s)

Not enough experimental data
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Lattice QCD
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Quantum Chromodynamics

QCD
I As a result of gluon self interactions, the QCD

coupling αs = g2/4π becomes very small at high
energies acting almost like a theory of free
partons

I This asymptotic freedom of the QCD theory allows
perturbative methods to be used at small distance
scales for high energy reactions

I Low energy reactions however, employ strong
QCD interactions and thus perturbation theory is
no longer applicable and we must numerically
discretise the QCD equation using Lattice

arXiv:hep-ph/0607209
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The Lattice

I We work in Euclidean space where t → iτ
I Discretise space-time with a separation of the

lattice spacing a
I We have a finite lattice, so we introduce periodic

boundary conditions
I Discretise 3-momenta, ~q2 given by

(n2
x +n2

y +n2
z )×

(
2π
La

)2

I The values of the 4-momentum transfer q2 vary
with the baryon mass MB by the dispersion

relation q2 =
(√

M2
B +~q2 −MB

)2
−~q2

I We formulate the theory on the 4-torus L ⊂ aZ4 = {x |xµ = anµ,n ∈Z4}
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The Lattice

I Quark fields reside on the sites of the lattice
ψ(x)

I Gauge fields on the links Uµ(x) = e−iagAµ(x)

I We discretise the QCD action and path integrals

〈O〉=
1
Z

∫
DADψDψO[A ,ψ,ψ]e−S [A ,ψ,ψ]

I We approximate using Monte Carlo methods
weighted by the action

〈O〉 ' 1
Nconf

Nconf∑
i

O([U [i ]])
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Three-Point Correlation Functions

Generating Three-point Functions
We create a state at time t = 0

〈Ω | T [χα(t , ~x2)O(τ, ~x1)χβ(0) ] |Ω 〉
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Three-Point Correlation Functions

Generating Three-point Functions

Insert an operator with momentum ~q at some later time τ

〈Ω | T [χα(t , ~x2)O(τ, ~x1)χβ(0) ] |Ω 〉
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Three-Point Correlation Functions

Generating Three-point Functions
Annihilate the state at a final time t

〈Ω | T [χα(t , ~x2)O(τ, ~x1)χβ(0) ] |Ω 〉
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Ratio of Correlation Functions

Thus the Three-point function

C3pt(t , τ;~p , ~p ′) =
∑
s ,s ′

e−Ep′ (t−τ)e−EpτΓβα

〈Ω|χα(0)|N(~p ′ ,s ′)〉〈N(~p ′ ,s ′)|O(q)|N(~p ,s)〉〈N(~p ,s)|χβ(0)|Ω〉

Using Two-point Functions in the form

C2pt(t ,~p) =
∑
s

e−Ep tΓβα
〈
Ω |χα |N(~p ,s)

〉〈
N(~p ,s)

∣∣∣χβ ∣∣∣Ω〉
We construct a ratio of Two-point and Three-point correlation functions

R(t , τ;~p , ~p ′) u
C3pt(t , τ; ~p ′ ,~p)

C2pt(t , τ; ~p ′ ,~p)

Which allows us to remove the time dependence and solve matrix elements.
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Lattice Parameters

I Nf = 2 + 1 O(a)-improved Clover
Fermions

I Lattice spacing a = 0.074fm
I Novel method for tuning the quark

masses
I Keep the singlet quark mass fixed

mR =
1
3

(
2mR

l +mR
s

)
I At its physical value mR∗

I Using multiple Lattice volume sizes
including 323 ×64 , 483 ×96
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Lattice Parameters

I Using Nf = 2 + 1 flavour configurations
allows us to simulate the octet baryons

I These are represented by doubly and
singly light and heavy quarks since
ml = mu = md

I An advantage of the lattice is that we
can directly obtain the quark
contributions to these quantities
through the light and strange quarks
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Form Factors
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Electromagnetic Form Factors

The Dirac F1(Q2) and Pauli F2(Q2) form factors are obtained from the decomposition of
matrix elements from the electromagnetic current jµ where〈

N(p ′ ,s ′)
∣∣∣jµ(q)

∣∣∣N(p ,s)
〉

= u(p ′ ,s ′)

[
γµF1(Q2) +

iσµνqν

2mB
F2(Q2)

]
u(p ,s)

Here
I u(p ,s) are Dirac spinors with

momentum p and spin polarisation s
I the transfer momentum q = p ′ − p and

Q2 = −q2

I and the mass of the baryon is mB .
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Electromagnetic Form Factors

F1 = A10 Dirac Form Factor (mπ,mK ) = (330,435)MeV
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Electromagnetic Form Factors

F1 = A10 Dirac Form Factor
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Transverse Spin Density Equation
A reminder of the equation and required form factors

ρ(b⊥,s⊥,S⊥) =

∫ 1

−1
dx ρ(x ,b⊥,s⊥,S⊥)

=
1
2
{A10(b2

⊥)+s i⊥S
i
⊥

(
AT10(b2

⊥)− 1
4m2

4b⊥ÃT10(b2
⊥)

)
+
b j
⊥ε

ji

m

(
S i
⊥B
′
10(b2

⊥) + s i⊥B
′
T10(b2

⊥)
)

+ s i⊥
(
2b i
⊥b

j
⊥ − b2

⊥δ
ij
)
S j
⊥

1
m2

Ã ′′T10(b2
⊥)}

Unpolarised
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Unpolarised Quark Densities

Doubly represented unpolarised up quark in
the unpolarised proton.

Singly represented unpolarised down quark
in the unpolarised proton.
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Electromagnetic Form Factors

F2 = B10 Pauli Magnetic Form Factor

Jacob Bickerton (UofA) Form Factors 25 / 48



Transverse Spin Density Equation
A reminder of the equation and required form factors

ρ(b⊥,s⊥,S⊥) =

∫ 1

−1
dx ρ(x ,b⊥,s⊥,S⊥)

=
1
2
{A10(b2

⊥)+s i⊥S
i
⊥

(
AT10(b2

⊥)− 1
4m2

4b⊥ÃT10(b2
⊥)

)
+

b j
⊥ε

ji

m

(
S i
⊥B
′
10(b2

⊥)+s i⊥B
′
T10(b2

⊥)
)

+s i⊥
(
2b i
⊥b

j
⊥ − b2

⊥δ
ij
)
S j
⊥

1
m2

Ã ′′T10(b2
⊥)

Hadron Spin Polarisation
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Proton Quark Densities with Nucleon spin polarisation

Doubly represented up quark in the proton
with polarised Nucleon spin.

Singly represented down quark in the proton
with polarised Nucleon Spin.
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Tensor Form Factors

Similar to the electromagnetic form factor, we calculate the tensor form factors using a
new insertion operator iσµν〈

N(p ′ ,s ′)
∣∣∣ψ(0)iσµνψ(0)

∣∣∣N(p ,s)
〉

=

ū(p ′ ,s ′)

[
iσµνAT10(Q2) +

P̄ [µ∆ν]

m2
ÃT10(Q2) +

γ [µ P̄ ν]

2m
BT10(Q2)

]
u(p ,s)

where here
I γ [µ P̄ ν] ≡ γµP̄ν −γν P̄µ

I ∆ = p ′ − p , P̄ = p ′+p
2

I iσµν = iγµγν
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Tensor Form Factors

AT10(Q2) where AT10(Q2 = 0) = gT
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Transverse Spin Density Equation
A reminder of the equation and required form factors

ρ(b⊥,s⊥,S⊥) =

∫ 1

−1
dx ρ(x ,b⊥,s⊥,S⊥)

=
1
2
{A10(b2

⊥)+s i⊥S
i
⊥

(
AT10(b2

⊥)− 1
4m2

4b⊥ÃTn0(b2
⊥)

)
+

b j
⊥ε

ji

m

(
S i
⊥B
′
10(b2

⊥) + s i⊥B
′
T10(b2

⊥)
)

+s i⊥
(
2b i
⊥b

j
⊥ − b2

⊥δ
ij
)
S j
⊥

1
m2

Ã ′′T10(b2
⊥)

Quark Spin Polarisation
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Tensor Form Factors

BT10(Q2) ≈ 2ÃT10 +BT10
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Proton Quark Densities with Quark spin polarisation

Doubly represented up quark in the proton
with polarised Quark spin.

Singly represented down quark in the proton
with polarised Quark Spin.
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SU(3) Flavour Symmetry Breaking Expansion
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SU(3)-Flavour Symmetry Breaking

Mass Tuning
I A Feature of the gauge configurations used is

that the simulation trajectory follows a line of
constant singlet mass mq = (2ml +ms)/3.

I This is achieved by first finding the
SU(3)-flavour-symmetric point where
flavour-singlet quantities take their physical
values, then varying the individual quark masses
about that point.

I By doing so we find a Flavour-symmetry breaking
effect due to the differences between the
strange and light quark masses
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SU(3)-Flavour Symmetry Breaking
Fan plot of generalised tensor form factor AT10 at Q2 = 0
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SU(3)-Flavour Symmetry Breaking
Fan plot of generalised tensor form factor AT10 at Q2 = 0

Generating Fan plots
I Scale X-axis by

X2
π = (2M2

K +M2
π)/3

I Scale Y-axis by
flavour singlet
quantity XT
constructed from
average diagonal
amplitudes
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Physical Expansion

Binning
I The 4-momentum Q2 = −q2 is dependent on MB

I We bin the Q2 values from each ensemble into separate bins.
I From each Q2 bin we take an average value for the bin
I Using this average we then shift each ensemble to fit the average Q2 value such

that we can compare and create fan plots at each Q2 bin.
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Physical Form Factors
AT10 First Tensor form factor
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Physical Mass Results
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Comparing Baryon Spin Densities
Difference between the doubly represented up quarks in the Proton and Sigma

Up Quarks in Proton Up Quarks in Sigma

Varying Nucleon Spin Polarisation
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Comparing Baryon Spin Densities
Difference between the doubly represented up quarks in the Proton and Sigma

Up Quarks in Proton Up Quarks in Sigma

Varying Quark Spin Polarisation
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Comparing Baryon Spin Densities
Allowing both S⊥ and s⊥ to be non-zero

Transverse Spin Density equation

ρ(b⊥,s⊥,S⊥) =

∫ 1

−1
dx ρ(x ,b⊥,s⊥,S⊥)

=
1
2
{A10(b2

⊥) + s i⊥S
i
⊥

(
AT10(b2

⊥)− 1
4m2

4b⊥ÃT10(b2
⊥)

)
+

b j
⊥ε

ji

m

(
S i
⊥B
′
10(b2

⊥) + s i⊥B
′
T10(b2

⊥)
)

+ s i⊥
(
2b i
⊥b

j
⊥ − b2

⊥δ
ij
)
S j
⊥

1
m2

Ã ′′Tn0(b2
⊥)}

f ′ = ∂
∂b2 f , f ′′ = ( ∂

∂b2 )2f , ∆b f = 4 ∂
∂b2

(
b2 ∂

∂b2

)
f
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Comparing Baryon Spin Densities
Allowing both S⊥ and s⊥ to be non-zero

Fixed Nucleon Spin varying Quark Spin

Down Quark in the Proton
Jacob Bickerton (UofA) Physical Mass Results 42 / 48



Comparing Baryon Spin Densities
Difference between the singly represented down quark and strange quark in the Proton and Sigma

Down Quark in the Proton Strange Quark in the Sigma

Fixed Nucleon Spin and varying Quark Spin Polarisation
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Ongoing Work
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Ongoing Work
Investigating the Second Moment of the Nucleon’s g1 and g2 Structure Functions

Structure Functions
I The Nucleon’s second spin-dependent structure function g2 at leading order in Q2

recieves contribution from both twist-2 and twist-3 operators.
I Using equations of motion g2(x) can be expressed as a sum of a piece that is

entirely determined in terms of g1(x) plus an interaction dependent twist-3 part that
involes quark gluon correlations

g2(x ,Q2) = gWW
2 (x ,µ2) +gq

2(x ,µ2)

gWW
2 (x ,Q2) = −g1(x ,µ2) +

∫ 1

x

dy
y
gq

1 (y ,µ2)

Where gWW
2 is the ’Wandzura-Wilczek’ relation which depends only on the first

spin-dependent structure function g1(x ,µ2) with twist-2 contributions
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Ongoing Work
Investigating the Second Moment of the Nucleon’s g1 and g2 Structure Functions

Using neglecting quark mass for simplicity, the x2 moment of g2 yields∫
dxx2g(f)

2 =
1
3
d (f)

2

Using leading order Operator Product Expansion (OPE) we find the operator

〈~p ,~s |O5(f)
[σ {µ1]µ2}

|~p ,~s〉=
1
3
d (f)

2

where this operator is

O5(f)
[σ {µ1]µ2}

=
−1
4
ψγσγ5

←→
D µ1

←→
D µ2

ψ

where
←→
D =

−→
D −←−D
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Ongoing Work
Investigating the Second Moment of the Nucleon’s g1 and g2 Structure Functions

I Here we have the forward
matrix element for the u quark
contribution to the d2

I Involves the same linear
combination of lorentz
components bewteen
electro-magnetism and the
gluon strength tensor

I A better interpretation of these
matrix elements would be a
’color’ lorentz force
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Thank you for Listening
Fixed Nucleon Spin varying Quark Spin

Down Quark in the Proton
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