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Light ions at EIC: physics objectives
n

� Neutron structure
I flavor decomposition of quark PDFs/GPDs/TMDs
I flavor structure of the nucleon sea
I singlet vs non-singlet QCD evolution, leading/higher-twisteffects

� Bound nucleons in QCD
I medium modification of quark/gluon structure
I QCD origin of short-range nuclear force
I Imaging nuclear bound states

� Coherence and saturation
I interaction of high-energy probe with coherent quark-gluonfields

Dedicated workshop at Ghent last month
https://www.jlab.org/indico/event/246/
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Tagged spectator DIS process with deuteron
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� DIS off a nuclear target with a slow (relative tonucleus c.m.) nucleon detected in the final state
� Control nuclear configuration
� Advantages for the deuteron

I simple NN system, non-nucleonic (∆∆) dofsuppressed
I active nucleon identified
I recoil momentum selects nuclear configuration(medium modifications)
I limited possibilities for nuclear FSI, calculable

� Wealth of possibilities to study (nuclear) QCD dynamics
� Will be possible in a wide kinematic range @ EIC (polarized)
� Suited for colliders: no target material, forward detection, transversepol.fixed target CLAS BONuS limited to recoil momenta ∼ 70 MeV
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Pole extrapolation for on-shell nucleon structure
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� Allows to extract free neutron structure in a
model independent way

I Recoil momentum pR controls off-shellness ofneutron t ′ ≡ t −m2

N
I Free neutron at pole t −m2

N → 0: “on-shellextrapolation”
I Small deuteron binding energy results in smallextrapolation length
I Eliminates nuclear binding and FSI effects

[Sargsian,Strikman PLB '05]

� D-wave suppressed at on-shell point → neutron
∼ 100% polarized

� Precise measurements of neutron (spin)structure at an EIC
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Outline
� Theoretical Formalism

I General expression of SIDIS for a polarized spin 1 target
I Tagged spectator DIS is SIDIS in the target fragmentation region

~e + ~T → e ′ + X + h

I Dynamical model to express structure functions of the reaction
I First step: impulse approximation (IA) model
I FSI corrections (unpolarized)

I Light-front structure of the deuteron
I Natural for high-energy reactions as off-shellness of nucleons in LFquantization remains finite

� Neutron structure with pole extrapolation for EIC
� Experimental apparatus
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Polarized spin 1 particle
� Spin state described by a 3*3 density matrix in a basis of spin 1 statespolarized along the collinear virtual photon-target axis

W µν
D = Tr [ρλλ′W µν (λ′λ)]

� Characterized by 3 vector and 5 tensor parameters
Sµ = 〈Ŵ µ〉 , T µν = 1

2
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ρλλ′ = 1

3



1 + 3

2
SL +√ 3

2
TLL

3

2
√
2
ST e

−i (φh−φS ) √
3

2
TTT e

−i (2φh−2φTT )
−
√
3TLT e

−i (φh−φTL )
3

2
√
2
ST e

i (φh−φS )
1−
√
6TLL

3

2
√
2
ST e

−i (φh−φS )
−
√
3TLT e

i (φh−φTL ) +√3TLT e
−i (φh−φTL )

√
3

2
TTT e

i (2φh−2φTT ) 3

2
√
2
ST e

i (φh−φS )
1− 3

2
SL +√ 3

2
TLL+√3TLT e

i (φh−φTL )


.

Wim Cosyn (UGent) JLab seminar Mar 7, 2018 6 / 23



Spin 1 SIDIS: General structure of cross section
� To obtain structure functions, enumerate all possible tensor structuresthat obey hermiticity and transversality condition (qW = Wq = 0)
� Cross section has 41 structure functions,

dσ
dxdQ2dφl ′

= y2α2
Q4(1− ε) (FU + FS + FT ) dΓPh

,

I U + S part identical to spin 1/2 case [Bacchetta et al. JHEP ('07)]
FU = FUU,T + εFUU,L +√2ε(1 + ε) cosφhF

cosφh
UU + ε cos 2φhF

cos2φh
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Tagged DIS with deuteron: model for the IA
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� Hadronic tensor can be written as a product ofnucleon hadronic tensor with deuteronlight-front densities
W µν

D (λ′, λ) = 4(2π)3 αR
2− αR

∑
i=U,z ,x ,y

W µν
N,iρ

i
D (λ′, λ) ,

All SF can be written as
F k
ij = {kin. factors} × {F1,2(x̃ ,Q2)or g1,2(x̃ ,Q2)} × {bilinear formsin deuteron radial wave function U(k),W (k)}

� In the IA the following structure functions are zero → sensitive to FSI
I beam spin asymmetry [F sinφh

LU ]
I target vector polarized single-spin asymmetry [8 SFs]
I target tensor polarized double-spin asymmetry [7 SFs]
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Deuteron light-front wave function
n

p
= 1J

S + D-wave

� Up to momenta of a few 100 MeV dominated by NNcomponent
� Can be evaluated in LFQM [Coester,Keister,Polyzou et al.]or covariant Feynman diagrammatic way

[Frankfurt,Sargsian,Strikman]
� One obtains a Schrödinger (non-rel) like eq. for the wave functioncomponents, rotational invariance recovered
� Light-front WF obeys baryon and momentum sum rule

ΨD
λ (k f , λ1, λ2) =√Ekf

∑
λ′
1
λ′
2

D
1

2

λ1λ′1
[Rfc (kµ1f /mN )]D 1

2

λ2λ′2
[Rfc (kµ2f /mN )]ΦD

λ (k f , λ′1, λ′2)
� Differences with non-rel wave function:

I appearance of the Melosh rotations to account for light-front quantizednucleon states
I k f is the relative 3-momentum of the nucleons in the light-front boostedrest frame of the free 2-nucleon state (so not a “true” kinematicalvariable)
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Unpolarized structure function
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� Extrapolation for (m2

N − t)→ 0corresponds to on-shell neutron
F2N (x ,Q2), here equivalent toimaginary ps

� Clear effect of deuteron D-wave,largest in the region dominatedby the tensor part of the
NN-interaction

� D-wave drops out at theon-shell point
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Tagging: free neutron structure
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Spectator tagging e + D → e' + p + X
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JLab LDRD arXiv:1407.3236, arXiv:1409.5768,
C. Hyde talk

� F2n extracted withpercent-level accuracy at
x < 0.1

� Uncertainty mainlysystematic due to intrinsicmomentum spread in beam(JLab LDRD project: detailedestimates)
� In combination with protondata non-singlet F2p − F2n ,sea quark flavor asymmetry

d̄ − ū
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Polarized structure function
On-shell extrapolation of double spin asymm.

A|| = σ (++)−σ (−+)−σ (+−)+σ (−−)
σ (++)+σ (−+)+σ (+−)+σ (−−) [φhavg] = FLSL

FT+εFL
= D g1n

F1n
+ · · ·
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� Again clear contribution fromD-wave at finite recoil momenta
� Relativistic nuclear effectsthrough Melosh rotations, growwith recoil momenta
� Both effects drop out near theon-shell extrapolation point
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Tagging: polarized neutron structure
On-shell extrapolation of double spin asymm.
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� Systematic uncertaintiescancel in ratio (momentumsmearing, resolution effects)
� Statistics requirements

I Physical asymmetries
∼ 0.05− 0.1

I Effective polarization
PePD ∼ 0.5

I Luminosity required
∼ 10

34cm−2s−1
� Precise measurement ofneutron spin structure
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Tagging: polarized neutron structure II
On-shell extrapolation of double spin asymm. A|| = D g1n
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Nuclear binding eliminated through on-shell extrapolation in recoil proton momentum
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extrapolation uncertainty

� As depolarization factor
D = y (2−y )

2−2y+y2
and

y ≈ Q2

xseN
, wide range of

seN required!
� Precise measurement of neutron spin structure

I separate leading- /higher-twist
I non-singlet/singlet QCD evolution
I pdf flavor separation ∆u,∆d . ∆G through singlet evolution
I non-singlet g1p − g1n and Bjorken sum rule
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Tagging: EMC effect
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� Medium modification of nucleonstructure embedded in nucleus(EMC effect)
I dynamical origin?
I caused by which momenta/distances innuclear WF
I spin-isospin dependence?

� tagged EMC effect
I recoil momentum as extra handle onmedium modification (off-shellness,size of nuclear configuration) awayfrom the on-shell pole
I EIC: Q2 evolution, gluons, spindependence!

� Interplay with final-stateinteractions!
I use x̃ = 0.2 to constrain FSI
I constrain medium modification athigher x̃
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Final-state interactions: three regimes
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� Shadowing in inclusive DIS x � 10
−1

I Diffractive DIS on single nucleon (leading twist,HERA)
I Interference of DIS on nucleon 1 and 2
I Calculable in terms of nucleon diffractive structurefunctions [Gribov 70s,

Frankfurt,Guzey,Strikman '02+]

� FSI between slow hadrons from the DISproducts and spectator nucleon, fast hadronshadronize after leaving the nucleus.
I Data show slow hadrons in the target fragmentationregion are mainly nucleons.
I Input needed from nucleon target fragmentation data
→ also possible at EIC
M. Strikman,Ch. Weiss arXiv:1706.02244

� rescattering of resonance-like structure withspectator nucleon in eikonal approximation[Deeps,BONuS].
WC,M. Sargsian arXiv:1704.06117
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FSI 1: Shadowing at small x in tagged DIS

[Guzey,Strikman,Weiss; in preparation]

� Explore shadowing through recoilmomentum dependence
� Shadowing enhanced in tagged DIScompared to inclusive

I enhancement factor from AGK rules
I shadowing term drops slower with pRthan IA

� FSI contributions between slow p and n indiffractive events
� Large FSI effects in diffractive amplitudes(∼ 40%), also at zero spectator momenta dueto orthogonality of np state to deuteron
� Effects smaller in tagged as diffractive are
∼ 10% of total events

� Possibilities to study diffractive events bydouble tagging
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FSI 2: intermediate x model
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� Features of the FSI of slow hadrons withspectator nucleon are similar to what isseen in quasi-elastic deuteron breakup.
� Inclusion FSI diagram adds twocontributions: FSI term (∼ absorption,negative) and FSI2 term (∼ refraction,postive)
� At low momenta (pr < 200 MeV) FSIterm dominates, at larger momenta FSI2dominates.
� Both contributions vanish at the pole →pole extrapolation still feasible
� Calculation with realistic deuteron wf(AV18)
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JLEIC full-acceptance detector
Nadel-Turonski, Ent,
Hyde
R. Yoshida, talk at
Ghent workshop

� Forward detector integrated in interaction region & beam optics
� Good acceptance for elastic recoilRigidity same as beam. Large dispersion generated after IPLongitudinal momentum up to 99.5% of beam, angles down to 2 mrad (10 σ )
� Good acceptance for spectators and ion fragmentsRigidity different from beam. Large magnet apertures, small gradients
� Good momentum and angular resolutionLongitudinal dp/p ∼ 4× 10

−4, angular δθ ∼ 0.2 mrad
pTR ∼ 15MeV/c resolution for tagged 50 GeV/A deuterium beam
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JLEIC: Momentum spread in beam

[Ch. Hyde, K. Park et al.]

� Intrinsic beam spread in ion beam“smears” recoil momentum
I transverse momentum spread of
σ ≈ 20 MeV (δσ/σ ∼ 10%)

I pR (measured) 6= pR (vertex)
I Systematic correlated uncertainty,

x ,Q2 independent
� Dominant syst. uncertainty at JLEIC,detector resolution much higher thanbeam momentum spread (diff foreRHIC)
� On-shell extrapolation feasible!!
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Tagging: developments and extensions
� Final-state interactions

I in tagged ~e + ~D

I maximized/minimized by choice of kinematics. Constrain FSI models.
I azimuthal and spin observables non-zero through FSI

� Tagging with complex nuclei A > 2

I isospin dependence, universality of bound nucleon structure
I A− 1 ground state recoil

� Resolved final states: SIDIS on neutron, hard exclusive channels
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R&D project at JLAB
� Develop simulation tools (physics models, event generators, analysistools) for DIS on light ions with spectator tagging at MEIC and studyphysics impact.
� ran FY14-15D. Higinbotham, W. Melnitchouk, P. Nadel-Turonski, K. Park, C. Weiss(JLab), Ch. Hyde (ODU), M. Sargsian (FIU), V. Guzey (PNPI),with collaborators W. Cosyn (Ghent), S. Kuhn (ODU), M. Strikman(PSU), Zh. Zhao (JLab)
� Tools, documentation, results publicly available. Open for

collaboration!
� More info:

https://www.jlab.org/theory/tag/

arXiv:1407.3236, arXiv:1409.5768v1, arXiv:1601.066665,

arXiv:1609.01970
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Conclusions
� General form of SIDIS with a spin 1 target, 23 tensor polarizedstructure functions unique to spin 1
� Results for the impulse approximation using deuteron light-frontstructure, relativistic nuclear spin effects contribute.
� FSI/shadowing effects calculable
� Spectator tagging in eD scattering with EIC enables next-generationmeasurements with maximal control and unprecedented accuracy

I Neutron structure functions, including spin
I Nuclear modifications of quark/gluon structure

� Extensions:
I Tagging with A > 2: isospin dependence, universality of bound nucleonstructure ; A− 1 recoil
I Coherent processes: nuclear GPDs
I Resolved final states: SIDIS on neutron, hard exclusive channels
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