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 1Bound states and QCD  

Paul Hoyer
University of Helsinki

Hadrons are bound states of QCD

• PQCD in hard collisions: Factorization

• Lattice QCD: Hadron spectrum, form factors, …

• Effective theories: χPT, HQET, …

• Models: “Inspired” by QCD and data    Quark model, Duality, …

PH 1605.01532, 1711.10851 and to appear

Methods:
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Similarity of atomic and hadronic spectra
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Adapted from presentation by J. Ritman (2005)
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“The J/ψ is the Hydrogen atom of QCD”
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even a pure Coulomb potential, σ = 0, implies a non-vanishing σeff at finite t ≪ r.
Of course, the symmetry of the Wilson loop under interchange of r and t also implies
that no plateau in V (r, t) can be found, unless t ≫ r. For smeared Wilson loops, one
would still expect a similar 1/t2 approach (with a different coefficient) of σeff towards
the asymptotic limit, while effective masses, V (r, t), will approach V (r) exponentially
fast at any r.

4.7.2 The quenched potential
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Figure 4.2: The quenched Wilson action SU(3) potential, normalised to V (r0) = 0.

In Figure 4.2, we display the quenched potential, obtained at three different β values
in units of r0 ≈ 0.5 fm from the data of Refs. [173, 29]. The lattice spacings, determined
from r0, correspond to a ≈ 0.094 fm, 0.069 fm and 0.051 fm, respectively. The curve
represents the Cornell parametrisation with e = 0.295. At small distances the data
points lie somewhat above the curve, indicating a weakening of the effective coupling
and, therefore, asymptotic freedom. We will discuss this observation later. All data
points for r > 4a collapse onto a universal curve, indicating that for β ≥ 6.0 the scaling
region is effectively reached for the static potential. Moreover, continuum rotational
symmetry is restored: in addition to on-axis separations, many off-axis distances of the
sources have been realised and the corresponding data points are well parameterised by
the Cornell fit for r > 0.6 r0. Prior to comparison between the potential at various β,
the additive self-energy contribution, associated with the static sources, that diverges
in the continuum limit has been removed. This is achieved by the parametrisation-
independent normalisation of the data to V (r0) = 0.

42

The quenched Wilson action SU(3) potential.

Gunnar S. Bali, Phys.Rept. 343 (2001) 1

Linear Cornell potential agrees with Lattice QCD
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QED works for atoms

G. S. Adkins,
Hyperfine Interact.  233 (2015) 59

7

where the products imply convolutions over four-momenta similar to that in (2.19). This equation is valid provided
the kernel satisfies

K = (1 +GT S)�1
GT = GT �GT S GT + ... (2.22)

Thus the “propagator” S may in fact be chosen freely. The expansion of K in ↵ follows from the corresponding
expansions of S and GT . As a consequence of unitarity the residues of the bound state poles of GT factorize into a
product of wave functions similarly as in (2.17). Since the finite order kernel K in (2.21) cannot have a bound state
pole the Bethe-Salpeter wave function �P

T (with external propagators truncated) must satisfy

�P
T (q) ⌘

Z
d
4
x�P

T (x)eiq·x =

Z
d
4
k

(2⇡)4
�P

T (k)S(k)K(k, q) (2.23)

which is the all-orders equivalent4 of (2.19). With a suitable choice of the propagator S analytic expressions for the
wave functions are obtained when the lowest order kernel is used in the BSE. These solutions facilitate calculations
of higher order corrections to the binding energies [2].

The wide range of possibilities in the choice of propagator in the BSE motivated a search for an optimal approach
based on physical arguments. The perturbative expansion relies on the non-relativistic nature of atoms, v/c ' ↵ ⌧ 1.
This suggested the use of an e↵ective QED Lagrangian (NRQED) [7], which is essentially an expansion of the standard
Lagrangian in inverse powers of me. At the expense of introducing more interactions the NRQED Lagrangian allows
to use non-relativistic dynamics, which is of great help in high order calculations [3]. The contribution of relativistic
momenta (p ⇠ me) in positronium is only of O

�
↵
5
�
⇠ 10�11, making NRQED very e�cient.

The continuous development of theoretical and experimental techniques have allowed precision tests of QED using
bound states. Thus the hyperfine splitting in positronium, i.e., the energy di↵erence �E between orthopositronium
(JPC = 1��) and parapositronium (JPC = 0�+), expressed in terms of �⌫ ⌘ �E/2⇡~, is calculated using NRQED
methods to be [8]
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= 203.39169(41) GHz (2.24)

Table 1: Summary of systematic errors.

Source Errors in �HFS (ppm)

Material E�ect:

o-Ps pick-o� 3.8

Gas density measurement 1.0

Thermalization of Ps 1.0

Magnetic Field:

Non-uniformity 3.0

O�set and reproducibility 1.0

NMR measurement 1.0

RF System:

RF power 0.7

QL value of RF cavity 0.3

RF frequency 1.0

Analysis:

Choice of energy window 0.6

Quadrature sum 5.4

considered in the previous experiments, fitting without taking

into account the time evolution of �HFS and �pick is performed.

The fitted Ps-HFS value with an assumption that Ps is well ther-

malized results in 203.392 1(16) GHz. Comparing it with Eq.
(15), the non-thermalized o-Ps e�ect is evaluated to be as large

as 10 ± 1 ppm in the timing window we used. This e�ect might
be larger if no timing window is applied, since it depends on the

timing window used for the analysis. In the timing window of

0–50 ns, which we do not use for the analysis, Ps-HFS is dra-

matically changing because Ps is not well thermalized and Ps

velocity is still rapidly changing.

Systematic errors are summarized in Table 1. The largest

contribution is an uncertainty of o-Ps pick-o� rate (�pick(n,�)).
It is estimated by taking the error of the fitting of the o-Ps decay

curve. The uncertainty of the gas density is computed from the

uncertainties of the gas pressure and temperature, resulting in

1.0 ppm uncertainty. The uncertainty of Ps thermalization e�ect

comes from the uncertainties of �m and E0. The second largest
contribution is an uncertainty of the static magnetic field. Dis-

tribution of the static magnetic field is measured by the NMR

magnetometer with the same setup as Ps-HFS measurement for

twice (before and after the measurement). The results of the

two measurements are consistent with each other and the non-

uniformity is weighted by the RF magnetic field strength and

distribution of Ps formation position, which results in 1.5ppm

RMS inhomogeneity. The strength of the static magnetic field

is measured outside of the RF cavity during the run. An o�set

value at this point is measured during the measurement of the

magnetic field distribution, and its uncertainty including repro-

ducibility is 0.5 ppm. The precision of magnetic field measure-

ment is 0.5 ppm, which comes from the polarity-dependence

of the NMR probe. These uncertainties are doubled because

�HFS is approximately proportional to the square of the static

magnetic field strength. The uncertainty of RF power meter re-

sults in 0.7 ppm systematic error. The QL value of the cavity

is measured before and after each run, and the uncertainty is
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Figure 5: Summary of �HFS measurements from past experiments and this

work. The circles with error bars are the experimental data (a�[4], b�[5]),
the hatched band is the average of the previous experiments (a and b), and the

black band is the QED calculation [6, 7, 8].

estimated by the di�erence between them. The uncertainty of
microwave frequency causes 1.0 ppm systematic error. Anal-

ysis with energy window of 511 keV ± 1.5 s.d.(� 26 keV) has
been performed, and the result has changed by 0.6 ppm. This

change is taken into account as a systematic error.

The systematic errors discussed above are regarded as in-

dependent, and the total systematic error is calculated to be

their quadrature sum. When the non-thermalized Ps e�ect is

included, our final result with the systematic errors is

�HFS = 203.394 1±0.001 6(stat.)±0.001 1(sys.) GHz.(16)
A summary plot of �HFS measurements is shown in Fig. 5. Our
result favors the QED calculation within 1.2 s.d., although it

disfavors the previous experimental average by 2.7 s.d.

6. Conclusion

A new precision measurement of Ps-HFS free from possible

common uncertainties from Ps thermalization e�ect was per-
formed to check the Ps-HFS discrepancy. The e�ect of non-

thermalized o-Ps was evaluated to be as large as 10 ± 1 ppm
in a timing window we used. This e�ect might be larger than
10 ppm if no timing window is applied, since it depends on

timing window. Including this e�ect, our new experimental

value results in �HFS = 203.394 1 ± 0.001 6(stat., 8.0 ppm) ±
0.001 1(sys., 5.4 ppm)GHz. It favors theO(�3 ln��1) QED cal-
culation within 1.2 s.d., although it disfavors the previous mea-

surements by 2.7 s.d.
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for useful discussions. This work was supported by JSPS KAK-
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FIG. 4: Data on positronium hyperfine splitting
compared to theory. Two previous results (a [9],
b [10]) compared to a new measurement [11] and
QED [8] (black band). Figure from [11].

The appearance of ln↵ in (2.24) demonstrates that bound state
perturbation theory indeed di↵ers from the usual expansions of
scattering amplitudes. Such factors arise from apparent infrared
divergences which are regulated by the neutrality of positronium
at the scale of the Bohr radius (↵me)�1.

The combined result of the two most precise measurements
of the hyperfine splitting in positronium [9, 10] is �⌫EXP =
203.38865(67) GHz, which is more than 3� from the QED value
(2.24). Very recently a new measurement [11] gave �⌫EXP =
203.3941 ± .0016 ± .0011 GHz, which is closer to the theoretical
value. The present situation is illustrated in Fig. 4.

Bound state poles in the photon propagator a↵ect also standard
perturbative calculations. The positronium contribution to the
anomalous magnetic moment of the electron was recently evalu-
ated [12]. It was found to be of the same order as state-of-the-art
five-loop calculations – and several times bigger than the weak
corrections.

The successes of QED have inspired the use of analogous methods for the other interactions. In particular, Bethe-
Salpeter and Dyson-Schwinger equations have been extensively applied in QCD (see [13] and references therein).

4 In (2.19) a factor P 0 � Eq+ � Eq� was extracted from the wave function  (q).

Example: Hyperfine splitting in Positronium

ΔνEXP = 203.394± .002 GHz

• Binding energy is perturbative in α and log(α)    (measurable)

• Wave function ψ(r) ∝ exp(– mαr) is of O(α∞)  (gauge dependent)

There are many ways to (re)organize an expansion that starts with O(α∞)
NRQED chooses to start from Schrödinger equation with V(r) = – α/r
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1951: Salpeter & Bethe

1975: Caswell & Lepage: Not unique: ∞ # of equivalent equations,  S ↔ K

1986: Caswell & Lepage NRQED: Effective NR field theory
Relativistic electrons are rare in atomic wave functions
Expand QED action in powers of ∇/me

44 Craig D. Roberts

Figure 6.1. Omitting the inhomogeneity, the upper panel illustrates the textbook form
of the Bethe-Salpeter equation, Eq. (3.10), whereas the lower panel depicts the form ex-
pressed in Eq. (6.1). The reversal of the total-momentum’s flow is immaterial here. N.B.
In any symmetry-preserving truncation, beyond the leading-order identified in Ref. [97];
i.e., rainbow-ladder, the Bethe-Salpeter kernel is nonplanar even if the vertex in the gap
equation is planar [167]. This is illustrated in Fig. 3.1.

Consider Eq. (6.2). Rainbow-ladder is the leading-order term in the systematic DSE
truncation scheme of Refs. [96,97]. It corresponds to Γf

ν = γν , in which case Eq. (6.2)
is solved by Λfg

5µβ ≡ 0 ≡ Λfg
5β . This is the solution that indeed provides the rainbow-

ladder forms of Eq. (6.1). Such consistency will be apparent in any valid systematic
term-by-term improvement of the rainbow-ladder truncation.

However, since the two-point functions of elementary excitations are strongly modified
in the infrared, one must accept that the same is generally true for three-point functions;
i.e., the vertices. Hence the bare vertex will be a poor approximation to the complete
result unless there are extenuating circumstances. This is readily made apparent, for
with a dressed-quark propagator of the form in Eq. (2.7), one finds immediately that the
Ward-Takahashi identity is breached; viz.,

Pµiγµ ≠ S−1(k + P/2) − S−1(k − P/2) , (6.3)

and the violation is significant whenever and wherever the mass function in Fig. 2.9
is large. This was actually realised early on, with studies of the fermion–gauge-boson
vertex in Abelian gauge theories [177] that have inspired numerous ensuing analyses. The
importance of this dressing to the reliable computation of hadron physics observables
was exposed in Refs. [178,179], insights from which have subsequently been exploited
effectively; e.g., Refs. [14,114,120,180–185].

The most important feature of the perturbative or bare vertex is that it cannot
cause spin-flip transitions; namely, it is an helicity conserving interaction. However, one
must expect that DCSB introduces nonperturbatively generated structures that very
strongly break helicity conservation. These contributions will be large when the dressed-
quark mass-function is large. Conversely, they will vanish in the ultraviolet; i.e., on the
perturbative domain. The exact form of the vertex contributions is still the subject of
study but their existence is model-independent.

Critical now is a realisation that Eq. (6.2) is far more than just a device for checking
a truncation’s consistency. For, just as the vector Ward-Takahashi identity has long

Perturbatively expand propagators S and kernel K
Explicit Lorentz covariance ensured

Some developments in bound state QED

We may start from Schrödinger atoms
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p1

p2

e–

e+
γ

Their geometric sum gives the 
Schrödinger equation

=
|'e+e� |2

p0 � E + i"
+ . . .

E = 2me �
1
4me↵

2 +O
�
↵4

�

| p | ~ α me p0 – me ~ α2 me

QED origins of the Schrödinger equation

In atomic (rest frame) kinematics:

“Ladder diagrams” are distinguished by being of leading order in α :

Unique result?

Divergent series?



Paul Hoyer Jlab 11 May 2018

 7Feynman diagrams: The Interaction Picture

Formally exact expression, provided the in- and out-states at t = ±∞ 
have a non-vanishing overlap with the the physical i, f states.

Bound states have no overlap with free in- and out-states at t = ± ∞

H = H0 +HI H0 |iiin = Ei |iiin

Sfi = outhf, t ! 1|

⇢
Texp

h
� i

Z 1

�1
dtHI(t)

i�
|i, t ! �1iin

Expanding around free states is inadequate for soft processes,
which are influenced by classical fields (Maxwell’s equations).
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Z
[dAµ] exp

�
iS[Aµ]/~

�
ℏ → 0�S[Aµ]

�Aµ
= 0

The ℏ → 0 limit selects an optimal expansion for bound states. 

We should expand around in and out states with their classical gauge field

Expanding around a stationary action

A stationary action implies a classical gauge field:

⇒ 

Positronium is bound by its classical potential V(r) = – α/r
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 9The “Potential Picture”

H = HV +HI HV = H0 +HI(Acl)

HV |iiV = Ei |iiV

Sfi = Vhf, t ! 1|

⇢
Texp

h
� i

Z 1

�1
dtHI(t)

i�
|i, t ! �1iV

Here: Stay at  (Born) level. Consider bound asymptotic states.(HI)
0

Particles will propagate in the classical field, as appropriate for bound states.

Postpone a derivation and studies of higher order contributions in the PP.
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 10 Illustration: Positronium

|MiV =

Z
dk

(2⇡)3
�(k) b†k,�1

d†�k,�2
|0i

=

Z
dx1 dx2  ↵(0,x1)�↵�(x1 � x2) �(0,x2) |0i

φ(k) is the Schrödinger
wave function

�↵�(x) = ↵

⇥
�0u(�ir,�1)

⇤⇥
v̄(ir,�2)�

0
⇤
�
�(x)

where Φ is given by the Schrödinger wave function as

HV |MiV = M |MiVCheck:

where HV includes the classical photon field.
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 11 The classical field for Positronium

|x1,x2i =  ̄(t,x1) (t,x2) |0i

x2

x1

�SQED

�Â0(t,x)
= 0 ⇒ �r2Â0(t,x) = e †(t,x) (t,x)

Â0(t,x) =

Z
d3y

e

4⇡|x� y| 
† (t,y)

The classical field is the expectation value of Â0 in the state

hx1,x2| eÂ0(x) |x1,x2i
hx1,x2|x1,x2i

=
↵

|x� x1|
� ↵

|x� x2|

⌘ eA0(x;x1,x2)

Note:  •  A0 is determined instantaneously for all x
•  It depends on x1, x2

eA0(x1) = �eA0(x2) = � ↵

|x1 � x2| is the classical –α/r potential•
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The Schrödinger equation

The classical field determines ℋV , operating on

HV (t;x1,x2) =

Z
dx †(t,x)

⇥
� ir ·↵+m�0 + 1

2eA
0(x;x1,x2)

⇤
 (t,x)

|MiV =

Z
dx1 dx2  ̄(x1)�(x1 � x2) (x2) |0i

HV |MiV = M |MiV gives the bound state equation for Φ(x1–x2) :

V (|x|) = � ↵

|x|

⇥
i�0� ·

!
r+m�0

⇤
�(x) + �(x)

⇥
i�0� ·

 
r�m�0

⇤
=

⇥
M � V (|x|)

⇤
�(x)

with This BSE reduces to the Schrödinger 
equation for non-relativistic kinematics.

The ℏ → 0 limit is required for its derivation.

|x1,x2i
<latexit sha1_base64="VD0tJDBXA64CrlF146tmETJmnSs="></latexit><latexit sha1_base64="VD0tJDBXA64CrlF146tmETJmnSs="></latexit><latexit sha1_base64="VD0tJDBXA64CrlF146tmETJmnSs="></latexit><latexit sha1_base64="VD0tJDBXA64CrlF146tmETJmnSs="></latexit>
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Classical field in QCD

Positronium
QED

Global gauge invariance allows classical gauge field for neutral atoms,
but not for color singlet hadrons in QCD

↵

|x� x1|
� ↵

|x� x2|
A0 = 

Proton
QCD

A0
a(x) = 0

However, a classical gluon field is allowed for quarks of fixed colors C:

A0
a(x;C) 6= 0

X

C

A0
a(x;C) = 0
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Three consequences of ℏ → 0 in QCD
9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)

Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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αscrit ≈ 0.43
✭

Gribov hep-ph/99022791.  The suppression of loops,
stops the running of αs 

Estimates for the frozen
coupling indicate

αs(0)/π ≈ 0.14

⇒  PQCD corrections to O(ℏ0) 

2. In the absence of loops, the
    QCD scale ΛQCD cannot arise
    from renormalization.

can be relevant.

3. Poincaré invariance, unitarity etc. should hold at each power of ℏ
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The QCD scale ΛQCD

At O(ℏ0) (no loops) the QCD scale can arise only via a boundary condition

�

�A0
a

SQCD = 0 @iF
i0
a = �gfabcA

i
bF

i0
c + g †

AT
AB
a  B⇒

A homogeneous, O
�
↵s

0
�

solution with 

Â0
a(x) = 

X

B,C

Z
dy (x · y) †

B(y)T
BC
a  C(y)

•  Linear in x for translation invariance: Â0
a(x1)� Â0

a(x2) ≠ f(x1 + x2)

•  x ⋅ y for rotational invariance

•  x-independent field energy density must be universal

⇒  determines κ up to a scale Λ [GeV]

Âi
a = 0

X

a

|rÂ0
a(x)|2

and hence r2Â0
a = 0
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O
�
↵0
s

�
A0

a(x;x1,x2, A) =
⇥
x� 1

2 (x1 + x2)
⇤
· x1 � x2

|x1 � x2|
TAA
a 6⇤2

X

a

⇥
rxA

0
a(x;x1,x2, A)

⇤2
= 12⇤4 Universal field energy

X

A

A0
a(x;x1,x2, A) / TrTAA = 0

Another hadron feels 
no field at any x

Classical color field for mesons

|Mi =
X

A,B

Z
dx1 dx2  ̄

A(x1)�
AB(x1 � x2) 

B(x2) |0i �AB(x) =
1p
NC

�AB�(x)

⌦
xA
1 ,x

A
2

�� Â0
a(x)

��xA
1 ,x

A
2

↵
⌦
xA
1 ,x

A
2

��xA
1 ,x

A
2 i

= (x1,x2)x · (x1 � x2)T
AA
a for each quark color A

⇒

V (x1 � x2) =
1
2g

X

a

TAA
a

⇥
A0

a(x1;x1,x2, A)�A0
a(x2;x1,x2, A)

⇤
= g⇤2|x1 � x2|

Linear potential, independent of quark color component A

Â0
a(x) = 

X

B,C

Z
dy (x · y) †

B(y)T
BC
a  C(y)
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Classical color field for baryons

|Mi =
X

A,B,C

Z
dx1 dx2 dx3  

†
A(x1) 

†
B(x2) 

†
C(x3)�

ABC(x1,x2,x3) |0i �ABC = ✏ABC�

Expectation value of Â0
a(x) = 

X

B,C

Z
dy (x · y) †

B(y)T
BC
a  C(y)

in  †
A(x1) 

†
B(x2) 

†
C(x3) |0i (A ≠ B ≠ C) determines the classical field:

A0
a(x;x1,x2,x3, ABC) =

⇥
x� 1

3 (x1 + x2 + x3)
⇤
· (TAA

a x1 + TBB
a x2 + TCC

a x3)
6⇤2

d(x1,x2,x3)

d(x1,x2,x3) =
1p
2

p
(x1 � x2)2 + (x2 � x3)2 + (x3 � x1)2where

Universal field energy
X

a

��rxA
0
a(x;x1,x2,x3, ABC)

��2 = 12⇤4

X

A,B,C

✏ABCA0
a(x;x1,x2,x3, ABC) = 0 No classical field for singlet state

V (x1,x2,x3) = g⇤2d(x1,x2,x3)
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  Bound state equation for mesons (rest frame)

Bound state condition implies, with x = x1–x2 

ir ·
�
�0�,�(x)

 
+m

⇥
�0,�(x)

⇤
=
⇥
M � V (x)

⇤
�(x)

HV |MiV = M |MiV

Expanding the 4 × 4 wave function 
in a basis of 16 Dirac structures Γi(x) �(x) =

X

i

�i(x)Fi(r)Yj�(x̂)

we may use rotational, parity and charge conjugation invariance to determine
which Γi(x) may occur for a state of given jPC:

10

“trajectories”, identified by the J
PC quantum numbers of their j = 0 member5:

0�+ trajectory [s = 0, ` = j] : �⌘P = ⌘C = (�1)j �5, �
0
�5, �5 ↵ · x, �5 ↵ · x⇥L

0�� trajectory [s = 1, ` = j] : ⌘P = ⌘C = �(�1)j �
0
�5 ↵ · x, �

0
�5 ↵ · x⇥L, ↵ ·L, �

0 ↵ ·L

0++ trajectory [s = 1, ` = j ± 1] : ⌘P = ⌘C = +(�1)j 1, ↵ · x, �
0↵ · x, ↵ · x⇥L, �

0↵ · x⇥L, �
0
�5 ↵ ·L

0+� trajectory [exotic] : ⌘P = �⌘C = (�1)j �
0
, �5 ↵ ·L

(4.4)

The non-relativistic spin s and orbital angular momentum ` are indicated in brackets. Relativistic e↵ects mix the
` = j ± 1 states on the 0++ trajectory, resulting in a pair of coupled radial equations. The j = 0 state on the 0��

trajectory and the entire 0+� trajectory are incompatible with the s, ` assignments and thus exotic in the quark
model. They turn out to be missing also in the relativistic case. The bound state equation (3.8) has no solutions for
states on the 0+� trajectory (�i = �

0 or �5 ↵ ·L) since

ir ·
�
↵, �

0
 
= ir · {↵, �5 ↵ ·L} = m

⇥
�
0
, �

0
⇤
= m

⇥
�
0
, �5 ↵ ·L

⇤
= 0 (4.5)

B. Properties of the 0�+ trajectory: ⌘P = (�1)j+1, ⌘C = (�1)j

1. Wave function and radial equation

According to the classification (4.4) we expand the wave function ��+(x) of the 0�+ trajectory as

��+(x) =
h
F1(r) +↵ · xF2(r) +↵ · x⇥LF3(r) +m�

0
F4(r)

i
�5 Yj�(x̂) (4.6)

Using this in the bound state equation (3.8), noting that ir · x ⇥ L = L2 and equating terms with the same Dirac
structure we get the conditions:

�5 : i(3 + r@r)F2 + j(j + 1)F3 +m
2
F4 = 1

2 (M � V )F1

�5 ↵ · x :
i

r
@rF1 = 1

2 (M � V )F2

�5 ↵ · x⇥L :
1

r2
F1 = 1

2 (M � V )F3

�
0
�5 : F1 = 1

2 (M � V )F4 (4.7)

Expressing F2, F3 and F4 in terms of F1 we find the radial equation (denoting F
0
1 ⌘ @rF1)

F
00
1 +

⇣2
r
+

V
0

M � V

⌘
F
0
1 +

h
1
4 (M � V )2 �m

2 � j(j + 1)

r2

i
F1 = 0 (4.8)

in agreement with the corresponding result in Eq. (2.24) of [11].

The relations (4.7) allow to express the wave function (4.6) as

��+(x) =
h 2

M � V
(i↵ ·

!
r+m�

0) + 1
i
�5 F1(r)Yj�(x̂) = F1(r)Yj�(x̂) �5

h
(i↵ ·

 
r�m�

0)
2

M � V
+ 1

i
(4.9)

The radial equation (4.8) is readily found when the first (second) form is used in the first (second) term of the bound
state equation (3.9). Both terms have a spin-orbit interaction which cancels in their sum. The contribution from the
quark term is, taking into account the radial equation,

h 2

M � V
(i↵ ·

!
r+m�

0)� 1
i
��+(x) =

4V 0

r(M � V )3
(2S ·L� im� · x)�5 F1(r)Yj�(x̂) (4.10)

where the spin S = 1
2�5↵. This contribution is cancelled by the antiquark (second) term of (3.9), ensuring that the

bound state is stationary in time.

5 The first three trajectories were named ⇡, A1 and ⇢ in [11].

There are no solutions for quantum numbers that would be exotic 
in the quark model (despite the relativistic dynamics)

⇒ 

V (x) = g⇤2|x| ⌘ V 0|x|
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  Example: 0–+ trajectory wf’s

��+(x) =
h 2

M � V
(i↵ ·

!
r+m�0) + 1

i
�5 F1(r)Yj�(x̂)

Radial equation: F 00
1 +

⇣2
r
+

V 0

M � V

⌘
F 0
1 +

h
1
4 (M � V )2 �m2 � j(j + 1)

r2

i
F1 = 0

Spectrum similar to
dual models

/V´

Linear Regge
trajectories 

with daughters

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

5 10 15 20

1

2

3

4

5

6

M2

j
Mass spectrum:

ηP = (–1)j+1

ηC = (–1)j

Local normalizability at r = 0 and at V(r) = M determines the discrete M

m = 0
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39

(ii) It has been known since 1932 [28] that the normalization integral
R
d
3x| (x)|2 of the Dirac wave function diverges

for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  †

 is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.

δ1

δ2
A

B

C

FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵s, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
NC

Z h Y

k=A,B,C

dxk
1dx

k
2

i
e
i(xA

1 +xA
2 )·PA/2�i(xB

1 +xB
2 )·PB/2�i(xC

1 +xC
2 )·PC/2

⇥ h0|
⇥
 
†(xB

2 )�
†
B�

0
 (xB

1 )
⇤⇥
 
†(xC

2 )�
†
C�

0
 (xC

1 )
⇤⇥
 
†(xA

1 )�
0(xA

1 )�A (x
A
2 )

⇤
|0i

= � (2⇡)3p
NC

�
3(PA � PB � PC)

Z
d�1d�2 e

i�1·PC/2�i�2·PB/2Tr
⇥
�
0�†

B(�1)�A(�1 + �2)�
†
C(�2)

⇤
(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�
g
0
�
homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.
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to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
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their propagator. The ff̄ states discussed here may be used as asymptotic
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mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵s, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
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If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�
g
0
�
homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.
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(ii) It has been known since 1932 [28] that the normalization integral
R
d
3x| (x)|2 of the Dirac wave function diverges

for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  †

 is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.
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FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.
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M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O
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homogeneous solution (6.11) of Gauss’ law is physically viable.
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When squared, this gives a 1/NC hadron loop unitarity correction.

The bound state equation was obtained neglecting pair
production (string breaking).

String breaking: Pair production

There is an O

⇣
1/
p

NC

⌘
coupling between 
the states:

π
π
π
π

ρAs in the Dirac eq. with a linear potential, 
the pairs show up indirectly, via a
constant norm of the wave function as |x| → ∞

This seems related to duality.
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 21Parton distributions have a sea component

In D=1+1 dimensions the sea component is prominent at low m/e :
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0.10.050.010.001

(a) (b)

The red curve is an analytic approximation, valid in the xBj  → 0 limit.

m/e = 0.1

(log scale in xBj)

Note: Enhancement at low x is due to bd (sea), not to b†d† (valence) component.
String breaking is not included.

D. D. Dietrich, PH, M. Järvinen
arXiv 1212.4747
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 22Bound states in motion

A qq̅ bound state with CM momentum P may be expressed as

Note: States are defined at equal time in all frames.

The potential Hamiltonian is

What is the classical field ?

The answer depends on the frame of the observer.

HV =

Z
dx †(t,x)

⇥
� i↵ ·

!
r+m�0 + 1

2�
0g /A(P )

⇤
 (t,x)

Aµ
(P )

|M,P iV ⌘
Z

dx1 dx2  ̄(t = 0,x1) e
iP ·(x1+x2)/2�(P )(x1 � x2) (t = 0,x2) |0i
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 231. The classical field is independent of P

The component  ̄(x1) (x2) |0i specifies positions, not momenta.

It is independent of P and so is the instantaneous A0 field.

P breaks rotational symmetry: angular & radial dependence does not separate.

The bound state equation has a P-independent potential V (x) = V 0|x|

The solution for Φ1(P)(x) in D = 1+1 dimensions is not simply Lorentz contracting.

ir ·
�
↵,�(P )

1 (x)
 
� 1

2P ·
⇥
↵,�(P )

1 (x)
⇤
+m

⇥
�0,�(P )

1 (x)
⇤
=
⇥
E � V (x)

⇤
�(P )

1 (x)

Φ1(P)(x) determines the states with momentum P in the original frame.

It provides a boundary condition at x⊥ = 0 on Φ1(P)(x) in D = 3+1 dimensions.
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2. Rest frame dynamics as seen by a moving observer

A moving observer sees a boosted rest frame A0 field  (x = x1 – x2): 

Define boost ξ taking  P = (0, 0, P)  along the z-axis:    P = M sinh(ξ)

A3
(P )(x) = sinh ⇠A0(xR)A0

(P )(x) = cosh ⇠A0(xR)

where the rest frame (Lorentz dilated) separation is xR = (x, y, z cosh ⇠)

The P-dependence of the Φ2(P)(x) solution is found analytically from the BSE:

The wave function classically Lorentz contracts: xR → x.

Extra twist: The magnetic field B = ∇×A causes quark spins to precess in time

�(P )
2 (x) = e�⇠�0�3/2 �(0)(xR) e

⇠�0�3/2
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 25States with P = M = 0

We required the wave function to be normalizable at r = 0 and V´r = M

For M = 0 the two points coincide. Regular, massless solutions are found.

The massless 0++ meson “σ” may mix with the perturbative vacuum. 
This spontaneously breaks chiral invariance.

��(x) = N�

h
J0(

1
4r

2) +↵ · x i

r
J1(

1
4r

2)
i

|�i =
Z

dx1 dx2  ̄(x1)��(x1 � x2) (x2) |0i ⌘ �̂ |0i

P̂µ |�i = 0 State has vanishing four-momentum in any frame

For m = 0 and V´ = 1 :

where J0 and J1 are Bessel functions.

It may form a non-trivial condensate.
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 26A chiral condensate (m = 0)

Since | σ 〉 has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

|�i = exp(�̂) |0iAnsatz: implies h�| ̄ |�i = 4N�

An infinitesimal chiral rotation of the condensate generates a pion

U�(�) |�i = (1� 2i� ⇡̂ |�i

�⇡ = �5��where π̂  is the massless 0–+ state with wave function

U�(�) = exp
⇥
i�

Z
dx †(x)�5 (x)

⇤
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h�|jµ5 (x)⇡̂ |�i = iPµf⇡ e
�iP ·x

Small quark mass: m > 0

The massless (Mσ = 0) sigma 0++ state has wave function

��(x) = f1(r) + i↵ · x f2(r) + i� · x g2(r)

An Mπ > 0 pion 0–+ state has rest frame wave function

�⇡(x) =
⇥
F1(r) + i↵ · xF2(r) + �0 F4(r)

⇤
�5

F 00
1 +

⇣2
r
+

1

M � r

⌘
F 0
1 +

⇥
1
4 (M � r)2 �m2

⇤
F1 = 0

F4(0) =
2m

M
F1(0)

h�| ̄(x)�5 (x) ⇡̂ |�i = �i
M2

2m
f⇡ e

�iP ·x

F4(0) =
1
4 iM⇡f⇡

F1(0) = i
M2

8m
f⇡

⇒ 

⇒ 

Also the P-dependence is correct.

A smooth m → 0 requires Mπ2 ∝ m, which is allowed at lowest order in m.

Radial functions
are Laguerre fn’s
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 28Bound states built on |χ〉

|Mi� =

Z
dx1 dx2  ̄(x1)�(x1 � x2) (x2) |�i

The fields in |χ〉 will break chiral invariance (no parity doublets).

5 10 15 20 25

-0.5

0.5

1.0

1.5

J0

For low momentum transfers Φσ 
may be approximated to be pointlike 

��(x) ! ��0(x) = �3(x)�0

|�i ! |�0i = exp
h
�0

Z
dx  ̄(x) (x)

i
|0i

The contractions of ψ̅(x1)ψ(x2) with ψ̅ψ in | χ 〉 have the effect 
of a mass term in ℋV

⇒ Momentum dependent mass term as in the DSE approach?
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Some topical issues

•   Expanding the perturbative S-matrix around fields with stationary action

H = HV +HI HV = H0 +HI(Acl)

•   Equal-time bound states in motion
– P-dependence of wave function (classical, P-independent field)
– Precession of state (as seen by a moving observer)

•   Meson spectrum with chiral symmetry breaking and  mu, md ≠ 0

•   Baryon spectrum

•   Duality and Parton distributions

•   Hadron decays and scattering amplitudes (string breaking)
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Time to teach bound states in QFT?

• Wave functions: Equal-time, Light Front, Bethe-Salpeter, …

• Deriving the Schrödinger equation from QED

• The states described by the Dirac wave function

• Poincaré invariance for bound states

To understand hadrons we need the methods of bound state QFT.
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Back-up slides
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Abstract We study the moments of hadronic event shapes
in e+e− annihilation within the context of next-to-next-to-
leading order (NNLO) perturbative QCD predictions com-
bined with non-perturbative power corrections in the disper-
sive model. This model is extended to match the NNLO per-
turbative prediction. The resulting theoretical expression has
been compared to experimental data from JADE and OPAL,
and a new value for αs(MZ) has been determined, as well
as of the average coupling α0 in the non-perturbative region
below µI = 2 GeV within the dispersive model:

αs(MZ) = 0.1153 ± 0.0017(exp) ± 0.0023(th),

α0 = 0.5132 ± 0.0115(exp) ± 0.0381(th).

The precision of the αs(MZ) value has been improved in
comparison to the previously available next-to-leading order
analysis. We observe that the resulting power corrections are
considerably larger than those estimated from hadronisation
models in multi-purpose event generator programs.

1 Introduction

Event-shape variables measure geometrical properties of
hadronic final states at high energy particle collisions. They
have been studied extensively at e+e− collider experiments,
which provided a wealth of data at a variety of centre-
of-mass energies. Exploiting this large energy range, one
can attempt to disentangle perturbative and non-perturbative
contributions (which scale differently with increasing en-
ergy) to event-shape observables.

Apart from distributions of these observables, one can
also study mean values and higher moments. The nth mo-
ment of an event-shape observable y is defined by

〈
yn

〉
= 1

σhad

∫ ymax

0
yn dσ

dy
dy, (1)

a e-mail: luisonig@physik.uzh.ch

where ymax is the kinematically allowed upper limit of the
observable. Moments were measured for a variety of dif-
ferent event-shape variables in the past. The most common
observables y of three-jet type are: thrust T [1, 2] (where
moments of y = (1 − T ) are taken), the heavy jet mass
ρ = M2

H /s [3], the C-parameter [4, 5], the wide and total
jet broadenings BW and BT [6, 7], and the three-to-two-jet
transition parameter in the Durham algorithm Y3 [8–12].
Definitions for all observables are given in, for example,
Refs. [13]. Moments with n ≥ 1 have been measured by
several experiments, most extensively by JADE [14, 15] and
OPAL [16], but also by DELPHI [17] and L3 [18]. A com-
bined analysis of JADE and OPAL results has been per-
formed in Ref. [19].

As the calculation of moments involves an integration
over the full phase space, they offer a way of comparing
to data which is complementary to the use of distributions,
where in general cuts on certain kinematic regions are ap-
plied. Furthermore, the two extreme kinematic limits—two-
jet-like events and multi-jet-like events—enter with different
weights in each moment: the higher the order n of the mo-
ment, the more it becomes sensitive to the multi-jet region.
Therefore it is particularly interesting to study the NNLO
corrections to higher moments of event shapes, as these cor-
rections should offer a better description of the multi-jet re-
gion due to the inclusion of additional radiation at parton
level.

Moments are particularly attractive in view of study-
ing non-perturbative hadronisation corrections to event
shapes. In event-shape distributions, one typically corrects
for hadronisation effects by using generic Monte Carlo event
simulation programs. A recent study, carried out in the con-
text of a precision determination of the strong coupling con-
stant from event-shape distributions [20], revealed large dis-
crepancies between the standard event simulation programs
used at LEP [21–23] on one hand and more modern gen-
erators [24, 25], which incorporate recent theoretical ad-
vances, on the other hand. In the event-shape distributions,
it is very difficult to disentangle hadronisation corrections
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Fig. 3. 95% CL contours for jet shape means (dashed) and some distributions
(solid). The curves for the T , C and old BT and BW distributions are taken
from [8]. The curves for the means are to be taken as purely indicative since
we have not accounted for the correlations between systematic errors (which,
where available, are added in quadrature to the statistical errors). Additionally
for some observables we may not have found all the available data.

is greatly improved by the updated theoretical treatment. We expect the wide
broadening distribution to be equally improved, but this remains to be verified.

The fits for ⇥s and ⇥0 from the mean values are also generally consistent
with each other and with those from the distributions. However, the agreement
between di↵erent event shapes is still not perfect. In the case of the heavy-jet
mass we believe that this may in part be related to the treatment of particle
masses, which have more e↵ect on jet masses than on the thrust or the C-
parameter (which are both defined exclusively in terms of 3-momenta). We leave
this question for future consideration.

Outlook. Another important issue is that of the power correction to the jet-
broadening in DIS. Formally the extension of our results to the DIS case is
quite a non-trivial exercise. As a first step it would be necessary to carry out a
resummed PT calculation for the DIS broadening. This has so far not been done.

The situation for the mean broadening measured with respect to the thrust
axis is fairly simple though, since (modulo factors of two associated with the
definition of the broadening in DIS [23]) it is equivalent to a single hemisphere

http://link.springer.de/link/service/journals/10105/index.html
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empirically, since they typically result in a distortion of the
distribution, which can not be unfolded in a straightforward
manner.

In event-shape moments, one expects the hadronisation
corrections to be additive, such that they can be divided into
a perturbative and a non-perturbative contribution,
〈
yn

〉
=

〈
yn

〉
pt +

〈
yn

〉
np, (2)

where the non-perturbative contribution accounts for hadro-
nisation effects. Based upon the calculation of next-to-
next-to-leading order (NNLO) QCD corrections to the
event-shape distributions, which became available recently
[13, 26–31], the perturbative contribution to event-shape
moments is now known to NNLO [32, 33]. The non-
perturbative part is suppressed by powers of λp/Qp (p ≥ 1),
where Q ≡ √

s is the centre-of-mass energy and λ1 is of the
order of ΛQCD. The functional form of λp has been dis-
cussed quite extensively in the literature, but as this parame-
ter is closely linked to non-perturbative effects, it cannot be
fully derived from first principles.

In this work, we use the dispersive model derived in
Refs. [34–37] to compute hadronisation corrections to
event-shape moments. This model provides analytical pre-
dictions for the power corrections, and introduces only a
single new parameter α0, which can be interpreted as the
average strong coupling in the non-perturbative region. This
model has been used extensively in combination with NLO
QCD perturbative calculations to study event-shape mo-
ments [16, 38–40]. To combine the dispersive model with
the perturbative prediction at NNLO QCD, we extended its
analytical expressions to compensate for all scale-dependent
terms at this order. By comparing the newly derived ex-
pressions with experimental data on event-shape moments,
we perform a combined determination of the perturbative
strong coupling constant αs and the non-perturbative para-
meter α0. Compared to previous results at NLO, we observe
that inclusion of NNLO effects results in a considerably im-
proved consistency in the parameters determined from dif-
ferent shape variables, and in a substantial reduction of the
error on αs .

In Sect. 2, we outline the structure of perturbative and
non-perturbative contributions to event-shape moments. The
predictions of the dispersive model to power corrections are
extended to NNLO in Sect. 3, and used to extract αs and
α0 from experimental data in Sect. 4. In Sect. 5 the results
obtained within the dispersive model are compared to those
from multi-purpose event generator programs.

2 Power corrections to event-shape moments

Non-perturbative power corrections can be related to in-
frared renormalons in the perturbative QCD expansion for

the event-shape variable [34, 35, 41–46]. The analysis of in-
frared renormalon ambiguities suggests power corrections
of the form λp/Qp , but cannot make unique predictions for
λp: it is only the sum of perturbative and non-perturbative
contributions in (2) that becomes well-defined [47]. Differ-
ent ways to regularise the IR renormalon singularities have
been worked out in the literature [48–56].

One approach is to introduce an IR cutoff µI and to re-
place the strong coupling constant below the scale µI by
an effective coupling such that the integral of the coupling
below µI has a finite value [34–37]

1
µI

∫ µI

0
dQαeff

(
Q2) = α0(µI ). (3)

This dispersive model for the strong coupling leads to a shift
in the distributions

dσ

dy
(y) = dσpt

dy
(y − ayP ), (4)

where the numerical factor ay depends on the event shape
and is listed in Table 1, while P is believed to be univer-
sal (universality breaking terms arise from hadron mass ef-
fects [57] in the moments of ρ, an estimate on these effects
can be obtained from general-purpose event generator pro-
grams, e.g. from PYTHIA [21]) and scales with the CMS
energy like µI/Q.

By inserting (4) into the definition of the moments, one
obtains:

〈
yn

〉
=

∫ ymax

0
dy yn 1

σhad

dσ

dy
(y) (5)

=
∫ ymax−ayP

−ayP
dy(y + ayP )n

1
σhad

dσpt

dy
(y) (6)

≈
∫ ymax

0
dy(y + ayP )n

1
σhad

dσpt

dy
(y) (7)

discarding the integration over the kinematically forbidden
values of y. This leads to the non-perturbative predictions

Table 1 The ay coefficients of the non-perturbative event-shape mo-
ment prediction

Event-shape observable 1 − T C Y3 ρ BT BW

ay 2 3π 0 1 1 1
2

Yu.L. Dokshitzer, G. Marchesini, 
G.P. Salam, EPJdirect C3 (1999) 1

αs in the infrared from event shapes

µI = 2 GeV
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power-law type of running [48,49], given by (see the
Appendix for details)

m2ðq2Þ ¼ m4
0

q2 þm2
0

!
ln
"
q2 þ 2m2

0

!2
QCD

#
= ln

"
2m2

0

!2
QCD

#$
3
: (4.5)

Notice that whenq2 ! 0 one hasm2ð0Þ ¼ m2
0. A variety of

theoretical and phenomenological estimates place it in the
range m0 ¼ 350– 700 MeV [1,3,36,50]. In Fig. 11 we plot
the behavior of m2ðq2Þ as given by Eq. (4.5), for the two
valuesm0 ¼ 500 MeV andm0 ¼ 600 MeV, which will be
used in the rest of this section.

On the left panel of Fig. 12, we show the results for
!PTðq2Þ when m0 ¼ 500 MeV in Eq. (4.5). The small
discrepancy between the three curves is mainly due to

the propagation of the tiny residual " dependence dis-
played by the quantity d̂ðq2Þ as shown in Fig. 9. One clearly
sees that the effective coupling !PTðq2Þ freezes out and
acquires a finite value in the IR, while in the UV it shows
the expected perturbative behavior. For m0 ¼ 500 MeV,
one gets !PTð0Þ % 0:6. One should also notice that the
choice of smaller values of m0 would not produce a mono-
tonically decreasing !PTðq2Þ; instead, one observes the
appearance of ‘‘bumps’’ in the IR region. Therefore if
one were to introduce the monotonic decrease as an addi-
tional requirement of !PTðq2Þ, this would provide a lower
bound for the possible values of m0. Finally, on the right
panel of Fig. 12, we show the effective coupling for the
case m0 ¼ 600 MeV. Now, the freezing occurs at the
slightly higher value of !PTð0Þ % 0:85. Evidently, the
freezing value !PTð0Þ increases as one goes to higher
values of m0.
An accurate fit for the running charges shown in Fig. 12

is provided by the following functional form

!ðq2Þ ¼
!
4#bln

"
q2 þhðq2; m2ðq2ÞÞ

!2
QCD

#$&1
; (4.6)

with the function hðq2; m2ðq2ÞÞ given by

hðq2; m2ðq2ÞÞ ¼ $1m
2ðq2Þ þ $2

m4ðq2Þ
q2 þm2ðq2Þ : (4.7)

Our best fits to the numerical results for !PTðq2Þ using
Eq. (4.6) above are shown in Fig. 13.
Finally, we compare numerically the two effective

charges, !PTðq2Þ and !gh ðq2Þ. The results are shown in

Fig. 14, where r̂ðq2Þ is compared with d̂ðq2Þ (left panel),
and !gh ðq2Þ with !PTðq2Þ (right panel). As anticipated, the
curves coincide in the deep IR and UV, and differ only
slightly in the intermediate region. To produce both curves,
we have factored out a mass of m0 ¼ 500 MeV, whose

FIG. 11 (color online). The behavior of the running mass given
by Eq. (4.5) when m0 ¼ 500 MeV (black continuous line) and
m0 ¼ 600 MeV (red dashed line). In both cases we used
!QCD ¼ 300 MeV.

FIG. 12 (color online). Left panel: The running charge obtained from (2.30) using the SDE solutions for "ðq2Þ, Dðq2Þ, and 1þ
Gðq2Þ. We use a running mass given by Eq. (4.5) with m0 ¼ 500 MeV. Right panel: The same for m0 ¼ 600 MeV.

A. C. AGUILAR et al. PHYSICAL REVIEW D 80, 085018 (2009)
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Figure 25: The running coupling in four dimensions is shown in the top panel
and the corresponding β-function (15) in the bottom panel. All momenta
are along the x-axis. The band is the perturbative result (14). Symbols
have the same meaning as in figure 10.

of asymptotic freedom: Because both propagators become constant and non-
zero at large momenta, so must the running coupling determined from (11).
Only after dividing out a power of momentum, the running coupling tends
polynomial to zero at both large and small momenta.

The situation in two dimensions is the only one offering a slight surprise7.
In previous investigations, with their smaller statistical reliability [14], the
coupling appeared to become infrared finite without any maximum. Here,
a maximum is seen. This could have been anticipated from figure 15 and
21, as the exponents of the gluon and ghost propagator do not fulfill the

7Note that the lowest momentum point is severely affected by lattice artifacts, and
therefore dropped for every volume [14]. This is partly a finite lattice spacing effect, but
even at the present lattice spacing still severe.
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The coupling is scheme-dependent
for small as well as large Q2.
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W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

Resonance contributions 
ep → eN*

build DIS scaling in 
ep → eX

Bloom-Gilman Duality

Q2 ≈ 4.5

ξ≈xB

Q2 ≈ 0.5
Jlab Hall C

Δ, S11xBN

γ* Q2

Scattering dynamics is built into hadron wave functions.
We must understand relativistic bound states in motion.

m2
N⇤ = m2

N +Q2

✓
1

xB
� 1

◆
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Rules of Thumb - e.g., OZI

�(1020) ! KK̄ 83.1 %ϕ
s
s
_

u

u
_

K

K
_ ΔE

26 MeV

Br

�(1020) ! ⇡⇡⇡ ϕ π
π
π

u

u
_

s

s
_

15.3 %610 MeV

Disconnected, perturbative diagrams are suppressed

Connected diagrams: Unsuppressed, string breaking from confining potential

This suggests that perturbative corrections are small even in the soft regime.
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Ladder diagrams (rest frame)

The Bohr momentum scale is |p| ~ αm , kinetic energy |p|2/2m ~ α2m ~ EB

With momenta ∝ α, the propagators bring inverse powers of α :
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Non-ladders are suppressed by α
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These diagrams have the same number of
propagators and vertices as the 2-photon ladder.
A similar counting would again give ~ 1/α .

However, the O(1/α) term vanishes:

/
Z

dk0

2⇡

1

(k0 � a+ i")(k0 � b+ i")
= 0

In the straight ladders
the integration contour
is pinched:

/
Z

dk0

2⇡

1

(k0 � a+ i")(k0 � b� i")
6= 0

⇒ Only straight ladders are of the leading order, 1/α .
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Gribov’s View of Confinement (1991-95)

According to Gribov, confinement sets in when a strong Coulomb interaction 
between fermions causes a rearrangement of the vacuum:

34

the IMF wave function �A
IMF given in (5.45). However, the mass of the final state MB / Q. Hence the variable

�B / Q
2, making the IMF limit (5.45) (taken at fixed �) inapplicable for B. In fact, the first two terms in (5.9)

give the leading contribution to �B(�B), but they are orthogonal to �A
IMF in the trace Tr

⇥
�†

B(x)�A(x)
⇤
of the form

factor (5.51). Thus the scaling contribution to the parton distribution arises from the leading term in �B combined
with the next-to-leading term in �A, and vice versa. In particular, the enhancement for xBj ! 0 in Fig. 18 does not
arise from �A

IMF .

VI. RELATIVISTIC BOUND STATES IN D = 3 + 1

So far we considered three examples of “Born level” bound states in abelian gauge theory. In this approximation the
gauge field is determined by the classical field equations and explicit pair production is ignored (H |0i = 0).

1. QED atoms. For small ↵ the ladder diagrams (Figs. 2a, 2b, . . . ) dominate near the bound state poles of the
elastic e

+
e
� amplitude. Their sum generates the classical �↵/r potential. The Schrödinger equation follows

from HQED |Ei = E |Ei, when the state |Ei is defined as in (2.66) and the classical A0 field is used in HQED.

2. The Dirac equation. A static point charge generates the confining potential V (x) = 1
2 |x| in D = 1+1 dimensions.

The state (3.11) is an eigenstate of HQED if the wave function  (x) satisfies the Dirac equation. Virtual e+e�

pairs (Fig. 12) appear for V (x) & 2m (Fig. 14), giving a constant particle density | (x)|2 at large |x|.

3. ff̄ states in D = 1 + 1. The state |E,P i of (5.1) is bound when its equal-time wave function � satisfies (5.5),
with V (x) determined by Gauss’ law. A hidden boost covariance ensures that electromagnetic form factors are
Poincaré as well as gauge invariant. There is no parity doubling as m ! 0.

In this Section we consider how this approach may be extended to QCD hadrons in D = 3 + 1 dimensions.

Gribov [35, 36] found a critical coupling in gauge theories,

↵
crit(QED) = ⇡

 
1�

r
2

3

!
' 0.58 ↵

crit
s (QCD) =

⇡

CF

 
1�

r
2

3

!
' 0.43 (6.1)

at which the Coulomb interaction between light fermions becomes strong enough to cause a rearrangement of the
perturbative vacuum. In QED ↵ ' 1/137 is well below the critical value, whereas ↵s(m⌧ ) ' 0.33 in QCD [37]. ↵s(Q)
approaches the critical value (6.1) for Q < m⌧ .

Dokshitzer [38] has argued that confinement may be described by a classical field. In order to preserve Poincaré
invariance such a field must satisfy the QCD equations of motion. Gauss’ law fixes A

0 up to a boundary condition.
We shall consider solutions with a constant, universal field strength |rA

0| at large distances. A mass scale (⇤QCD)
can only arise from a boundary condition when loop e↵ects are neglected.

A. The abelian case

We begin by illustrating the procedure for U(1) gauge theory (even though it is not relevant for QED). In our
discussion of Positronium we recalled that stationarity of the action imposes Gauss’ law (2.60) on the Coulomb field.
The operator solution (2.61) for Â0 assumes that the field vanishes at spatial infinity. Let us consider the possibility
of including a homogeneous solution16,

Â
0(t,x) =

Z
d
3y

✓
x · y +

e

4⇡|x� y|

◆
 
†
 (t,y) (6.2)

Here  is an x-independent parameter which will be determined to give a universal field strength for |x| ! 1. The
O () contribution will be considered leading compared to the perturbative O (e) term.

16 The formulation below di↵ers technically from that in [25], but the principles and results are the same.
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Here  is an x-independent parameter which will be determined to give a universal field strength for |x| ! 1. The
O () contribution will be considered leading compared to the perturbative O (e) term.

16 The formulation below di↵ers technically from that in [25], but the principles and results are the same.

� 1

137

& ↵s(m
2
⌧ ) ' 0.33

See Yu. Dokshitzer, sect. 2.4 of hep-ph/0306287

αscrit/π = 0.14 may allow PQCD down to Q2=0.
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For baryons the homogeneous classical solution gives:

Translation invariance requires color singlet meson and baryon states.

It agrees with the meson potential when two quarks coincide:

VB(x1,x2,x2) = VM(x1 � x2)

Baryons

VB(x1,x2,x3) =
g⇤2

p
2

p
(x1 � x2)2 + (x2 � x3)2 + (x3 � x1)2

For SU(3) this type of solution only exists for qq̄ and qqq states.

The “external” color field vanishes also for the qqq states.
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The Dirac Electron in Simple Fields*

By MILTON S. PLESSET

Sloane. Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a

simple manner into a symmetric canonical form. This canonical form makes readily

possible the investigation of the characteristics of the solutions of these relativity

equations for simple potential fields. If' the potential is a polynomial of any degree

in x, a continuous energy spectrum characterizes the solutions. If the potential is a

polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum

when the energy is numerically greater than the rest-energy of the electron; values

of the energy numerically less than the rest-energy are barred. When the potential

is a polynomial of any degree in r, all values of the energy are allowed. For poten-
tials which are polynomials in 1/r of degree higher than the first, the energy spec-

trum is again continuous. The quantization arising for the Coulomb potential is an

exceptional case.

'N HIS treatment of the reflection of the relativity electron at a potential
-- jump Klein' found a paradoxical behavior of the Dirac electron associ-

ated with the possibility of the existence of states of negative kinetic energy.

He showed by an ingenious treatment that the reflection coefficient for elec-

trons incident upon a discontinuous potential jump of height P varied with

P from the value zero for P =0 to the value unity for P = W—mc' (W being

the energy of the incident electrons). For this last value of P the momentum
P associated with the transmitted beam had the value zero, and as I' was
increased beyond t/t' —nsc' this momentum became imaginary and the reHec-

tion coefficient remained unity until I' attained the value t/t/'+mc'. The re-

sults thus far are exactly what would be expected. If I' is increased further

one enters the domain of negative kinetic energy wherein the group velocity

and the momentum in the transmitted beam are oppositely directed; also the

reflection coefficient falls off from the value unity and approaches the value

(W—cp)/(W+cp) as P is indefinitely increased. Thus by a transition to a

state of negative kinetic energy the Dirac electron has apparently an appreci-

able probability of penetrating a barrier of infinite height. Bohr suggested
that this peculiar result might be due to a jump in potential of the order of
mc' over a region of the order of the Compton wa've-length k/mc. It is within
a region of the order of h/mc ths. t the internal structure of the Dirac electron

and the accompanying "trembling" phenomenon' manifests itself. This

supposition of Bohr was verified by Sauter' who treated the problem of the

* The results of this paper were presented at the Washington meeting of the American

Physical Society (April, 1932).
' O. Klein, Zeits. f. Physik 53, 157 (1929).
' E. Schrodinger, Preuss. Akad. Wiss. Berlin, Ber. 24, 418 (1930).
3 F. Sauter, Zeits. f. Physik 69, 742 (1931).
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of the distribution at low xBj is attributed to f ¯f pairs, indicating again

the inclusive nature of the wave functions obtained with retarded boundary

conditions.
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 41Example of Dirac wave functions:                         in D=1+1

V=2m
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Schrödinger ρ(x)  Φ

1
(x)   f f

  ρ(x)   Schrödinger

(a) (b)

_

Wf NR region: b†

d (pairs)

|M � 0i =
Z

dp

2⇡2E

Z
dx

h
b†pu

†(p)e�ipx + dpv
†(p)eipx

i  '(x)
�(x)

�
|⌦i

The “single particle” Dirac wave function contains pair contributions (duality)

V (x) = 1
2e

2|x|

D. D. Dietrich, PH, M. Järvinen, arXiv 1212.4747
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Dirac states:                    in D=1+1V (x) = 1
2 |x|

The Coulomb potential in D=1+1 is                          . We set e = 1 (scale).V (x) = 1
2e

2|x|

The potential confines electrons, and repels positrons: V(e+) = – V(e–) 
Any e+ in the state is accelerated to large |x |.

Since we consider time independent solutions, there will also be 
decelerating positrons, moving towards x = 0.

To keep T+V ≃ constant, positrons have large momenta at high |x |:
  |p| ~ Ep ~ |x |/2

The positron energy spectrum is continuous, whereas the electrons
form bound states around x  = 0, with discrete energies.

The relative size of the electron and positron components can be adjusted. 
However, positrons are completely absent only in the NR limit, m → ∞.

Thus we can understand the observation made by Plesset in the 1930’s.
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Plane waves in bound states 

In the parton picture, high energy quarks can be treated as free constituents.
They are momentum eigenstates, described by plane waves.
How does this fit into the bound state wave functions?

Consider a highly excited state (P=0):   M → ∞,  V(x) << M

σ = (M-V)2  ≈ M2 – 2MV  →∞ 

�(� ! 1) ⇠ exp(±i�/2)

Thus oscillations of the wf at large σ gives a plane wave with p = ±M/2

= e±iM2

exp(⌥ixM/2)

The operator expression for the state is in this limit:

|M,P = 0i =
p
2⇡

2M

�
b†M/2d

†
�M/2 + b†�M/2d

†
M/2 |⌦i

As in the parton picture, only “valence” particles appear (no b or d operators).

)
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Quark - Hadron duality 

n0 z ≈
P

k–P

k

The wave functions of highly excited (large mass M) bound states are similar 
to free ff pairs (for V(x) << M). This determines their normalization:

|Φ0(x=0)|2 = |Φ1(x=0)|2 = π/2⇒

The solutions are consistent with 
Bloom-Gilman duality: Plane wave 
partons in bound state wave function.

Δ, S11xBN

γ* Q2

B-G Duality

P

The same result for 
j = S, P, V, A currents

j

D. D. Dietrich, PH, M. Järvinen, arXiv 1212.4747


