Light-cone PDFs from Lattice QCD

Martha Constantinou

JLab Theory Seminar April 30, 2018

In collaboration with

- \star C. Alexandrou^{1,2}
- ★ K. Cichy³
- ★ K. Hadjiyiannakou²
- ★ K. Jansen⁵
- ★ H. Panagopoulos¹
- ★ A. Scapellato¹
- ★ F. Steffens⁵

Based on:

- M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506, [arXiv:1705.11193]
- C. Alexandrou et al., Nucl. Phys. B 923 (2017) 394 (Frontiers Article), [arXiv:1706.00265]
- C. Alexandrou et al., [arXiv:1803.02685]

- 1. University of Cyprus
- 2. Cyprus Institute
- 3. Adam Mickiewicz University
- 4. Temple University
- 5. DESY Zeuthen

OUTLINE OF TALK

- A. Introduction to quasi-PDFs
- B. quasi-PDFs in Lattice QCD
- C. Lattice Matrix Elements
- D. Renormalization
- E. Towards light-cone PDFs
- F. Discussion

Introduction

to quasi-PDFs

▲□▶▲□▶▲三▶▲三▶ 三 のへで

Probing Nucleon Structure

Parton Distribution Functions

- ★ Universal quantities for the description of the nucleon's structure (non-perturbative nature)
- ★ 1-dimensional picture of nucleon structure
- ★ Distribution functions are necessary for the analysis of Deep inelastic scattering data
- Parametrized in terms of off-forward matrix of light-cone operators
- ★ Not directly accessible in a euclidean lattice

PDFs on the Lattice

★ Moments of PDFs easily accessible in lattice QCD

$$f^n = \int_{-1}^1 dx \, x^n f(x)$$

- one relies on OPE to reconstruct the PDFs
- reconstruction difficult task:
 - \Rightarrow signal-to-noise is bad for higher moments
 - ⇒ n > 3: operator mixing (unavoidable!)

PDFs on the Lattice

★ Moments of PDFs easily accessible in lattice QCD

$$f^n = \int_{-1}^1 dx \, x^n f(x)$$

- one relies on OPE to reconstruct the PDFs
- reconstruction difficult task:
 - \Rightarrow signal-to-noise is bad for higher moments
 - ⇒ n > 3: operator mixing (unavoidable!)

Alternative approaches to access PDFs:
 Purely spatial matrix elements that can be matched to PDFs

- quasi-PDFs
- pseudo-PDFs
- good lattice cross-sections

[Y-Q Ma&J. Qiu, arXiv:1709.03018]

in Lattice QCD

quasi-PDFs

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Access of PDFs on a Euclidean Lattice

Novel direct approach: [X.Ji, Phys. Rev. Lett. 110 (2013) 262002, arXiv:1305.1539]

 computation of quasi-PDF: matrix elements (ME) of spatial operators

$$\tilde{q}(x,\mu^2,P_3) = \int \frac{dz}{4\pi} e^{-i\,x\,P_3\,z} \langle N(P_3) | \bar{\Psi}(z) \,\gamma^z \,\mathcal{A}(z,0) \Psi(0) | N(P_3) \rangle_{\mu^2}$$

- $\mathcal{A}(z,0)$: Wilson line ($0 \rightarrow z$)
- z: distance in any spatial direction

Nucleon is boosted with momentum in spatial direction (z)

PDFs on the Lattice

Contact with light-cone PDFs:

★ Difference between quasi-PDFs and light-cone PDFs:

★ Matching procedure in large momentum EFT (LaMET) to relate quasi-PDFs to light-cone PDFs (provided that momenta are finite but feasibly large for lattice)

PDFs on the Lattice

Contact with light-cone PDFs:

- ★ Difference between quasi-PDFs and light-cone PDFs:
 - $\mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{P_3^2}, \frac{m_N^2}{P_3^2}\right)$
- ★ Matching procedure in large momentum EFT (LaMET) to relate quasi-PDFs to light-cone PDFs (provided that momenta are finite but feasibly large for lattice)

Exploratory studies of various aspects are maturing:

[X. Xiong et al., arXiv:1310.7471], [H-W. Lin et al., arXiv:1402.1462], [Y. Ma et al., arXiv:1404.6860],
[Y-Q. Ma et al., arXiv:1412.2688], [C. Alexandrou et al., arXiv:1504.07455], [H.-N. Li et al., arXiv:1602.07575],
[J.-W. Chen et al., arXiv:1603.06664], [J.-W. Chen et al., arXiv:1609.08102], [T. Ishikawa et al., arXiv:1609.02018],
[C. Alexandrou et al., arXiv:1603.06664], [J.-W. Chen et al., arXiv:1609.08102], [T. Ishikawa et al., arXiv:1609.02018],
[C. Alexandrou et al., arXiv:1702.05775], [R. Briceno et al., arXiv:1602.01584], [A. Radyushkin et al., arXiv:1702.01726],
[C. Carlson et al., arXiv:1702.05775], [R. Briceno et al., arXiv:1706.01295], [X. Ji et al., arXiv:1706.00265],
[J-W Chen et al., arXiv:1706.05373], [T. Ishikawa et al., arXiv:1706.01295], [X. Ji et al., arXiv:1707.07152],
[Y-Q Ma et al., arXiv:1709.03018], [I. Stewart et al., arXiv:1709.04933], [J. Karpie et al., arXiv:1710.08288,
[J-W Chen et al., arXiv:17171.07858], [C.Alexandrou et al., arXiv:1803.04393], [J. Karpie et al., arXiv:1801.03917],

A multi-component task:

1. Calculation of 2pt- and 3pt-correlators (C^{2pt}, C^{3pt}) dependence on : length of Wilson line z and nucleon momentum P

A multi-component task:

1. Calculation of 2pt- and 3pt-correlators (C^{2pt}, C^{3pt}) dependence on : length of Wilson line z and nucleon momentum P

2. Construction of ratios at zero momentum transfer

$$\frac{C^{3pt}(t,\tau,0,\vec{P})}{C^{2pt}(t,0,\vec{P})} \stackrel{0 <<\tau << t}{=} h_0(P_3,z)$$

A multi-component task:

3. Renormalization

complex function, presence of mixing (certain cases)

A multi-component task:

- 3. Renormalization complex function, presence of mixing (certain cases)
- 4. Fourier transform to momentum space (x)

$$\tilde{q}(x,\mu^2,P_3) = \int \frac{dz}{4\pi} e^{ixP_3 z} \langle N | \overline{\psi}(z) \Gamma \mathcal{A}(z,0) \psi(0) | N \rangle$$

A multi-component task:

- 3. Renormalization complex function, presence of mixing (certain cases)
- 4. Fourier transform to momentum space (x)

 $\tilde{q}(x,\mu^2,P_3) = \int \frac{dz}{4\pi} e^{ixP_3 z} \langle N | \overline{\psi}(z) \Gamma \mathcal{A}(z,0) \psi(0) | N \rangle$

5. Matching to light-cone PDFs (LaMET)

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} C\left(\xi, \frac{\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}, \mu, P_3\right)$$

C: matching kernel

A multi-component task:

- 3. Renormalization complex function, presence of mixing (certain cases)
- 4. Fourier transform to momentum space (x)

 $\tilde{q}(x,\mu^2,P_3) = \int \frac{dz}{4\pi} e^{ixP_3 z} \langle N | \overline{\psi}(z) \Gamma \mathcal{A}(z,0) \psi(0) | N \rangle$

5. Matching to light-cone PDFs (LaMET)

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} C\left(\xi, \frac{\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}, \mu, P_3\right)$$

C: matching kernel

6. Target mass corrections elimination of residual m_N/P_3 dependence

Lattice

Matrix Elements

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Parameters of Calculation

[C. Alexandrou et al. (ETMC), arXiv:1803.02685]

★ $N_f=2$ Twister Mass fermion action with clover term

★ Ensemble parameters:

$\beta = 2.10$,	$c_{\rm SW} = 1.57751, a = 0.0938(3)(2) \text{ fm}$
$48^3 \times 96$	$a\mu = 0.0009$ $m_N = 0.932(4) \text{ GeV}$
$L=4.5~{ m fm}$	$m_{\pi} = 0.1304(4) \text{ GeV} m_{\pi}L = 2.98(1$

Parameters of Calculation

[C. Alexandrou et al. (ETMC), arXiv:1803.02685]

★ $N_f=2$ Twister Mass fermion action with clover term

★ Ensemble parameters:

$\beta = 2.10$,	$c_{\rm SW} = 1.57751, a = 0.0938(3)(2) \text{ fm}$
$48^3 \times 96$	$a\mu = 0.0009$ $m_N = 0.932(4)$ GeV
$L=4.5~{\rm fm}$	$m_{\pi} = 0.1304(4) \text{ GeV} m_{\pi}L = 2.98(1)$

★ Nucleon Momentum & Measurements

$P = \frac{6\pi}{L}$ (0.83 GeV)			$P = \frac{8\pi}{L}$ (1.11 GeV)			$P = \frac{10\pi}{L}$ (1.38 GeV)		
Ins.	$N_{\rm conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$
γ_3	100	9600	γ_3	425	38250	γ_3	655	58950
γ_0	50	4800	γ_0	425	38250	γ_0	655	58950
$\gamma_5\gamma_3$	65	6240	$\gamma_5\gamma_3$	425	38250	$\gamma_5\gamma_3$	655	58950

Parameters of Calculation

[C. Alexandrou et al. (ETMC), arXiv:1803.02685]

★ $N_f=2$ Twister Mass fermion action with clover term

★ Ensemble parameters:

$\beta = 2.10$,	$c_{\rm SW} = 1.57751, a = 0.0938(3)(2) \text{ fm}$
$48^3 \times 96$	$a\mu = 0.0009$ $m_N = 0.932(4)$ GeV
$L=4.5~{\rm fm}$	$m_{\pi} = 0.1304(4) \text{ GeV} m_{\pi}L = 2.98(1)$

★ Nucleon Momentum & Measurements

$P = \frac{6\pi}{L}$ (0.83 GeV)			$P = \frac{8\pi}{L}$ (1.11 GeV)			$P = \frac{10\pi}{L}$ (1.38 GeV)		
Ins.	$N_{\rm conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$
γ_3	100	9600	γ_3	425	38250	γ_3	655	58950
γ_0	50	4800	γ_0	425	38250	γ_0	655	58950
$\gamma_5\gamma_3$	65	6240	$\gamma_5\gamma_3$	425	38250	$\gamma_5\gamma_3$	655	58950

Excited states investigation:

 $T_{\rm sink}/a = 8, 10, 12 \ (T_{\rm sink} = 0.75, 0.094, 1.13 {\rm fm})$

Set up of calculation

Signal-to-noise problem must be tamed to reliably investigate systematic uncertainties

Set up of calculation

Signal-to-noise problem must be tamed to reliably investigate systematic uncertainties

★ Statistics:

- 6 directions of Wilson line: $\pm x, \pm y, \pm z$ with momentum boosted in same direction
- 16 source positions using (CAA):
 - \Rightarrow 1 high precision (HP) inversion
 - \Rightarrow 16 low precision (LP) inversions

[E. Shintani et al., Phys. Rev. D91, 114511 (2015)]

Set up of calculation

Signal-to-noise problem must be tamed to reliably investigate systematic uncertainties

★ Statistics:

- 6 directions of Wilson line: $\pm x, \pm y, \pm z$ with momentum boosted in same direction
- 16 source positions using (CAA):
 ⇒ 1 high precision (HP) inversion
 - \Rightarrow 16 low precision (LP) inversions

[E. Shintani et al., Phys. Rev. D91, 114511 (2015)]

★ Signal improvement:

- Stout Smearing: 0, 5, 10, 15, 20 steps
- Momentum smearing: tuning for each momentum P

Systematic uncertainties

Laborious effort to eliminate uncertainties

- ★ Cut-off Effects due to finite lattice spacing
- ★ Finite Volume Effects
- ★ Contamination from other hadron states
- ★ Chiral extrapolation for unphysical pion mass
- ★ Renormalization and mixing

Systematic uncertainties

Laborious effort to eliminate uncertainties

- ★ Cut-off Effects due to finite lattice spacing
- ★ Finite Volume Effects
- ★ Contamination from other hadron states
- ★ Chiral extrapolation for unphysical pion mass
- ★ Renormalization and mixing

Discussed in this talk

$$S_{\text{mom}}[\psi(x)] = \frac{1}{1+6\alpha} \left(\psi(x) + \alpha \sum_{j=\pm 1}^{\pm 3} U_j(x) e^{i\xi \hat{j}} \psi(x+\hat{j}) \right)$$

[G. Bali et al., Phys. Rev. D93, 094515 (2016)]

★ Momentum smearing helps reach higher momenta

[G. Bali et al., Phys. Rev. D93, 094515 (2016)]

- ★ Momentum smearing helps reach higher momenta
- ★ BUT: limitations in max momentum due to comput. cost

[G. Bali et al., Phys. Rev. D93, 094515 (2016)]

★ Momentum smearing helps reach higher momenta

★ BUT: limitations in max momentum due to comput. cost

Conclusion:

Reliable results (T_{sink} >1fm) limit the momentum we can reach

★ Smearing improves the signal-to-noise ratio

$P=6\pi/L$

- ★ Smearing suppresses linear divergence
- ★ Application of stout smearing with 0, 5, 10, 15, 20 steps

Excited States

$T_{\rm sink} \sim 0.75 {\rm fm}$

Excited states contamination are worse for large momenta

Excited States

$T_{\rm sink} \sim 1.13 {\rm fm}$

Excited states contamination are worse for large momenta

Excited States

★ Real and imaginary part of ME affected differently

Excited States

Systematic uncertainties in a nutshell

 Excited states uncontrolled for source-sink separations below 1fm

Excited states contamination worse for large momenta

★ Exponential signal-to-noise problem difficult to tackle

2-state fit and summation method: alternative analysis techniques

similar accuracy between different source-sink separations vital to eliminate bias from the small $T_{\rm sink}$ values

D Renormalization of quasi-PDFs

Renormalization

Critical part of calculation

- ★ elimination of power and logarithmic divergences and dependence on regulator
- ★ identification and elimination of mixing
- ★ Comparison with phenomenology becomes a real possibility
- M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506, [arXiv:1705.11193]
- C. Alexandrou, et al., Nucl. Phys. B 923 (2017) 394 (Frontier Article), [arXiv:1706.00265]
- J. Chen, et al., Phys. Rev. D 97, (2018) 014505, [arXiv:1706.01295]

Renormalization scheme

- \star Rl'-type
- \star Use 1-loop conversion factor to convert to the $\overline{
 m MS}$ at 2 GeV
- ★ Also applicable for cases of mixing

Mixing pattern (based on PT)

Depends on the relation between the current & Wilson line direction

Non-perturbative Renormalization

★ same divergence in vertex function and nucleon ME

No mixing: helicity, transversity, unpolarized (γ_0)

$$Z_{\mathcal{O}}(z) = \frac{Z_q}{\mathcal{V}_{\mathcal{O}}(z)}, \qquad \mathcal{V}_{\mathcal{O}} = \frac{\mathrm{Tr}}{12} \left[\mathcal{V}(p) \left(\mathcal{V}^{\mathrm{Born}}(p) \right)^{-1} \right] \Big|_{p=\bar{\mu}}$$

★ Z_q : fermion field renormalization ★ Z_Q includes the linear divergence

Mixing: Unpolarized (γ_3 **)**

$$\begin{pmatrix} \mathcal{O}_V^R(P_3, z) \\ \mathcal{O}_S^R(P_3, z) \end{pmatrix} = \hat{Z}(z) \cdot \begin{pmatrix} \mathcal{O}_V(P_3, z) \\ \mathcal{O}_S(P_3, z) \end{pmatrix}, \qquad Z_q^{-1} \hat{Z}(z) \hat{\mathcal{V}}(p, z) \Big|_{p=\bar{\mu}} = \hat{1}$$

 $h_V^R(P_3, z) = Z_{VV}(z) \ h_V(P_3, z) + Z_{VS}(z) \ h_S(P_3, z)$

- ★ 1-loop perturbative calculation in Dimensional Regularization
- \star Evaluation of conversion factor to $\overline{\mathrm{MS}}$
- ★ Conversion factor: a complex function
- ★ Necessary ingredient for non-perturbative renormalization

Numerical Results

- **★** Twisted Mass fermions, $m_{\pi}=375 \text{MeV}$, $32^3 \times 64$, HYP smearing
- **\star** Conversion & Evolution to $\overline{\mathrm{MS}}$ (2GeV)

(Perturbatively)

Numerical Results

- **★** Twisted Mass fermions, $m_{\pi} = 375 \text{MeV}$, $32^3 \times 64$, HYP smearing
- \star Conversion & Evolution to $\overline{\mathrm{MS}}$ (2GeV)

(Perturbatively)

★ $Im[Z_{\mathcal{O}}^{\overline{\text{MS}}}] < Im[Z_{\mathcal{O}}^{RI'}]$ (expected from pert. theory)

Systematic uncertainties

Ultimate goal: Reliability in final estimates

Systematic uncertainties

Ultimate goal: Reliability in final estimates

Systematic uncertainties need to be addresses

 Uncertainties in Z-factors may have important implications on the final estimates for PDFs

Systematic uncertainties

Evolution to 2 GeV in RI' and $\overline{\rm MS}$ schemes: slope in R reveals truncation effect in conversion factor

Refining Renormalization

★ Improvement Technique:

- Computation of 1-loop lattice artifacts to $\mathcal{O}(g^2 \, a^\infty)$
- Subtraction of lattice artifacts from non-perturbative estimated

Refining Renormalization

★ Improvement Technique:

- Computation of 1-loop lattice artifacts to \$\mathcal{O}(g^2 a^{\infty})\$
- Subtraction of lattice artifacts from non-perturbative estimated

- ★ Real part significantly improved
- Mild change in imaginary part (expected to change with smearing)
- Behavior might be a consequence of absence of smearing in pert. calculation

Renormalized Matrix Elements

★ Renormalized ME must be independent of stouts steps

Renormalized Matrix Elements

★ Renormalized ME must be independent of stouts steps

Renormalized ME with and without smearing are compatible
 Absence of stout smearing leads to increased noise

Towards

light-cone PDFs

▲□▶▲□▶▲≧▶▲≧▶ ≧ りへで

Upon Fourier Transform of renormarmalized matrix elements

 $P_3 = 1.4 \text{GeV}$

Upon matching of quasi-PDFs

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} C\left(\xi, \frac{\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}, \mu, P_3\right)$$

$$C\left(\xi,\frac{\xi\mu}{xP_{3}}\right) = \delta(1-\xi) + \frac{\alpha_{s}}{2\pi} C_{F} \begin{cases} \left[\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1} + 1 + \frac{3}{2\xi}\right]_{+} & \xi > 1, \\ \left[\frac{1+\xi^{2}}{1-\xi}\ln\frac{x^{2}P_{3}^{2}}{\xi^{2}\mu^{2}}\left(4\xi(1-\xi)\right) - \frac{\xi(1+\xi)}{1-\xi} + 2\iota(1-\xi)\right]_{+} & 0 < \xi < 1, \\ \left[-\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1} - 1 + \frac{3}{2(1-\xi)}\right]_{+} & \xi < 0, \end{cases}$$

[J.W. Chen et al., Nucl. Phys. B911 (2016) 246, arXiv:1603.06664]

$$\gamma_0: \iota=0, \quad \gamma_3/\gamma_5\gamma_3: \iota=1$$

Prescription at ξ =1:

$$\int \frac{d\xi}{|\xi|} \left[C\left(\xi, \frac{\xi\mu}{xP_3}\right) \right]_+ \tilde{q}\left(\frac{x}{\xi}\right) = \int \frac{d\xi}{|\xi|} C\left(\xi, \frac{\xi\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}\right) - \tilde{q}\left(x\right) \int d\xi C\left(\xi, \frac{\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}\right) d\xi C\left(\xi, \frac{\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}\right) - \tilde{q}\left(x\right) \int d\xi C\left(\xi, \frac{\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}\right) d\xi C\left(\xi, \frac{\mu}{xP_3}\right) d\xi C\left(\xi, \frac{\mu}{$$

[C. Alexandrou et al. (ETMC), arXiv:1803.02685]

Upon matching of quasi-PDFs

$$P_3 = 1.4 \text{GeV}$$

- Matched quasi-PDfs have similar behavior with the phenomenological curves
- Last piece missing: target mass corrections (TMC)

Upon target mass corrections

- ★ Finite nucleon momentum ⇒
- ★ Correction is necessary for $m_N/P_3 \neq 0$ (particle number is conserved)

[J.W. Chen et al., Nucl. Phys. B911 (2016) 246, arXiv:1603.06664]

- ★ Increasing momentum approaches the phenomenological fits a saturation of PDFs for $p=8\pi/L$ and $p=10\pi/L$
- \star 0<x<0.5 : Lattice polarized PDF overlap with phenomenology
- **★** Negative x region: anti-quark contribution

Pion Mass Dependence for quasi-PDFs

\star Simulations at physical m_{π} crucial for above conclusions

★ Large pion mass ensembles: Lattice data saturate away from phenomenological curves

Discussion

▲口▶▲舂▶▲≧▶▲≧▶ 差 めんの

DISCUSSION

Great progress over the last years:

- ★ Simulations at the physical point
- \star unpolarized operator that avoid mixing (γ_0)
- ★ Development of non-perturbative renormalization
- ★ Improving matching to light-cone PDFs

DISCUSSION

Great progress over the last years:

- ★ Simulations at the physical point
- \star unpolarized operator that avoid mixing (γ_0)
- ★ Development of non-perturbative renormalization
- ★ Improving matching to light-cone PDFs

Further investigations:

Careful assessment of systematic uncertainties

- ★ Volume effects
- ★ quenching effect (strange and charm)
- ★ continuum limit

DISCUSSION

Great progress over the last years:

- ★ Simulations at the physical point
- \star unpolarized operator that avoid mixing (γ_0)
- ★ Development of non-perturbative renormalization
- ★ Improving matching to light-cone PDFs

Further investigations:

Careful assessment of systematic uncertainties

- ★ Volume effects
- ★ quenching effect (strange and charm)
- ★ continuum limit

Dedicated effort from community

Lattice PDF Workshop, 6-8 April 2018

43

THANK YOU

TMD Topical Collaboration

Grant No. PHY-1714407

BACKUP SLIDES

Numerical Results

- ★ Computation on a variety of scales
- ★ Conversion & Evolution to MS (2GeV) (Perturbatively)
- Extrapolation to eliminate residual dependence on initial scale

Numerical Results

- ★ Computation on a variety of scales
- ★ Conversion & Evolution to MS(2GeV) (Perturbatively)
- Extrapolation to eliminate residual dependence on initial scale

★ Increasing stout steps reduces renormalization

Standard vs. derivative Fourier transform

Standard Fourier transform defining qPDFs:

$$\begin{split} \tilde{q}(x) &= 2P_3 \int_{-z_{\max}}^{z_{\max}} \frac{dz}{4\pi} e^{ixzP_3} h(z) \\ \text{can be rewritten using integration by parts as:} \\ \tilde{q}(x) &= h(z) \frac{e^{ixzP_3}}{2\pi i x} \Big|_{-z_{\max}}^{z_{\max}} - \int_{-z_{\max}}^{z_{\max}} \frac{dz}{2\pi} \frac{e^{ixzP_3}}{ix} h'(z) \end{split}$$

[H.W. Lin et al., arXiv:1708.05301]

Truncation $h(|z| \ge z_{\max}) = 0$: equivalent to neglecting surface term

