Sensitive tests of the standard model from K mesons and lattice QCD

Jefferson Laboratory

May 7, 2018

Norman H. Christ
Columbia University
RBC and UKQCD Collaborations

Outline

- Quick review of the standard model
- Lattice QCD: methods and status
- Four precision tests of the standard model:

1) $K \rightarrow \pi \pi$ decay and direct $C R: \varepsilon^{\prime}$
2) $K_{L}-K_{S}$ mass difference
3) Long distance contribution to ε_{K}
4) Long distance contribution to rare kaon decay: $K^{+} \rightarrow \pi^{+} \nu \bar{v}$

Standard Model

Examples of g (gluon) and W^{+}(weak) exchange

Cabibbo-Kobayashi-Maskawa mixing

- $W^{ \pm}$emission scrambles the quark flavors

$$
\left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \stackrel{W^{ \pm}}{\longleftrightarrow}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

Three generations of matise (eumions)					
	1	II	III		
$\begin{gathered} \text { neme- } \\ \text { ehapge, } \\ \text { mpin- } \\ \text { name- } \end{gathered}$	$\left\{\begin{array}{l} 2.4 \mathrm{MeV} / \mathrm{u}^{2} \\ 2 / 3 \\ 1 / 2 \\ \mathbf{u p}^{2} \end{array}\right.$	$\begin{aligned} & 1.27 \mathrm{GeV} / \mathrm{c}^{2} \\ & 3 / 3 \\ & 1 / 2 \\ & \text { charm } \end{aligned}$	$\begin{aligned} & 171.2 \mathrm{GeV} / \mathrm{s}^{2} \\ & 2 / 3 \\ & 1 / 2 \\ & \text { top } \end{aligned}$	${ }_{1}^{0} \mathrm{Y}$	
$\begin{aligned} & \text { 을 } \\ & \text { Be } \end{aligned}$	$\underbrace{4.8 \mathrm{MeV} / \mathrm{c}^{3}}_{\text {down }}{ }^{-1 / 2} \bigcap^{1 / 2}$	$\begin{aligned} & 104 \mathrm{MeV} / \mathrm{c}^{?} \\ & -1 / 3 \\ & 1 / 2 \\ & \text { strange } \end{aligned}$	$\begin{aligned} & 4.2 \mathrm{GeV} / \mathrm{c}^{7} \\ & -1 / 3 \\ & 1 / 20 \\ & \text { bottom } \end{aligned}$	${ }^{0}$	
	${ }_{\substack{</ 2 \\ 0 \\ 0 \\ \text { electron } \\ \text { neutrino }}} \mathrm{V}_{\mathbf{C}}$		$\begin{gathered} =15.5 \mathrm{MeV} / \mathrm{R}^{2} \\ 0 \\ { }^{1 / 2} \mathbf{V}_{\mathrm{T}} \\ \text { tau } \\ \text { neutrino } \end{gathered}$	$\begin{aligned} & 91.2{\mathrm{GeV} / \mathrm{c}^{2}}_{0}^{0} \geq 0 \\ & 1 \\ & Z \text { boson } \end{aligned}$	
$\begin{aligned} & \text { 㟶 } \\ & \frac{0}{9} \end{aligned}$	$0.511 \mathrm{MeV}^{2} \mathrm{C}^{3}$ -1	$\underbrace{105.7 \text { Mevic? }}_{\text {muon }}$	$\begin{array}{\|l} 1.777 \mathrm{GeV} / \mathrm{c}^{\prime} \\ -1 \\ 1 / 2 \mathrm{~T} \\ \text { tau } \end{array}$	$80.4 \mathrm{GeV} / \mathrm{C}^{\prime}$ ± 1 1 $\sqrt{ }$ W boson	

Cabibbo-Kobayashi-Maskawa mixing

- $W^{ \pm}$emission scrambles the quark flavors

$$
\begin{aligned}
& \left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \stackrel{W}{\longleftrightarrow}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \\
& \left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
& \lambda=0.22535 \pm 0.00065, \quad A=0.811_{-0.012}^{+0.022}, \\
& \bar{\rho}=0.131_{-0.013}^{+0.026}, \quad \bar{\eta}=0.345_{-0.014}^{+0.013}
\end{aligned}
$$

Cabibbo-Kobayashi-Maskawa mixing

- $W^{ \pm}$emission scrambles the quark flavors

$$
\begin{aligned}
& \left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \stackrel{W^{ \pm}}{\longleftrightarrow}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \\
& \left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
& \begin{array}{c}
\text { VPlation! }
\end{array} \\
& \begin{array}{l}
\bar{\rho}=0.22535 \pm 0.00065, \\
A=0.131_{-0.013}^{+0.026}, \quad \bar{\eta}=0.345_{-0.014}^{+0.013}
\end{array}
\end{aligned}
$$

State-of-the-art Lattice QCD

Lattice QCD

- Introduce a space-time lattice.
- Evaluate the Euclidean Feynman path integral
- Study $e^{-H_{Q C D} t}$
- Precise non-perturbative formulation
- Capable of numerical evaluation

$$
\sum_{n}\langle n| e^{-H(T-t)} \mathcal{O} e^{-H t}|n\rangle=\int d\left[U_{\mu}(n)\right] e^{-\mathcal{A}[U]} \operatorname{det}(D+m) \mathcal{O}[U](t)
$$

- Evaluate using Monte Carlo importance sampling with hybrid, molecular dynamics/Langevin evolution.

Lattice QCD - 2018

- Physical quark masses (ChPT not needed)
- Chiral quarks (doubling problem solved)
- Large physical volumes: (6-10 fm $)^{3}$
- Small lattice spacing: $1 / a=2.4 \mathrm{GeV}$
$-\left(\Lambda_{\mathrm{QCD}} a\right)^{2}$ effects $<1 \%$;)
- $\left(m_{\text {charm }} \text { a }\right)^{2}$ effects $\sim 15 \% ;$

QCD in Euclidean space

- Euclidean $e^{-H_{Q C D}{ }^{t}}$ projects onto the ground state.

- Treat two-particle states using Luscher's finite-volume analysis
- Finite-volume energy shifts determine scattering phase shifts.
- Must work below multi-particle thresholds
- Two-particle state of interest may not be the lowest energy state
- Hansen and Sharpe working on 3-particle states making progress but difficult.
- Extra problems for second-order weak calculations

Elaborate methods required

- Use 5-D, domain wall lattice fermions - physical quarks bound to 4D boundaries

- Measurements on $64^{3} \times 128$ lattice
- Compute 2000 lowest Dirac eigenvectors to speed up Dirac operator inversion.
- KNL chip has 68 cores, each with 4 threads and two 512-bit wide, pipelined FPUs.
- Broad collaboration and substantial funding needed.

Lattice QCD

$$
\sum_{n}\langle n| e^{-H(T-t)} \mathcal{O} e^{-H t}|n\rangle=\int d\left[U_{\mu}(n)\right] e^{-\mathcal{A}[U]} \operatorname{det}(D+m) \mathcal{O}[U](t)
$$

- Very large computational challenge:
- For a 64^{3} x128 lattice: Integrate over one billion variables
- Spin-1/2 quarks are represented as 4-D states on the boundary of a 5-D volume.
- Integrand contains the determinant
 of a (10 Billion) x (10 Billion) matrix
- Fast code running on 32K nodes of Mira sustains one Petaflops [10 ${ }^{15}$ (adds + mults)/sec]

The RBC \& UKOCD collaborations

$B N L$ and $R B R C$

Mattia Bruno
Tomomi Ishikawa
Taku Izubuchi
Luchang Jin
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni
Sergey Syritsyn
Columbia University
Ziyuan Bai
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
David Murphy
Masaaki Tomii

KEK

Julien Frison
University of Liverpool
Nicolas Garron
Peking University
Xu Feng
University of Southampton
Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner
Andrew Lawson
Edwin Lizarazo
Chris Sachrajda

York University (Toronto)

Renwick Hudspith

Precision tests of the Standard Model

$K \rightarrow \pi \pi$ Decay

$K^{0}-\overline{K^{0}}$ mixing

- $\Delta S=1$ weak decays allow K^{0} and $\overline{K^{0}}$ to decay to the same $\pi \pi$ state.
- Resulting mixing described by Wigner-Weisskopf

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}^{0}}=\left\{\left(\begin{array}{ll}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{00}} & M_{\overline{00}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{00} & \Gamma_{0 \overline{0}} \\
\Gamma_{\overline{00}} & \Gamma_{\overline{00}}
\end{array}\right)\right\}\binom{K^{0}}{\bar{K}^{0}}
$$

- Decaying states are mixtures of K^{0} and $\overline{K^{0}}$

$$
\begin{array}{ll}
\left|K_{S}\right\rangle=\frac{K_{+}+\bar{\epsilon} K_{-}}{\sqrt{1+\mid \bar{\epsilon} \epsilon^{2}}} & \bar{\epsilon}=\frac{i}{2}\left\{\frac{\operatorname{Im} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Im} \Gamma_{0 \overline{0}}}{\operatorname{Re} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Re} \Gamma_{0 \overline{0}}}\right\} \\
\left|K_{L}\right\rangle=\frac{K_{-}+\bar{\epsilon} K_{+}}{\sqrt{1+|\bar{\epsilon}|^{2}}} & \begin{array}{c}
\text { Indirect CP } \\
\text { violation }
\end{array}
\end{array}
$$

CP violation

- CP violating, experimental amplitudes:

$$
\begin{aligned}
\eta_{+-} & \equiv \frac{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon+\epsilon^{\prime} \\
\eta_{00} & \equiv \frac{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon-2 \epsilon^{\prime}
\end{aligned}
$$

- Where: $\epsilon=\bar{\epsilon}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}$

Indirect: $|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}$
Direct: $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=(1.66 \pm 0.23) \times 10^{-3}$

$K \rightarrow \pi \pi$ and CP violation

- Final $\pi \pi$ states can have $/=0$ or 2 .

$$
\begin{aligned}
\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle & =A_{2} e^{i \delta_{2}} & \Delta I=3 / 2 \\
\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle & =A_{0} e^{i \delta_{0}} & \Delta I=1 / 2
\end{aligned}
$$

- CP symmetry requires A_{0} and A_{2} be real.
- Direct CP violation in this decay is characterized by:

$$
\epsilon^{\prime}=\frac{i e^{\delta_{2}-\delta_{0}}}{\sqrt{2}}\left|\frac{A_{2}}{A_{0}}\right|\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} \boldsymbol{A}_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} \boldsymbol{A}_{0}}\right) \quad \begin{array}{|c|}
\begin{array}{c}
\text { Direct CP } \\
\text { violation }
\end{array} \\
\hline
\end{array}
$$

Low Energy Effective Theory

- Represent weak interactions by local four-quark
Lagrangian
$\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}$
- $\tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}=(1.543+0.635 i) \times 10^{-3}$
- $V_{q q^{\prime}}$ - CKM matrix elements
- z_{i} and $y_{i}-$ Wilson Coefficients
- Q_{i} - four-quark operators

Local four quark operators

- Current-current operators

$Q_{1} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} u_{\beta}\right)_{V-A}$
$Q_{2} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} u_{\alpha}\right)_{V-A}$
- QCD Penguins

$Q_{3} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A}$
$Q_{4} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A}$
$Q_{5} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}$
$Q_{6} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}$

Physical $\pi \pi$ states - Lellouch-Luscher

- Euclidean $e^{-H t}$ projects onto $\mid \pi \pi(\vec{p}=0)>$
- Use finite-volume quantization.
- Adjust volume so $1^{\text {st }}$ or $2^{\text {nd }}$
 excited state has correct p.
- Include $\pi-\pi$ interactions with leading $1 / L^{3}$ finite-volume correction.
- Requires extracting signal from non-leading large-t behavior:

$$
G(t) \sim c_{0} e^{-E_{0} t}+c_{1} e^{-E_{1} t}
$$

Exploit boundary conditions

- Remove $\pi \pi$ states with $E_{\pi \pi}<M_{K}$ by imposing anti-periodic boundary conditions:

$$
2 \sqrt{3\left(\frac{\pi}{L}\right)^{2}+M_{\pi}^{2}}=M_{K} \rightarrow \mathrm{~L}=5.2 \mathrm{fm}
$$

- $I=2$, Repulsive, $L \rightarrow 5.7 \mathrm{fm}$
- Work with $\pi^{+} \pi^{+}$state, impose anti-periodic BC on d quark
- $\mid \pi^{+} \pi^{+}>$unique, charge-two state, does not mix
- $I=0$, Attractive, $L \rightarrow 4.5 \mathrm{fm}$
- Must distinguish $I=0$ state: $\left|\pi^{+} \pi^{-}\right\rangle-2\left|\pi^{0} \pi^{0}\right\rangle+\left|\pi^{\pi} \pi^{+}\right\rangle$
- Impose G-parity BC, $G=C$ e $\begin{aligned} & i \pi l y\end{aligned} ;[G, \vec{\Gamma}]=0$

Calculation

 of A_{2}
$\Delta I=3 / 2$ - Continuum Results

(M. Lightman, E. Goode T. Janowski)

- Use two large ensembles to remove a^{2} error ($m_{\pi}=135 \mathrm{MeV}$, $\mathrm{L}=5.4 \mathrm{fm}$)
- $48^{3} \times 96,1 / a=1.73 \mathrm{GeV}$
- $64^{3} \times 128,1 / a=2.28 \mathrm{GeV}$
- Continuum results:
- $\operatorname{Re}\left(A_{2}\right)=1.50\left(0.04_{\text {stat }}\right)(0.14)_{\text {syst }} \times 10^{-8} \mathrm{GeV}$
- $\operatorname{Im}\left(A_{2}\right)=-6.99(0.20)_{\text {stat }}(0.84)_{\text {syst }} \times 10^{-13} \mathrm{GeV}$
- Experiment: $\operatorname{Re}\left(A_{2}\right)=1.479(4) 10^{-8} \mathrm{GeV}$
- $E_{\pi \pi} \rightarrow \delta_{2}=-11.6(2.5)(1.2)^{0}$
- [Phys.Rev. D91, 074502 (2015)]

$\Delta I=1 / 2$ Rule
 (Qiu Liu)

Compare A_{2} and $A_{0} / 22.5$

Cancellation in A_{2}

- 50 year puzzle resolved!
- A dynamical QCD effect - no more explanation needed?
[Phys. Rev. Lett. 108 (2012) 141601]

$\Delta I=1 / 2$ Rule
 (Qiu Liu)

Compare A_{2} and $A_{0} / 22.5$

Cancellation in A_{2}

- 50 year puzzle resolved!
- A dynamical QCD effect - no more explanation needed? [Phys. Rev. Lett. 108 (2012) 141601]

Calculation of A_{0} and ε^{\prime}

Overview of calculation (Chris Kelly and Daiqian Zhang)

- Use $32^{3} \times 64$ ensemble
$-1 / a=1.3784(68) \mathrm{GeV}, L=4.53 \mathrm{fm}$.
- G-parity boundary condition in 3 directions
- 216 configurations separated by 4 time units
- 900 low modes for all-to-all propagators
- Solve for $\pi \pi$ and kaon sources on each of 64 time slices
- Achieve essentially physical kinematics:
- $M_{\pi}=143.1(2.0)$
- $M_{K}=490.6(2.2) \mathrm{MeV}$
- $E_{\pi \pi}=498(11) \mathrm{MeV}$

$\Delta I=1 / 2 K \rightarrow \pi \pi-$ above threshold (Chris Kelly \& Daiqian Zhang)

- Use G-parity BC to obtain $p_{\pi}=205 \mathrm{MeV}$ (Changhoan Kim, hep-lat/0210003)
$-G=C e^{i \pi / y}$
- Non-trivial: $\binom{u}{d} \rightarrow\binom{\bar{d}}{-\bar{u}}$
- Gauge fields obey C BC

- Extra $I=1 / 2$, s^{\prime} quark adds $e^{-m_{K} L}$ error
- Must take non-local square root of $s-s^{\prime}$ determinant.
- Tests: f_{K} and B_{K} correct within errors.

$I=0, \pi \pi-\pi \pi$ correlator

- Determine normalization of $\pi \pi$ interpolating operator
- Determine energy of finite volume, $I=0, \pi \pi$ state: $E_{\pi \pi}=498(11) \mathrm{MeV}$
- Determine $I=0 \pi \pi$ phase shift: $\delta_{0}=23.8(4.9)(2.2)^{\circ}$
- Dispersion theory result: $\delta_{0}=38.0(1.3)^{\circ}$ [G. Colangelo]

$\Delta l=1 / 2 K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_{W} and $\pi \pi$ operator.
- Show data for all $K-H_{W}$ separations $t_{Q}-t_{K} \geq 6$ and $t_{\pi \pi}-t_{K}=10,12,14,16$ and 18.
- Fit correlators with $t_{\pi \pi}-t_{Q} \geq 4$
- Obtain consistent results for $t_{\pi \pi}-t_{Q} \geq 3$ or 5

Systematic errors

Description	Error
Operator renormalization	15%
Wilson coefficients	12%
Finite lattice spacing	12%
Lellouch-Luscher factor	11%
Finite volume	7%
Parametric errors	5%
Excited states	5%
Unphysical kinematics	3%
Total	27%

Results

Determine the complex $\Delta I=1 / 2$ amplitude A_{0}

$$
\begin{aligned}
& \operatorname{Re}\left(A_{0}\right)=\left(4.66 \pm 1.00_{\text {stat }} \pm 1.26_{\text {sys }}\right) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Expt:} \quad(3.3201 \pm 0.0018) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im}\left(A_{0}\right)=\left(-1.90 \pm 1.23_{\text {stat }} \pm 1.08_{\text {sys }}\right) \times 10^{-11} \mathrm{GeV}
\end{aligned}
$$

Calculate $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)$:
$\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=\left(1.38 \pm 5.15_{\text {stat }} \pm 4.59_{\text {sys }}\right) \times 10^{-4}$
Expt.: $(16.6 \pm 2.3) \times 10^{-4}$
2.1σ difference
[Phys. Rev. Lett. 115 (2015) 212001]

Extend and improve calculation

 (Chris Kelly and Tianle Wang)\checkmark - Increase statistics: $216 \rightarrow 1400$ configs.

- Reduce statistical errors
- Allow in depth study of systematic errors
\checkmark - Study operators neglected in our NPR implementation
$\checkmark \quad$ Use step-scaling to allow perturbative matching at a higher energy
- Use an expanded set of $\pi \pi$ operators
(- Use X-space NPR to cross charm) threshold (Masaaki Tomii).

Add E\&M corrections

(Xu Feng)

- Avoid QED ${ }_{\mathrm{L}}$, instead use:
- Use

$$
V_{T}(r)=\left\{\begin{array}{cc}
\frac{e^{2}}{r} & r \leq R_{T} \\
0 & r>R_{T}
\end{array}\right.
$$

- Choose $R_{\text {strong }}<R_{T}<L / 2$

- Hasen-Sharpe two-channel, finite-volume quantization/amplitude correction can be employed.
- Missing long-distance effects, including $\eta \ln (2 k r)$ term cancel in the ratios η_{+-}, η_{00} or ε^{\prime}

$$
\begin{aligned}
& \eta_{+-} \equiv \frac{{ }^{\text {out }}\left\langle(\pi \pi)_{+-}^{\gamma}\right| H_{W}\left|K_{L}\right\rangle}{\text { out }\left\langle(\pi \pi)_{+-}^{\gamma}\right| H_{W}\left|K_{S}\right\rangle} \quad \eta_{00} \equiv \frac{{ }^{\text {out }}\left\langle(\pi \pi)_{00}^{\gamma}\right| H_{W}\left|K_{L}\right\rangle}{\text { out }\left\langle(\pi \pi)_{00}^{\gamma}\right| H_{W}\left|K_{S}\right\rangle} \\
& \epsilon^{\prime}=\frac{1}{3}\left(\eta_{+-}-\eta_{00}\right)=\frac{\sin 2 \theta}{\sin 2 \theta^{\gamma}} \frac{i e^{i\left(\delta_{2}^{\gamma}-\delta_{0}^{\gamma}\right)}}{\sqrt{2}} \frac{\operatorname{Re} \boldsymbol{A}_{2}^{\gamma}}{\operatorname{Re} \boldsymbol{A}_{0}^{\gamma}}\left(\frac{\operatorname{Im} A_{2}^{\gamma}}{\operatorname{Re} A_{2}^{\gamma}}-\frac{\operatorname{Im} A_{0}^{\gamma}}{\operatorname{Re} A_{0}^{\gamma}}\right)
\end{aligned}
$$

$K^{0}-\overline{K^{0}}$ mixing $\Delta M_{K} \& \varepsilon_{K}$

$K^{0}-\overline{K^{0}}$ Mixing

- CP conserving: $p \leq m_{c}$

$$
m_{K_{S}}-m_{K_{L}}=2 \operatorname{Re}\left\{M_{0 \overline{0}}\right\}
$$

$K^{0}-\overline{K^{0}}$ Mixing

- $\Delta S=1$ weak decay allows K^{0} and $\overline{K^{0}}$ to decay to the same $\pi-\pi$ state
- Resulting mixing described by WignerWeisskopf:

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}^{0}}=\left\{\left(\begin{array}{cc}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{00}} & M_{\overline{00}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{cc}
\Gamma_{00} & \Gamma_{0 \overline{0}} \\
\Gamma_{\overline{0} 0} & \Gamma_{\overline{00}}
\end{array}\right)\right\}\binom{K^{0}}{\bar{K}^{0}}
$$

where

$$
\begin{aligned}
& \Gamma_{i j}=2 \pi \sum_{\alpha} \int_{2 m_{T}}^{\infty} d E\langle i| H_{W}|\alpha(E)\rangle\langle\alpha(E)| H_{W}|j\rangle \gamma\left(E-m_{K}\right) \\
& M_{i j}=\sum_{\alpha} \mathcal{P} \int_{2 m_{\pi}}^{\infty} d E \frac{\langle i| H_{W}|\alpha(E)\rangle\langle\alpha(E)| H_{W}|j\rangle}{m_{K}-E}
\end{aligned}
$$

Lattice Version

- Evaluate standard, Euclidean, $2^{\text {nd }}$ order $\overline{K^{0}}-K^{0}$ amplitude:
$\mathcal{A}=\langle 0| T\left(K^{0}\left(t_{f}\right) \frac{1}{2} \int_{t_{a}}^{t_{b}} d t_{2} \int_{t_{a}}^{t_{b}} d t_{1} H_{W}\left(t_{2}\right) H_{W}\left(t_{1}\right) K^{0 i}\left(t_{i}\right)\right)|0\rangle$

Interpret Lattice Result

$$
\begin{aligned}
& \text { (1.) (2.) } \\
& \mathcal{A}=N_{R_{R}^{2}}^{2} e^{\left.-M_{K}(t)-t\right)} \sum_{n} \frac{\left\langle\bar{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}\left(-\left(t_{b}-t_{a}\right)-\frac{1}{M_{K}-E_{n}}\right. \\
& \text { 1. } \Delta m_{K}{ }^{\mathrm{FV}} \\
& \left.+\frac{e^{\left(M_{K}-E_{n}\right)\left(t_{b}-t_{a}\right)}}{M_{K}-E_{n}}\right)
\end{aligned}
$$

2. Uninteresting constant
3. Growing or decreasing exponential: states with $E_{n}<m_{K}$ must be removed!

- Finite volume correction:

$$
\left.M_{K_{L}}-M_{K_{S}}=2 \sum_{n} \frac{\left\langle\bar{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}-\left.2 \frac{d\left(\phi+\delta_{0}\right)}{d k}\right|_{m_{K}}\left|\left\langle n_{0}\right| H_{W}\right| K^{0}\right\rangle\left.\left.\right|^{2} \cot \left(\phi+\delta_{0}\right)\right|_{M_{K}}
$$

(N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda, arXiv:1504.01170)

$K_{L}-K_{S}$ mass

difference

$K_{L}-K_{S}$ mass difference

- $M_{K_{L}}-M_{K_{S}}=3.483(6) \times 10^{-12} \mathrm{MeV}$: sensitive to 1000 TeV scale physics.
- Perturbative result integrates out charm and shows poor convergence (Brod and Gorbahn).
- Finite when charm quark is included (GIM).

JLab Ub/U//I2U17

ΔM_{K} Preliminary Results (Ziyuan Bai)

	$\Delta \boldsymbol{M}_{\boldsymbol{K}} \times 10^{+12} \mathrm{MeV}$
Types 1-4	$5.8(1.7)$
Types 1-2	$-1.1(1.2)$
Δ_{FV}	$0.27(18)$
Expt.	$3.483(6)$

- $m_{c}{ }^{\overline{M S}}(2 \mathrm{GeV}) \sim 1.2 \mathrm{MeV}, M_{\pi}=138 \mathrm{MeV}$
- $64^{3} \times 128,1 / a=2.36 \mathrm{GeV}$
- Uncorrelated fit: $10 \leq T \leq 20$
- FV correction $\sim 5 \%$
- a^{2} errors 5-10\%

Long distance part of ε_{K}

$K^{0}-\bar{K}^{0}$ mixing: Indirect CP Violation

- CP violating: $p \sim m_{t} \quad \epsilon_{K}=\frac{i}{2}\left\{\frac{\operatorname{Im} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Im} \Gamma_{\overline{0}}}{\operatorname{Re} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Re} \Gamma_{0 \overline{0}}}\right\}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}$

- Where $\left|\varepsilon_{K}\right|=(2.228 \pm 0.011) \times 10^{-3}$
- Short distance prediction [W.Lee, et al. 1710.06614]: $\left|\varepsilon_{K}\right|=1.58 \pm 0.16 \quad\left(V_{c b}\right.$ dominant error)
- Long distance estimate [Buras, et al. 1002.3612] : results in 6\% reduction

$\Delta S=1$, four-flavor operators (Ziyuan Bai)

- Choose appropriate $N_{f}=4$ effective Hamiltonian:

$$
\left.\begin{array}{rl}
H_{W}^{\Delta S=1 ; \Delta C= \pm 1,0}= & \frac{G_{F}}{\sqrt{2}}\left\{\sum_{q, q^{\prime}=u, c} V_{q^{\prime}, s}^{*} V_{q d} \sum_{i=1}^{2} C_{i} Q_{i}^{q^{\prime} q}+V_{t s}^{*} V_{t d} \sum_{i=3}^{6} C_{i} Q_{i}\right\} \\
Q_{1}^{q^{\prime} q} & =\left(\bar{s}_{i} q_{j}^{\prime}\right)_{V-A}\left(\bar{q}_{j} d_{i}\right)_{V-A} \\
Q_{2}^{q^{\prime} q} & =\left(\bar{s}_{i} q_{i}^{\prime}\right)_{V-A}\left(\bar{q}_{j} d_{j}\right)_{V-A} \\
Q_{3} & =\left(\bar{s}_{i} d_{i}\right)_{V-A} \sum_{q=u, d, s, c}\left(\bar{q}_{j} q_{j}\right)_{V-A} \\
Q_{4} & =\left(\bar{s}_{i} d_{j}\right)_{V-A} \sum_{q=u, d, s, c}\left(\bar{q}_{j} q_{i}\right)_{V-A} \\
Q_{5} & =\left(\bar{s}_{i} d_{i}\right)_{V-A} \sum_{q=u, d, s, c}\left(\bar{q}_{j} q_{j}\right)_{V+A} \\
Q_{6} & =\left(\bar{s}_{i} d_{j}\right)_{V-A} \sum_{q=u, d, s, c}\left(\bar{q}_{j} q_{i}\right)_{V+A}
\end{array}\right] \text { Qurrent x current }
$$

Diagrams for $\lambda_{t} \lambda_{u}$ contribution to ε_{K} (Ziyuan Bai)

- Identify five types of diagrams
type 1

type 3
type 4

New $\Delta S=2$ counter term (Ziyuan Bai)

- Subtract $X_{i j}(\mu)\left(\bar{\gamma} \gamma^{\nu}\left(1-\gamma^{5}\right) d\right)\left(\bar{s} \gamma^{\nu}\left(1-\gamma^{5}\right) d\right)$ to make off-shell Greens function vanish at $p_{i}^{2}=\mu_{R I}{ }^{2}$
- Define infrared-safe Rome-Southampton normalization for bi-local operator.

Progress toward long-distance part of ε_{K} (Ziyuan Bai)

- Compute NLO (one-loop) conversion from bilocal RI to MS
- Preliminary

$\mu_{R I}$	$\operatorname{Im} M_{\overline{0} 0}^{u t, R I}$	$\operatorname{Im} M_{\overline{0} 0}^{u t, R I \rightarrow \overline{M S}}$	$\operatorname{Im} M_{\overline{0} 0}^{u t, l d c o r r}$	$\epsilon_{K}^{u t, l d c o r r}$
1.54 GeV	$-0.746(0.389)$	0.282	$-0.464(0.389)$	$0.0911(0.076)$
1.92 GeV	$-0.912(0.389)$	0.384	$-0.527(0.389)$	$0.104(0.076)$
2.11 GeV	$-0.986(0.389)$	0.434	$-0.551(0.389)$	$0.108(0.076)$
2.31 GeV	$-1.050(0.390)$	0.486	$-0.565(0.390)$	$0.111(0.077)$
2.56 GeV	$-1.115(0.390)$	0.548	$-0.568(0.390)$	$0.111(0.077)$

- $\left|\varepsilon_{K}\right|=2.228(11) \times 10^{-3}$ expt.

Rare Kaon Decays $K^{+} \rightarrow \pi^{+} v \bar{v}$

$$
\begin{gathered}
K^{+} \rightarrow \pi^{+} v \bar{v} \\
(\text { Xu Feng })
\end{gathered}
$$

- Flavor changing neutral current
- Allowed in the Standard Model only in second order
- Short distance dominated

- Target of NA62 at CERN
- 100 events in 2-3 years
- Test Standard Model prediction at 10\% level
- Use lattice for long distance
 part: 5\% effect?

$K^{+} \rightarrow \pi^{+} v \bar{v}$ in the Standard Model

- Factors of $\frac{1}{M_{W}^{4}}$ or $\frac{1}{M_{W}^{2} M_{Z}^{2}}$ force the largest contribution to come from short distance

Pert. Th. $\left\{\begin{array}{l}\left.\cdot \begin{array}{l}\text { Top quark contribution largest. } \\ - \\ G I M\end{array}\right)\end{array}\right.$
Lattice $\left\{\bullet\right.$ Long distance part $\sim \frac{m_{c}^{2}}{M_{W}^{4}}$

$K^{+} \rightarrow \pi^{+} v \bar{v}$ at long distance

JLab 05/07/2017

$H_{\text {eff }}$ for $K^{+} \rightarrow \pi^{+} \nu \bar{v}$

$H_{\text {eff }}$ for $K^{+} \rightarrow \pi^{+} v \bar{v}$

$H_{\text {eff }}$ for $K^{+} \rightarrow \pi^{+} \nu \bar{v}$

JLab 05/07/2017

$K^{+} \rightarrow \pi^{+} v \bar{v}: 2^{\text {nd }}$ order effective theory

$K^{+} \rightarrow \pi^{+} \nu \bar{v}$: Effect of bilocal operator

$$
\mathcal{A}\left(K^{+} \rightarrow \pi^{+} \nu \bar{v}\right)=\left\langle\pi^{+} \nu \bar{v}\right| T\left\{\int d^{4} x \mathcal{H}_{\text {eff }}^{\prime}(x) \mathcal{H}_{\text {eft }}^{\prime}(0)\right\}+O_{0}(0)\left|K^{+}\right\rangle
$$

- Standard continuum treatment
- Replace bilocal term with (perturbative coefficient) x (local operator)
- Lattice treatment: Evaluate $H_{\text {eff }}(x) H_{\text {eff }}(0)$ product
- Revolve logarithmic divergence as $x \rightarrow 0$
- Deal with intermediate states with $E \leq M_{K}$
- Exponential Euclidean time dependence
- Power-law finite volume corrections
- Exploit methods from $M_{K L}-M_{K S}$ calculation

Exploratory Lattice Calculation

- $16^{3} \times 32$, RBC-UKQCD ensemble
$-2+1$ flavor DWF, $1 / a=1.73 \mathrm{GeV}$
$-M_{\pi}=420 \mathrm{MeV}, M_{K}=540 \mathrm{MeV}$,
- $m_{c}(2 \mathrm{GeV})^{\overline{M S}}=863 \mathrm{GeV}$
- Calculate all diagrams
- 800 configurations
- Low-mode deflation with 100 modes
- Place sources on 32 time slices
- Treat internal lepton as an overlap fermion moving in an ∞ time extent.

Compare lattice and pertubative:

- Decay rate is short distance dominated:

$$
\mathrm{Br}=\kappa_{+}\left(1+\Delta_{\mathrm{EM}}\right)[\underbrace{\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{4}} X\left(x_{t}\right)\right.}_{0.270 \times 1.481})^{2}+(\underbrace{\frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}}_{-0.974 \times 0.365}+\underbrace{\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X\left(x_{t}\right)}_{-0.533 \times 1.481})^{2}]
$$

- Charm contribution is less than top but is significant (removing charm lowers BR by 50\%).
- Result for P_{c} :
- Perturbation theory [Buras, et al.,1503.02693]: $\quad P_{c}=0.365(12)$
- LD correction [Isidori, et al., hep-ph/0503107]: $\delta P_{c u}=0.04(2)$
(estimate of non-perturbative and $\left(\Lambda_{\mathrm{QCD}} / m_{c}\right)^{2}$ effects)
- Exploratory lattice result:
$P_{c}\left(\mu_{\overline{\mathrm{MS}}}\right)-P^{\mathrm{PT}}\left(\mu_{\overline{\mathrm{MS}}}\right)=0.0040(\pm 13)_{\text {stat }}(\pm 32)_{\text {scale }}(-45)_{\mathrm{FV}}$ (lattice evaluation of bilocal matrix element minus PT estimate)

Details of W-W - Z-exchange cancellation

JLab 05/07/2017

Outlook

- Lattice QCD is now capable of $1^{\text {stt-principles }}$ calculation of:
- $K \rightarrow \pi \pi, \Delta I=3 / 2$ and $1 / 2, \varepsilon^{\prime} / \varepsilon$.
- $M_{K L}-M_{K S}$ and long distance contribution to ε.
- Long distance parts of $K \rightarrow \pi \bar{I} I, K \rightarrow \pi \bar{v} v$.
- Physical quark mass calculations underway:
- $M_{K L}-M_{K S}$
- $K^{+} \rightarrow \pi^{+} \bar{v} v$
- With the new CORAL computers (Summit at ORNL) can perform $a^{2} \rightarrow 0$ limit with charm.

