Bound states and QCD |

Paul Hoyer
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@ @ Hadrons are bound states of QCD

Methods:

PQCD 1n hard collisions: Factorization

Lattice QCD: Hadron spectrum, form factors, ...

Effective theories: ¥PT, HQET, ...

Models: “Inspired” by QCD and data Quark model, Duality, ...
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"The J/y is the Hydrogen atom of QCD"
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Linear Cornell potential agrees with Lattice QCD

3 B | | | | |

3 L The quenched Wilson action SU(3) potential. _|

Gunnar S. Bali, Phys.Rept. 343 (2001) 1
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QED works for atoms

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
7 a (8 In2
A = meat{ —— — [ =4+ —=
YQED mo‘{m w(9+2>
o2 5 1367 5197 221 1 53
— I — ‘[ =r?’4+=)In2— —
+7r2[ 4™ YT 648 T 3456 (144” +2> N 32“3)]
7o’ 3 17 217
— L a4+ “hna(—m2- ") +0(a®)} =203.39169(41) GHz
81 T 3 90

Avexp =203.394+ 002 GHz

e Binding energy 1s perturbative in . and log(a) (measurable)

e Wave function y(r) « exp(— mar) is of O(0l*) (gauge dependent)

There are many ways to (re)organize an expansion that starts with O(0.™)

NRQED chooses to start from Schrodinger equation with V(r) = — a/r
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Some developments in bound state QED

1S
tT tT
1951: Salpeter & Bethe === = = K

Perturbatively expand propagators S and kernel K~ 15
Explicit Lorentz covariance ensured

1975: Caswell & Lepage: Not unique: o # of equivalent equations, S <> K

We may start from Schrodinger atoms

1986: Caswell & Lepage NRQED: Effective NR field theory

Relativistic electrons are rare in atomic wave functions
Expand QED action in powers of V/m,
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QED origins of the Schrdodinger equation

In atomic (rest frame) kinematics: | p | ~ o m, pl — me ~ 02 me
“Ladder diagrams™ are distinguished by being of leading order in o :
I

(r- EmICIIic

_ ‘@6"’6_’2
p0 — B+ ie

+ ...
Their geometric sum gives the

Schrodinger equation E =2m, — % m.a’ + O ( O/L)

Divergent series?

Unique result?
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Feynman diagrams: The Interaction Picture

H =Ho+ H; Ho li);, = Eili);,

o

Sfizout<f,t%oo|{TeXp{—i/ dt?—[j(t)}}\i,t%—o@m

— 0

Formally exact expression, provided the in- and our-states at 1 = +©
have a non-vanishing overlap with the the physical i, f states.

Bound states have no overlap with free in- and out-states at ¢ = £ o

Expanding around free states 1s inadequate for soft processes,
which are influenced by classical fields (Maxwell’s equations).
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Expanding around a stationary action

A stationary action implies a classical gauge field:

5S[AM]
5 An

—0 /[dA“] exp (¢S[A*]/h) =  h—0

Positronium is bound by its classical potential V(r) = — a/r

We should expand around in and out states with their classical gauge field

The i — 0 limit selects an optimal expansion for bound states.
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The "Potential Picture”
H=Hyv +H; Hy = Ho+ Hi(Ayg)

o0

Spi = vif.t — o0 {Texp [—z/ dmf(t)} } it — —00)y,

Hy |i)y = Eili)y
Particles will propagate in the classical field, as appropriate for bound states.

Here: Stay at (7 I)O (Born) level. Consider bound asymptotic states.

Postpone a derivation and studies of higher order contributions in the PP.
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Tllustration: Positronium

dk k) is the Schrodinger
A — AV 0 @ (k) 1s the Schrodinge
| >v /(27‘(‘)3 (k) kA1 —’WQ‘ ) wave function

= /d.’l)l dxs @a(O, .’131) (I)aﬁ(ml — w2) wﬁ(oa 332) |O>

where @ is given by the Schrodinger wave function as

(I)Oéﬁ(w) — « [’you(_i V, Al)} [@(Z V, >‘2)70} 3 ¢(CU)

Check:  Hy |M),, = M |M),,

where .y, includes the classical photon field.
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The classical field for Positronium

8SQED
5AO(t, x)

=0 = ~V?At,z) = e (¢, 2)Y(t, x)

10 - 3 € T
Atw) = [y i)

The classical field is the expectation value of Ain the state
@1, 22) = Y(t, 1) (t, 22) [0) S\ E A

: \ | R
(:1:1, :132\ GAO(J}) ‘:Dl, :B2> B Q 0} ,\{\////§ /\\ \

(@1, @2 T1,22) [T —x1| [T — @

= eA'(x; 21, z2)

Note: ¢ AY1s determined instantaneously for all x

e It depends on x1, x2

«

® GAO(wl) = —GAO(QBQ) = —
Paul Hoyer Jlab 11 May 2018

1 — @] is the classical —a/r potential



The Schraodinger equation

The classical field determines &4 operating on |1, T2)

Hy (t; @1, x2) = /dw Pt @) =iV - a+my® + 5eA%(m; @y, m2) | (t, x)

M)y = [ deydes (@) B @) vles) 0

Hy ’M > vV = ’M > v gives the bound state equation for ®(x;—x2) :

<—

N
i7"y V +my]0(x) + @(x) iy - V = ma°] = [M = V(|z)] 2()
with V(|z|) = — @ This BSE reduces to the Schrodinger
| equation for non-relativistic kinematics.

The h — O limit is required for its derivation.
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Classical field in QCD

Global gauge invariance allows classical gauge field for neutral atoms,
but not for color singlet hadrons in QCD

0 — (@ B (@ 0 o
AV = lx — x| |z — o9 Aa(w) =0
Positronium Proton
QED QCD

However, a classical gluon field 1s allowed for quarks of fixed colors C:

Ag(m;C’) # 0 ZA?L(:B;C’):O
C
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Three consequences of i — 0 in QCD

. 't ~
1. The suppression of loops, s~ 043 Gribov hep-ph/9902279
stops the running of o * '

Sept. 2013

ol v T decays (N3LO)

S(Q) ® Lattice QCD (NNLO)

\ a DIS jets (NLO)

03} 0 Heavy Quarkonia (NLO)

o e'¢ jets & shapes (res. NNLO)
O(S(O)/J'IJ ~ (.14 ® 7 pole fit (N3LO)

v pp—> jets (NLO)

Estimates for the frozen
coupling indicate

= PQCD corrections to J(h0) 02}
can be relevant.

0.1}
2. In the absence of loops, the = QCD 05(Mg) = 0.1185 % 0.0006

QCD scale Apcp cannot arise 1 0 o[Gev] 1000
from renormalization.

3. Poincaré invariance, unitarity etc. should hold at each power of i
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The QCD scale Aqep

At O(h9) (no loops) the QCD scale can arise only via a boundary condition

5
5 A

Secp =0 = 0iFL = —gfape AYFL + g T, P
A homogeneous, ¢ (Ozso) solution with AZ — (0 and hence szlg =0
i) =n Y [y (@ y) vh) TPV w)

B,C

» Linear in x for translation invariance: A% (x;) — A%(x3) # flx1 + x2)

e x -y for rotational invariance
e x-independent field energy density Z \Vflg(a:) | must be universal

= determines % up to a scale A [GeV]



Classical color field for mesons

Ay das 9 (1) DAP (1 — 2) $F (22) [0) $AB () = —— 548
AB/ 1 dxo 1 2 2 () Novs ()
A (a ZKZ/dy (@ y) V] (y) TP v (y)
B.C
<£131 D) ‘AO |CB14,$§4>

= Kk(x1,x2) T - (1 — X2) TfA

1 for each quark color A

<33i47 L } 5’3147 Ty')

— AV(x;x1, 70, A) = [:1: — %(a:l +w2)} Nt TA46A2 O ()

S

T — T2

Z (VA (x; 1, T2, A)]2 = 12A*  Universal field energy

a

Another hadron feels

0/ . AA __
ZA‘L(w’CBl’@’A)O(TrT =0 no field at any x

V(ZEl — 132 — 2gZTAA Ao(ml,ml,wg,A) Ag(mg;wl,a}Q,A)] = gAQ‘wl —CBQ‘

Paul Hoyer Jlab 11 May 2018 Linear potential, independent of quark color component A



Classical color field for baryons

M) = > / day des das Pl (1) 5 (@2) 0] (23) AP (21, 0, 23) [0)  PABC = ABCH
A,B,C

Expectation value of A%(x) = x Z /dy (@ y) V5 (y) TP Yo (y)
B,C

in wg(wl)wg(mg)wg(wg) 0) (A # B # C) determines the classical field:

62

d(wla L2, w3)

Ao(z; 1, T2, 3, ABC) = |& — (1 + T2 + x3)] - (TA%¢, + TBBxy + T x5)

1
where d(xi,x2,x3) = ﬁ\/(wl —x9)2 + (X2 — x3)% + (X3 — X1)?
Z {VxAg(a:; T1, X2, I3, ABC)]2 — 12A4 Universal field energy

Z eABC A (x: @y, o, 3, ABC) =0 No classical field for singlet state
A,B,C

2
V(mla L2, CBB) — QA d(wla L2, .’133)
Paul Hoyer Jlab 11 May 2018



Bound state equation for mesons (rest frame)

Hy |M),, = M |M),, Bound state condition implies, with x = x1—x>

AV {707, <I>(:13)} +m ho, (I)(w)} = [M — V(az)}(l)(az)
V() = gh\|e| = V|

Expanding the 4 x 4 wave function F A
} £
in a basis of 16 Dirac structures F,-(x) Z >\( )

we may use rotational, parity and charge conjugatlon invariance to determine
which I';(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j]: —np =nc = (=1 75, 75, 13- ®, 3a-x x L

N
%

s=1,0l=j+1]: np=nc =+ 71, a =z, Ya-z, a-xx L, Ya-zx L, YYya-L

[
0™~ trajectory [s =1,
0T T trajectory |

[

(—1)

=4l mp=nc=—(-1) Ypa-x, VYpsa-exL, a-L y"a-L
(—1)
= (—-1)

0"~ trajectory [exotic] : np = W, 5o+ L

—> There are no solutions for quantum numbers that would be exotic
in the quark model (despite the relativistic dynamics)



Example: O trajectory wf's

) . np = (=1y+
(@) = [ lia- V4m) + 1 AYa@)  pe= (1)
) , »
Radial equation:  F} + (; + MV_ V)Fl’ + H(M — V)2 —m?* — ](J; 1)]F1 =0

Local normalizability at » = 0 and at V(r) = M determines the discrete M

m=>0
Mass spectrum:
4
Llnear Regge E ] o [ [ [ [ [ o [ o o
trajectories 3+ © © o o o o o o o o
with daughters
2 - [ o o [ [ o [ [ o o

Spectrum similar to
dual models

—_
\
[
L
[
[
[
[
[
[
[
[

Paul Hoyer Jlab 11 May 2018



String breaking: Pair production

The bound state equation was obtained neglecting pair

the states: N

(B, ClA4) =

production (string breaking). %
5
There 1s an O (1 / \/N(;) coupling between A \\

2 | |

(\/%53@,4 — Py — Pg) /d51d52 e'01Pc/2=102Pr /2y [0 (§))D 4(81 4 82) P (2)]
When squared, this gives a 1/N¢ hadron loop unitarity correction.

T

As 1n the Dirac eq. with a linear potential, 0 < T
the pairs show up indirectly, via a <
constant norm of the wave function as x| — o ( JT
This seems related to duality. JT
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Parton distributions have a sea component

In D=1+1 dimensions the sea component 1s prominent at low /e :

m/e =0.1

xg;f (xB;)
10 i (a)

N A

02 04 06 08 10

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

Note: Enhancement at low x is due to bd (sea), not to bid" (valence) component.

String breaking is not included.
Paul Hoyer Jlab 11 May 2018
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D. D. Dietrich, PH, M. Jarvinen
arXiv 1212.4747
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Bound states in motion

A qq bound state with CM momentum P may be expressed as

M, P),, = /dwl do P(t = 0, 21) P @422/ 25(P) (1 — 2o)0p(t = 0, 25) |0)
Note: States are defined at equal time in all frames.

The potential Hamiltonian is

Hvz/dmzﬁ(t,w)[—za V +my’ + VQA(P)} (t, )

What is the classical field A( P)

The answer depends on the frame of the observer.

Paul Hoyer Jlab 11 May 2018



1. The classical field is independent of P s

The component /()Y (x2) |0) specifies positions, not momenta.
It 1s independent of P and so is the instantaneous A9 field.

The bound state equation has a P-independent potential V' (x) = V'|x|
iV - {a, @gp)(m)} — 1P |a, Cbgp) (z)] +m[y’, <I>§P>(a;)] = |E - V(m)}q)gp) ()

@ (P)(x) determines the states with momentum P in the original frame.

P breaks rotational symmetry: angular & radial dependence does not separate.

The solution for @1P)(x) in D = 1+1 dimensions is not simply Lorentz contracting.

It provides a boundary condition at x1 =0 on @ ®)(x) in D = 341 dimensions.

Paul Hoyer Jlab 11 May 2018
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2. Rest frame dynamics as seen by a moving observer

Define boost & taking P = (0,0, P) along the z-axis: P = M sinh(&)

A moving observer sees a boosted rest frame A9 field (x = x1 — x2):

A?P) (x) = cosh & A% (xzR) A?P) (x) = sinh & A (xR)
where the rest frame (Lorentz dilated) separationis Tr = (x,¥, 2z cosh{)
The P-dependence of the ®>(P)(x) solution 1s found analytically from the BSE:

o) (z) = e 820 (g ) £ /2
The wave function classically Lorentz contracts: xg — x.

Extra twist: The magnetic field B = VXA causes quark spins to precess in time

Paul Hoyer Jlab 11 May 2018



States withP=M =0 z

We required the wave function to be normalizable at r =0 and V'r = M
For M = 0 the two points coincide. Regular, massless solutions are found.

€6 99

The massless 0+ meson “0”” may mix with the perturbative vacuum.
This spontaneously breaks chiral invariance.

\U> — /dwl da 1@(371) (I)a(fBl — 5132)@@(332) |O> =0 \0>
, , o 1 2 v 1.2
Form=0and V'=1: CI)J(LIJ)—NU[JO(ZT ) toa-x— Ji(37 )}
/'/i
where Jo and J; are Bessel functions.

]5“ ‘0> — () State has vanishing four-momentum in any frame

It may form a non-trivial condensate.

Paul Hoyer Jlab 11 May 2018



A chiral condensate (m = 0) *

Since | 0 ) has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

Ansatz:  |x) = exp(d) |0) implies (x| |x) = 4N,

An infinitesimal chiral rotation of the condensate generates a pion

U3 = exp[i5 [ dm vt @nsv@)]  Uy(8) 1) = (1- 287 )

where 7 is the massless 0 state with wave function ®__ = V5P

Paul Hoyer Jlab 11 May 2018
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Small quark mass: m > 0

The massless (M = 0) sigma 0+* state has wave function

Do(x) = f1(r) +io - for) +ivy -z ga(r)

Radial functions
are Laguerre fn’s

An M5 > 0 pion O state has rest frame wave function

r(x) = [Fi(r) +ia -z Fa(r) + 1 Fa()]vs  £y(0) = 22k (0)

M
F”+(g+ )F’+[1(M—r)2—m2}F =0
1 r M-—r/) 1 4 !
(x|7E (2)7t | x) = iP* fr e~ —  Fy(0) = %z’MWfW
- R CM? s - M?
(X|Y(x)ys9(x) T x) = —i o Jre e = F1(0) =1 3 I

Also the P-dependence is correct.

A smooth m — 0 requires M;?> « m, which 1s allowed at lowest order in m.



28

Bound states built on |y)

M), = / 0z, dwy § (1) B(@1 — x2) (@) [Y)

The fields in ly) will break chiral invariance (no parity doublets).

For low momentum transfers @ 19
may be approximated to be pointlike

1.0

Bo(2) — Dyo(x) = 6°(2)n

) = o) =exp 60 [ ded@)i@)] 0) .

The contractions of 9 (x1)y(x2) with 11 in | x ) have the effect
of a mass term 1n £y

= Momentum dependent mass term as in the DSE approach?

Paul Hoyer Jlab 11 May 2018
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Some topical issues

Expanding the perturbative S-matrix around fields with stationary action

H=Hy + H; Hy = Ho+ Hi(Ayg)

Equal-time bound states in motion
— P-dependence of wave function (classical, P-independent field)
— Precession of state (as seen by a moving observer)

Meson spectrum with chiral symmetry breaking and 1, ny # 0
Baryon spectrum
Duality and Parton distributions

Hadron decays and scattering amplitudes (string breaking)

Paul Hoyer Jlab 11 May 2018



Time to teach bound states in QFT?

To understand hadrons we need the methods of bound state QFT.

* Wave functions: Equal-time, Light Front, Bethe-Salpeter, ...
* Deriving the Schrodinger equation from QED
e The states described by the Dirac wave function

e Poincaré invariance for bound states

Paul Hoyer Jlab 11 May 2018
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Back-up slides
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s in the infrared from event shapes

1 129 )
— dQuesr(Q7) = ao(uer)
H1 Jo
0.7 L e
oL ! Yu.L. Dokshitzer, G. Marchesini,
0 ' G.P. Salam, EPJdirect C3 (1999) 1
0.6 r \ _
- \\\ M _
\\\ H
BTR \
0.5 LN :
i C %\\ \\Z T ]
NN
\\\\\ \\\) C
\ \\\\\
04 \\ N\ BT 1
\ \\
\\\\ Bw
03 L L L L 1 . . . . 1 . . . . 1 . . 1 . . . .
0.08 0.09 0.1 0.11 0.12 0.13

ag(Mz) =0.1153 =0.0017(exp) £ 0.0023(th)  T. Gehrmann, M. Jaquier, G. Luisoni,

ap = 0.5132 £0.0115(exp) £ 0.0381(th) Eur. Phys. J. C 67 (2010) 57
Paul Hoyer Jlab 1T May 2018 pr =2 GeV
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s "freezes" in the infrared

Pinch Technique Lattice QCD
0'7 ML | ML | MR | LAY | MR | AR | vor T 12
. Ru""i'zgz ;fzrzj mo:50f :":‘; y . Perturbative
’ —O—a(ﬁ2)=0:16andﬁ=16 GeV O(S(p) ‘f’z‘ ] +— running
[ ] j‘ ¢

0,5 O .6 —=— (') =0.13 and p = 22 GeV 8

o
III|III|III|III|III|III

0,3 1 2 i

o] Opr () | e
; 0.1 1 p[GeV] 10
0.0 A. Maas, PRD 91 (2015) 034502

B4 1E3 0,01 o1 1 10 100 1000 [arX1v:1402.5050v2]
q'1GeV’]
J. M. Cornwall;
A. C. Aguilar, D. Binosi, J. Papavassiliou,
J. Rodriguez-Quintero, PRD 80 (2009) 085018
The coupling 1s scheme-dependent

for small as well as large Q2.

Paul Hoyer Jlab 11 May 2018
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Bloom-Gilman Duality

W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

0.4 4 & JabHallC - Resonance contributions
ep —> eN*
build DIS scaling in
ep — eX

M- = My + Q7 (——1)

Scattering dynamics is built into hadron wave functions.

We must understand relativistic bound states in motion.
Paul Hoyer Jlab 11 May 2018
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Rules of Thumb - e.g., OZT

Connected diagrams: Unsuppressed, string breaking from confining potential

— = % AE Br
s/ '

S

$(1020) - KK ¢ 26 MeV  83.1 %

o~

Disconnected, perturbative diagrams are suppressed

JU 610 MeV 153 %

This suggests that perturbative corrections are small even in the soft regime.

Paul Hoyer Jlab 11 May 2018



Ladder diagrams (rest frame)

The Bohr momentum scale is |pl ~ am , kinetic energy Ipl2/2m ~ a2m ~ Ep

With momenta x a, the propagators bring inverse powers of o :

p1 pi
~
e 62 o 1 0 2
q ~ s~ o~ Note: ¢ ~ a” < |q| ~ «
- q q o
e N
p2 D3
)2 pljk P4
A 2
e Q 1
K vg ~ | dik0 Pk ~a?a’ ~
! / (k*)? (AE,)? (@®)?(a?)?  a

Pr pirk D3

All “ladder diagrams” are of order /a0 => Sum can diverge!

Paul Hoyer Jlab 11 May 2018
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Non-ladders are suppressed by a

k e~
! These diagrams have the same number of
‘ propagators and vertices as the 2-photon ladder.
P2 psk P A similar counting would again give ~ 1/a. .
e
S pa However, the O(1/a) term vanishes:
9 / dk® 1
X : — =0
) 2w (kY —a + i) (kY — b+ ie)
p2  p3
In the straight ladders 10 1
. . 0
Fhe .mtegratlon contour X / or (KO —a+ ie) (kO — b — ie) a
is pinched:

— Only straight ladders are of the leading order, 1/a .
Paul Hoyer Jlab 11 May 2018
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Gribov's View of Confinement (1991-95)

According to Gribov, confinement sets in when a strong Coulomb interaction
between fermions causes a rearrangement of the vacuum:

crit _ _ g ~ L
a“"(QED) =7 (1 \/;> ~ (.58 > 137

a1 (QCD) = gF (1 - %) ~043 2 ag(m ) ~ (.33

o<1/t = 0.14 may allow PQCD down to O?=0.

Paul Hoyer Jlab 11 May 2018 See Yu. Dokshitzer, sect. 2.4 of hep-ph/0306287
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Baryons

For baryons the homogeneous classical solution gives:

gA”

V2

Vi(x1, X2, x3) = \/(35‘1 —x9)? + (2 — x3)? + (3 — T1)?

It agrees with the meson potential when two quarks coincide:

VB(€B1,€B27€I32) = VM(a?l — 5132)

Translation invariance requires color singlet meson and baryon states.

The “external” color field vanishes also for the ggg states.

For SU(3) this type of solution only exists for ¢¢ and 999 states.

Paul Hoyer Jlab 11 May 2018
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AUGUST 1, 1932 PHYSICAL REVIEW VOLUME 41

The Dirac Electron in Simple Fields*

By MiLTON S. PLESSET
Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
‘possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If the potential is a polvnomial of any degree
in x, a continuous energy spectrum characterizes the solutions. If the potential is a
polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron: values
of the energv numerically less than the rest-energv are barred. When the potential
i1s a polynomial of any degree in #, all values of the energy are allowed. For poten-
tials which are polynomials in 1/7 of degree higher than the first, the energy spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart.

J. Math. Oxford (2), 12 (1961), 227.
Paul Hoyer Jlab 11 May 2018

See also:



Example of Dirac wave functions: V(z) = 2e°|z| in D=1+1 41

/zsz/dx bT ul (p)e™" + o' (pe W} [ S;Eg ] £2)

Wt /NR region: DT
11

| mmm  Dirac @(x)
'. d
0'75; = = Schrodinger p(x) (pairs)
0.5 /
0.25|
0.25}
-0.51

V=2m

D. D. Dietrich, PH, M. Jarvinen, arXiv 1212.4747
The “single particle” Dirac wave function contains pair contributions (dualit
gic p p y



Dirac states: V(z) = 2|z| in D=1+1

2

The Coulomb potential in D=1+11s V(z) = %eZ|a;| . We set e = 1 (scale).

The potential confines electrons, and repels positrons: V(et) =— V(e)
Any e in the state 1s accelerated to large lx|.

To keep T+V = constant, positrons have large momenta at high |x!:
Ipl ~ E, ~ Ix1/2

Since we consider time independent solutions, there will also be
decelerating positrons, moving towards x = 0.

The positron energy spectrum 1s continuous, whereas the electrons
form bound states around x = 0, with discrete energies.

The relative size of the electron and positron components can be adjusted.

However, positrons are completely absent only in the NR limit, m — .

Thus we can understand the observation made by Plesset in the 1930°s.

Paul Hoyer Jlab 11 May 2018
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Plane waves in bound states

In the parton picture, high energy quarks can be treated as free constituents.
They are momentum eigenstates, described by plane waves.
How does this fit into the bound state wave functions?

Consider a highly excited state (P=0): M — «©, V(x) << M
o=M-V)2 = M2 -2MV —

B(0 — 00) ~ exp(Fic/2) = eFM" exp(Fiz M/2)

Thus oscillations of the wif at large 0 gives a plane wave with p = +M/2

The operator expression for the state 1s in this limit:

V2T o i
M, P =0)= oM (bM/2d—M/2+b M2 M/2)|Q>

As 1n the parton picture, only “valence” particles appear (no b or d operators).
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Quark - Hadron duality

The wave functions of highly excited (large mass M) bound states are similar
to free ff pairs (for V(x) << M). This determines their normalization:

k '
O
J P
kP °
The same result for
= 1Dy(x=0)2 =D 1(x=0)2=1U2 ;-5 p v 4 currents

D. D. Dietrich, PH, M. Jarvinen, arXiv 1212.4747

The solutions are consistent with
Bloom-Gilman duality: Plane wave
partons in bound state wave function.
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