Finite volume effects for spatially non-local operators

Juan Guerrero
Hampton University \& Jefferson Lab

Theory Center Cake Seminar April 18, 2018

Based on work in progress with:
Raul Briceño, Maxwell Hansen \& Chris Monahan (to appear soon)

Parton Distribution Functions (PDFs)

ODescribe the internal structure of the nucleons

OUniversal
ONon-perturbative objects
OUsually obtained by fitting observables to experimental data

Accardi et al., PRD 93, 114017 (2016).

Novel idea: PDFs on the lattice

PDFs from QCD: the only non-perturbative way to study QCD is lattice QCD.

$$
t_{M} \rightarrow-i t_{E}
$$

Lattice QCD is defined by...
O Discretization
O Euclidean vs Minkowski
o Finite volume
O Quark masses

PDFs on the lattice

Ocalculations are already on the way... as you saw Monday

Oin order to know if we're calculating things correctly, we need to understand systematics

O Discretization 【.
O Euclidean vs Minkowski $\mathbb{\square}$
O Renormalization \square
O Finite volume wnobody has talked about FV effects...

Scheme to extract PDFs from the lattice

PDFs on the lattice

There are different techniques:
evaluation of matrix elements of non-local operators

Owilson lines: $\langle N| \bar{q} W q|N\rangle_{\infty}$

Otwo current operators: $\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{\infty}$

$$
\begin{array}{c|c}
\begin{array}{c}
\text { Lattice QCD } \\
\langle N| \bar{q} W q|N\rangle_{V} \\
\langle N| \mathcal{J}(0, \xi) \mathcal{J}(0)|N\rangle_{V}
\end{array} & ? \\
\langle N| \mathcal{J}(0, \xi) \mathcal{J}(0)|N\rangle_{\infty}
\end{array}
$$

Finite volume: Infrared limit of the theory

Finite volume: Infrared limit of the theory

O Finite-volume artifacts arise from the interactions with mirror images

Finite volume: Infrared limit of the theory

O Finite-volume artifacts arise from the interactions with mirror images
O Assuming $L \gg$ size of the hadrons $\sim 1 / m_{\pi}$

- This is a purely infrared artifact
- We can determine these artifactusing hadrons as the degrees of freedom

Finite volume: Infrared limit of the theory

O Finite-volume artifacts arise from the interactions with mirror images
O Assuming $L \gg$ size of the hadrons $\sim 1 / m_{\pi}$

- This is a purely infrared artifact
- We can determine these artifact using hadrons as the degrees of freedom

\square interactions with mirror images: Yukawa

$$
m_{N}(L)-m_{N}(\infty) \sim\langle N| \hat{V}|N\rangle_{L} \sim e^{-m_{\pi} L}
$$

Finite volume effects: Matrix elements

OIn general, the masses and matrix elements of stable particles have been observed to have these exponentially supressed corrections.

OBut matrix elements of non-local currents suffer of larger FV effects:
$\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{\infty}$: generally decays as a function of ξ
$\langle N| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|N\rangle_{V}$: periodic, since

$$
\mathcal{J}(t, \mathbf{x})=\mathcal{J}\left(t, \mathbf{x}+L \mathbf{e}_{i}\right)
$$

Expect enhanced finite volume effects to keep periodicity!

Finite volume effects: Matrix elements

Expect enhanced finite volume effects to keep periodicity!

Finite volume effects: Matrix elements

Wilson line is not periodic:
$W\left[x+\xi \mathbf{e}_{i}, x\right] \equiv U_{i}\left(x+(\xi-a) \mathbf{e}_{i}\right) U_{i}\left(x+(\xi-2 a) \mathbf{e}_{i}\right) \times \cdots \times U_{i}\left(x+a \mathbf{e}_{i}\right)$

Quark bilinears connected to Wilson Lines:
$\bar{q}\left(x+(\xi+n L) \mathbf{e}_{i}\right) W\left[x+(\xi+n L) \mathbf{e}_{i}, x\right] q(x)=\bar{q}\left(x+\xi \mathbf{e}_{i}\right) W\left[x+\xi \mathbf{e}_{i}, x\right]\left(W\left[x+L \mathbf{e}_{i}, x\right]^{n}\right) q(x)$
are no periodic. However,
$q(x)$ and $U(x)$ feel
boundary conditions
expect enhanced finite volume effects for large ξ

Physics in a 1D finite box

O Free particle wave function: $\varphi_{p}(x)=e^{i p x}$

$$
\varphi_{p}(L+x)=e^{i p(x+L)}=\varphi_{p}(x)=e^{i p x}
$$

O Discretized momentum and spectrum: $p=\frac{2 \pi n}{L}$

O Question: What happens to the masses determined in a finite-volume?

Masses in an infinite volume

mass $=$ pole location of the fully dressed propagator:
$[\longrightarrow]_{\infty}=-\infty+\infty+\infty$

Masses in an infinite volume

mass $=$ pole location of the fully dressed propagator:

Masses in an infinite volume

mass $=$ pole location of the fully dressed propagator:

Masses in a finite volume

infinite volume mass = pole of infinite volume propagator:

$$
[--]_{\infty}=\frac{1}{\frac{p^{2}-m_{0}^{2}}{i}-i I_{\infty}} \longrightarrow \frac{i}{p^{2}-m_{\infty}^{2}}
$$

finite volume mass = pole of finite volume propagator:

$$
\begin{aligned}
& {[\longrightarrow-]_{\mathrm{FV}} }=\frac{1}{\frac{p^{2}-m_{0}^{2}}{i}-i I_{\mathrm{FV}}} \\
&=\frac{1}{\frac{p^{2}-m_{0}^{2}}{i}-i I_{\infty}-i\left(I_{\mathrm{FV}}-I_{\infty}\right)} \\
&=\frac{1}{\frac{p^{2}-m_{\infty}^{2}}{i}-i \delta I_{\mathrm{FV}}} \longrightarrow \frac{i}{p^{2}-m_{\mathrm{FV}}^{2}} \\
& \text { we need to calculate this... }
\end{aligned}
$$

A simple example: mass of a pion

Consider a toy model for mesons

$$
\mathcal{L}_{M}=\frac{\lambda}{4!} \varphi^{4}
$$

Bare propagator has no volume dependence:

$$
------=\Delta_{0}\left(p^{2}\right)=\frac{i}{p^{2}-m_{0}^{2}+i \epsilon}
$$

so we have to have to go to loops... self-energy...

O In a Finite Volume, integrals over momenta become sums:

$$
\text { 1D: } \int \frac{d k_{i}}{2 \pi} \rightarrow \sum_{k_{i}} \frac{\Delta k_{i}}{2 \pi}=\sum_{k_{i}} \frac{2 \pi \Delta n}{2 \pi L}=\frac{1}{L} \sum_{k_{i}} \quad 3 \mathrm{D}: \int \frac{d^{3} k}{(2 \pi)^{3}} \rightarrow \frac{1}{L^{3}} \sum_{k_{i}}
$$

A simple example: self-energy of a pion

 in infinite volume:$$
I_{\infty}=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}+m_{\pi}^{2}}
$$

Poisson summation
in finite volume:

$$
I_{\mathrm{FV}}=\frac{1}{L^{3}} \sum_{\mathbf{k}} \int \frac{d k_{4}}{2 \pi} \frac{1}{k^{2}+m_{\pi}^{2}} \stackrel{\downarrow}{=} \sum_{\mathbf{n}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i \mathbf{k} \cdot \mathbf{n} L}}{k^{2}+m_{\pi}^{2}}
$$

finite/infinite volume difference:

$$
\delta I_{\mathrm{FV}}=I_{\mathrm{FV}}-I_{\infty}=\sum_{\mathbf{n} \neq 0} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i \mathbf{k} \cdot \mathbf{n} L}}{k^{2}+m_{\pi}^{2}}
$$

A simple example: self-energy of a pion

some details...

$$
\begin{aligned}
\delta I_{\mathrm{FV}} & =\sum_{\mathbf{n} \neq 0} \int \frac{d^{4} k}{(2 \pi)^{4}} e^{i \mathbf{k} \cdot L \mathbf{n}} \frac{1}{k^{2}+m^{2}} \\
& =\sum_{\mathbf{n} \neq 0} \int \frac{k^{2} d k d \cos \theta}{(2 \pi)^{2}} e^{i k l_{n} \cos \theta} \frac{1}{2 \sqrt{k^{2}+m^{2}}} \\
& =\sum_{\mathbf{n} \neq 0} \int_{0}^{\infty} \frac{k^{2} d k}{(2 \pi)^{2}} \frac{1}{2 \sqrt{k^{2}+m^{2}}} \frac{1}{i k l_{n}}\left(e^{i k l_{n}}-e^{-i k l_{n}}\right) \\
& =\sum_{\mathbf{n} \neq 0} \int_{-\infty}^{\infty} \frac{k d k}{(2 \pi)^{2}} \frac{1}{2 \sqrt{k^{2}+m^{2}}} \frac{1}{i l_{n}} e^{i k l_{n}} \\
& =\frac{1}{(2 \pi)^{2}} \sum_{\mathbf{n} \neq 0} \frac{1}{2 i l_{n}} \int_{-\infty}^{\infty} d k \frac{k}{\sqrt{k^{2}+m^{2}}} e^{i k l_{n}}
\end{aligned}
$$

$$
\begin{gathered}
k_{+}=i m+i r e^{i \epsilon} \\
k_{-}=i m+i r e^{i(2 \pi-\epsilon)} \\
\left.\sqrt{k^{2}+m^{2}}\right|_{k=k_{-}}=-\left.\sqrt{k^{2}+m^{2}}\right|_{k=k_{+}}
\end{gathered}
$$

A simple example: self-energy of a pion

almost done...

$$
\begin{aligned}
\delta I_{\mathrm{FV}} & =\frac{1}{(2 \pi)^{2}} \sum_{\mathbf{n} \neq 0} \frac{1}{i l_{n}} \int_{i m}^{i \infty} d k \frac{k}{\sqrt{k^{2}+m^{2}}} e^{i k l_{n}} \\
& =\frac{1}{(2 \pi)^{2}} \sum_{\mathbf{n} \neq 0} \frac{m}{l_{n}} \int_{1}^{\infty} d q \frac{q}{\sqrt{q^{2}-1}} e^{-q m l_{n}}
\end{aligned}
$$

final result:

$$
\delta I_{\mathrm{FV}}=\frac{1}{(2 \pi)^{2}} \sum_{\mathbf{n}}\left(\frac{m}{|\mathbf{n}| L}\right) K_{1}(|\mathbf{n}| L m) \sim e^{-m L}
$$

A simple example: self-energy of a pion

$$
m_{\pi}(L)=m_{\pi}+c \frac{e^{-m_{\pi} L}}{\left(m_{\pi} L\right)^{3 / 2}}
$$

Dudek, Edwards \& Thomas (2012)
$m_{\pi} \sim 390 \mathrm{MeV}, a_{s} \sim 0.12 \mathrm{fm} \longrightarrow m_{\pi} L \sim 3.8,4.7,5.6$

General observations:

OFV corrections come from sums/integrals of momenta.

OFor masses and local currents, if the intermediate states cannot go on-shell, the FV corrections are exponentially small

OFor example, for the pion form factor :

$$
\begin{aligned}
& {[\ldots . . .]_{\mathrm{FV}}=[\ldots \ldots]_{\infty}} \\
& {[\ldots,]_{\mathrm{FV}}=[\ldots . .]_{\infty}+\mathcal{O}\left(e^{-m_{\pi} L}\right)}
\end{aligned}
$$

General observations:

OFor heavy particles, these observations persists: Nucleon

OPion cloud in the mass: exponential corrections with the pion mass...not the nucleon mass

OPion cloud in the form factors...: exponential corrections with the pion mass... not the nucleon mass

$$
\begin{aligned}
& [\xi]]_{\mathrm{FV}}=[\underline{\xi}]_{\infty}
\end{aligned}
$$

Our toy model

Consider a theory with two scalar particles
O a light one, φ, analogous to the pion
O a heavy one, χ, analogous to the nucleon
O momentum independent coupling

$$
m_{\varphi} \ll m_{\chi}
$$

Coupling to an external current :

Light external states

Finite volume correction: $\quad \delta \mathcal{M}_{L}^{(\mathrm{LO})}(\xi, \mathbf{p})=g_{\varphi}^{2} \sum_{\mathbf{n} \neq 0} \int_{q_{E}} \frac{e^{i \mathbf{q} \cdot(\boldsymbol{\xi}+i L \mathbf{n})}}{\left(p_{E}+q_{E}\right)^{2}+m_{\varphi}^{2}}$

$$
\begin{gathered}
\delta \mathcal{M}_{L}^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p})=\frac{m_{\varphi} g_{\varphi}^{2}}{4 \pi^{2}} e^{-i \mathbf{p} \cdot \boldsymbol{\xi}} \sum_{\mathbf{n} \neq 0} \frac{K_{1}\left(m_{\varphi}|\boldsymbol{\xi}+L \mathbf{n}|\right)}{|\boldsymbol{\xi}+L \mathbf{n}|} \sim \frac{m_{\varphi} g_{\varphi}^{2}}{4 \pi^{2}} \frac{K_{1}\left(m_{\varphi}|L-\xi|\right)}{|L-\xi|} \\
\delta \mathcal{M}_{L}^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p}) \propto \frac{e^{-m_{\varphi}(L-\xi)}}{(L-\xi)^{3 / 2}}
\end{gathered}
$$

Light external states

Expected behavior!

Light external states

Light external states

Light external states

Light external states

Heavy external states

Leading order

$$
\delta \mathcal{M}_{L}^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p}) \propto \frac{e^{-m_{\chi}(L-\xi)}}{(L-\xi)^{3 / 2}} \ll e^{-m_{\varphi}(L-\xi)}
$$

Heavy external states

Leading order

Next to Leading Order

(a)

(e)

(b)

(c)

(d)

(f)

(g)

(h)

Heavy external states

Leading order

Next to Leading Order

(a)

(e)

(b)

(c)

(d)

(f)

(g)

(h)

In general...

We find that in general the matrix elements...

$\langle M| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|M\rangle_{L}-\langle M| \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0)|M\rangle_{\infty}=P_{a}(\boldsymbol{\xi}, L) e^{-M(L-\xi)}+P_{b}(\boldsymbol{\xi}, L) e^{-m_{\pi} L}+\cdots$,

Polynomial prefactors $\propto L^{m} /|L-\xi|^{n}$

Open questions...

EFT for small separations - sensible?

Wilson lines in EFT...?

Non-zero momenta..p~1/L...momentum and volume dependence will mix...not obvious how to proceed

Flavor changing currents...?

Quark mass dependence will be similar to the FV dependence within χ PT...

Summary

oWe presented first steps towards understanding finite-volume artifacts that arise in matrix elements of spatially non-local operators.
*matrix elements of spatially-separated currents, one of the approaches to determine hadron structure from lattice QCD.
oWe considered a toy model involving two scalar particles to estimate the size of finite-volume corrections.

- lightest particle: LO contribution dominant, effects scale like: $P(\xi, L) e^{-m_{\pi}(L-\xi)}$ heaviest particle: NLO contribution dominant, effects scale like: $P(\xi, L) e^{-m_{\pi} L}$

Thank you!

Backup slides

Asymptotic behaviors

$$
\begin{aligned}
& \delta \mathcal{M}_{L}^{(b)}(\boldsymbol{\xi}, \mathbf{0})=g^{2} g_{\varphi} g_{\chi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}}\left[\int_{0}^{1} \mathrm{~d} x \mathcal{I}_{2}[|L \mathbf{n}-\boldsymbol{\xi}| ; M(x)]\right]\left[\int_{0}^{1} \mathrm{~d} y \mathcal{I}_{2}[|L \mathbf{m}-\boldsymbol{\xi}| ; M(y)]\right], \\
& \delta \mathcal{M}_{L}^{(c)}(\boldsymbol{\xi}, \mathbf{0})=2 g^{2} g_{\chi}^{2} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right]\left[\int_{0}^{1} \mathrm{~d} x(1-x) \mathcal{I}_{3}[|L \mathbf{m}-\boldsymbol{\xi}| ; M(x)]\right], \\
& \delta \mathcal{M}_{L}^{(d)}(\boldsymbol{\xi}, \mathbf{0})=g_{\chi \varphi}^{2} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right] \mathcal{I}_{1}\left[|L \mathbf{m}-\boldsymbol{\xi}| ; m_{\varphi}\right] \\
& \delta \mathcal{M}_{L}^{(e)}(\boldsymbol{\xi}, \mathbf{0})=g g_{\varphi} g_{\chi \varphi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\varphi}\right]\left[\int_{0}^{1} \mathrm{~d} x \mathcal{I}_{2}[|L \mathbf{m}-\boldsymbol{\xi}| ; M(x)]\right], \\
& \delta \mathcal{M}_{L}^{(f)}(\boldsymbol{\xi}, \mathbf{0})=g g_{\chi} g_{\chi \varphi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right]\left[\int_{0}^{1} \mathrm{~d} x \mathcal{I}_{2}[|L \mathbf{m}-\boldsymbol{\xi}| ; M(x)]\right], \\
& \delta \mathcal{M}_{L}^{(g)}(\boldsymbol{\xi}, \mathbf{0})=g g_{\chi \varphi} g_{\chi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right]\left[\int_{0}^{1} \mathrm{~d} x \mathcal{I}_{2}[|L \mathbf{m}| ; M(x)]\right], \\
& \delta \mathcal{M}_{L}^{(h)}(\boldsymbol{\xi}, \mathbf{0})=\frac{1}{2} g_{\chi} g_{\chi \varphi \varphi} \sum_{\{\mathbf{n}, \mathbf{m}\} \neq \mathbf{0}} \mathcal{I}_{1}\left[|L \mathbf{n}-\boldsymbol{\xi}| ; m_{\chi}\right] \mathcal{I}_{1}\left[|L \mathbf{m}| ; m_{\varphi}\right] .
\end{aligned}
$$

Asymptotic behaviors

$$
\begin{aligned}
\delta \mathcal{M}_{L}^{(a)}(\boldsymbol{\xi}, \mathbf{0}) & \sim \frac{g^{2} g_{\varphi}^{2}}{128 \pi^{3} m_{\varphi}}\left[\frac{\xi^{1 / 2}}{(L-\xi)^{3 / 2}} H_{x, 3 / 2}(\xi)+\frac{(L-\xi)^{1 / 2}}{\xi^{3 / 2}} H_{x, 3 / 2}(L-\xi)\right] e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(b)}(\boldsymbol{\xi}, \mathbf{0}) & \sim \frac{g^{2} g_{\varphi} g_{\chi}}{64 \pi^{3} m_{\varphi}}\left[\frac{1}{\xi^{1 / 2}(L-\xi)^{1 / 2}} H_{1,1 / 2}(\xi) H_{1,1 / 2}(L-\xi)\right] e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(c)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g^{2} g_{\chi}^{2}}{128 \pi^{3}} \frac{m_{\chi}^{1 / 2}}{m_{\varphi}^{3 / 2}}\left[\frac{(L-\xi)^{1 / 2}}{\xi^{3 / 2}} H_{1-x, 3 / 2}(L-\xi)\right] e^{-\xi\left(m_{\chi}-m_{\varphi}\right)} e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(d)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g_{\chi \varphi}^{2} m_{\chi}^{1 / 2} m_{\varphi}^{1 / 2}}{32 \pi^{3}}\left[\frac{1}{\xi^{3 / 2}(L-\xi)^{3 / 2}}\right] e^{-\xi\left(m_{\chi}-m_{\varphi}\right)} e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(e)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g g_{\varphi} g_{\chi \varphi}}{64 \pi^{3}}\left[\frac{1}{\xi^{1 / 2}(L-\xi)^{3 / 2}} H_{1,1 / 2}(\xi)+\frac{1}{\xi^{3 / 2}(L-\xi)^{1 / 2}} H_{1,1 / 2}(L-\xi)\right] e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(f)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g g_{\chi} g_{\chi \varphi} m_{\chi}^{1 / 2}}{64 \pi^{3} m_{\varphi}^{1 / 2}}\left[\frac{1}{\xi^{3 / 2}(L-\xi)^{1 / 2}} H_{1,1 / 2}(L-\xi)\right] e^{-\xi\left(m_{\chi}-m_{\varphi}\right)} e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(g)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g g_{\chi \varphi} g_{\chi} m_{\chi}^{1 / 2}}{64 \pi^{3} m_{\varphi}^{1 / 2}}\left[\frac{1}{\xi^{3 / 2} L^{1 / 2}} H_{1,1 / 2}(L)\right] e^{-\xi m_{\chi}} e^{-m_{\varphi} L}, \\
\delta \mathcal{M}_{L}^{(h)}(\boldsymbol{\xi}, \mathbf{0}) & =\frac{g_{\chi} g_{\chi \varphi \varphi} m_{\varphi}^{1 / 2} m_{\chi}^{1 / 2}}{64 \pi^{3}}\left[\frac{1}{\xi^{3 / 2} L^{3 / 2}}\right] e^{-m_{\chi} \xi} e^{-m_{\varphi} L},
\end{aligned}
$$

Heavy external states: Next to Leading Order

