Wide-angle photoproduction of pions

P. Kroll

Fachbereich Physik, Universität Wuppertal Jefferson lab., June 2018

Outline:

- The Handbag factorization for wide-angle processes
- Wide-angle Compton scattering
- Wide-angle photoproduction of pions
- The twist-3 contribution to photoproduction
- Results
- The 2-particle twist-3 DAs
- Summary

The handbag factorization

factorization in a hard subprocess, e.g. $\gamma q \, \rightarrow \, \gamma q$, and a soft proton matrix element, parameterized as a General Parton Distribution

 $\langle p'\lambda' \mid \bar{\Psi}_q(-\bar{z}/2)\Gamma\Psi_q(\bar{z}/2) \mid p\lambda \rangle_{z^+=z_+=0}$

 $(\Gamma = \gamma^+, \gamma^+ \gamma_5, i\sigma^{+i}, A^+ = 0)$

e.g. DVCS or electroproduction of mesons rigorous proof for factorization in generalized Bjorken regime of large Q^2 and W but fixed x_B and $-t/Q^2 \ll 1$

e.g. RCS or photoproduction of mesons WIDE-ANGLE arguments for factorization at large Mandelstam variables s, -t, -u

complementary: GPDs at small -t in deep virtual and GPDs at large -t in wide-angle processes

The handbag contribution to WACS (and WAPP)

 $s, -t, -u \gg \Lambda^2$ $\Lambda \sim \mathcal{O}(1 \text{GeV})$ typical hadronic scale

- work in a symmetric frame: (otherwise additional contr.) $p^{(\prime)} = [p^+, \frac{m^2 - t/4}{2n^+}, \pm \Delta_{\perp}]$ $\xi = \frac{(p - p')^+}{(n + n')^+} = 0$ $t = -\Delta_{\perp}^2$
- assumption:

parton virtualities $k_i^2 < \Lambda^2$, intrinsic transverse momenta $k_{\perp i}^2/x_i < \Lambda^2$

 consequences $\hat{u} = (k'_i - q)^2 \simeq (p' - q)^2 = u$ collinear with parent hadrons and $x_i, x'_i \simeq 1$

propagators poles avoided $\hat{s} = (k_i + q)^2 \simeq (p + q)^2 = s$ active partons approximately on-shell

• physical situation: hard photon-parton scattering and soft emission and reabsorption of partons by hadrons

The Compton amplitudes

Radyushkin hep-ph/9803316; DFJK hep-ph/9811253; Huang-K.-Morii hep-ph/0110208 (light-cone helicities)

$$\mathcal{M}_{\mu'+,\mu+} = 2\pi\alpha_{\rm elm} \left\{ \mathcal{H}_{\mu'+,\mu+}^{\gamma} \left[R_V^{\gamma} + R_A^{\gamma} \right] + \mathcal{H}_{\mu'-,\mu-}^{\gamma} \left[R_V^{\gamma} - R_A^{\gamma} \right] \right\}$$
$$\mathcal{M}_{\mu'-,\mu+} = \pi\alpha_{\rm elm} \frac{\sqrt{-t}}{m} \left\{ \mathcal{H}_{\mu'+,\mu+}^{\gamma} + \mathcal{H}_{\mu'-,\mu-}^{\gamma} \right\} R_T^{\gamma}$$

form factors: $R_i^{\gamma}(t) = \sum_q e_q^2 R_i^q(t)$

$$R_V^q = \int_0^1 \frac{dx}{x} H^{q_v}(x,\xi=0,t) \qquad E^{q_v} \to R_T^q \qquad \widetilde{H}^{q_v} \to R_A^q$$

 \widetilde{E} decouples at $\xi = 0$; $H^{q_v} = H^q - H^{\overline{q}}$ (sea quarks neglected)

subprocess amplitudes:
$$\mathcal{H}_{++++} = 2\sqrt{-s/u}$$

 $\mathcal{H}_{-+-+} = 2\sqrt{-u/s}$ (+ NLO)

Analysis of nucleon form factors

need for Compton ffs, i.e. need for GPDs at large -t deeply virtual processes provide GPDs only at small -t but large -t GPDs from nucleon ffs through sum rules:

$$F_i^{p(n)} = e_u F_i^{u(d)} + e_d F_i^{d(u)}, \qquad F_i^a = \int_0^1 dx K_v^a(x,\xi=0,t)$$

Dirac (Pauli) ff: K = H(E) (normalization from $\kappa_q = \int_0^1 dx E_v^q(x, \xi = t = 0)$) axial form factor: \tilde{H} (κ anomalous magn. moment) ansatz $K_i^a(x, \xi = 0, t) = k_i^a(x) \exp[tf_i^a(x)]$ profile fct: $f_i^a = (B_i^a + \alpha_i'^a \ln 1/x)(1 - x)^3 + A_i^a x(1 - x)^2$ forward limits H: q(x) $\tilde{H}: \Delta q(x)$ $E: e_i = N_i x^{\alpha_i} (1 - x)^{\beta_i}$ additional parameters DFJK hep-ph/0408173; update: Diehl-K, 1302.4604; (see also Guidal et al, hep-ph/0410252) fit to all data: $G_M^i, G_E^i/G_M^i$ (i = p, n) and use of ABM11, DSSV09 parton densities strong x - t correlation

(see also de Teramond et al (1801.09154))

Estimate of proton radius

Approx: distance between active parton and cluster of spectators

(Regge-like: A = 0 and $(1 - x)^3 \rightarrow 1$)

PK 6

Large-t behavior of flavor form factors

at large t: dominance of narrow region of large x: $q_v \sim (1-x)^{\beta_q}$, $f_q \sim A_q(1-x)^2$ (analogously for F_2^q) Saddle point method provides $1 - x_s = \left(\frac{2}{\beta_q}A_q|t|\right)^{-1/2}$ $F_1^q \sim |t|^{-(1+\beta_q)/2}$

ABM PDFs: $\beta_u \simeq 3.4$, $\beta_d \simeq 5$,

power laws from wave fct overlaps: Dagaonkar-Jain-Ralston (14) power laws are a necessary but not sufficient signal of perturbative physics

The Compton cross section

$$\frac{d\sigma}{dt} = \frac{d\hat{\sigma}}{dt} \left\{ \frac{1}{2} \frac{(s-u)^2}{s^2+u^2} \left[R_V^2(t) + \frac{-t}{4m^2} R_T^2(t) \right] + \frac{1}{2} \frac{t^2}{s^2+u^2} R_A^2(t) \right\} + \mathcal{O}(\alpha_s)$$

$$\frac{d\hat{\sigma}}{dt} = 2\pi \frac{\alpha_{\rm elm}^2}{s^2} \left[-\frac{u}{s} - \frac{s}{u}\right]$$

Klein-Nishina cross section

 $-t, -u > 2.5 \text{ GeV}^2$ data: JLab E99-114 form factors from $\xi = 0$ anlaysis

Photoproduction of pions

arguments for handbag factorization as for WACS $s, -t, -u \ll \Lambda^2$

leading-twist contribution

$$\mathcal{M}_{0+\mu+}^{\pi} = \frac{e_0}{2} \sum_{\lambda} \mathcal{H}_{0\lambda\mu\lambda}^{\pi} [R_V^{\pi} + 2\lambda R_A^{\pi}]$$
$$\mathcal{M}_{0-\mu+}^{\pi} = \frac{e_0}{2} \sum_{\lambda} \frac{\sqrt{-t'}}{2m} \mathcal{H}_{0+\mu+}^{\pi} R_T^{\pi}$$

$$R_i^{\pi^0} = \frac{1}{\sqrt{2}} \left[e_u R_i^u - e_d R_i^d \right]$$

$$R_i^{\pi^+} = R_i^{\pi^-} = R_i^u - R_i^d$$

same flavor form factors as for WACS twist-2 subprocess amplitude

 \mathbf{a}

00000000

known, universality $(\langle 1/\tau \rangle_{\pi} = \int d\tau / \tau \Phi_{\pi}(\tau))$

$$\mathcal{H}_{0\lambda\mu\lambda}^{\pi^{0}} = 2\pi\alpha_{s}f_{\pi}\frac{C_{F}}{N_{C}}\langle 1/\tau\rangle_{\pi}\sqrt{-t/2}\frac{(1+\mu)s - (1-\mu)u}{su}$$

cross section too small by factor 50 - 100

Huang-K., hep-ph/0005318

Photoproduction: Transversity GPDs?

Huang-Jakob-K-Passek-Kumericki, hep-ph/0309071 $H_T, E_T, \tilde{H}_T, \tilde{E}_T$ transversity GPDs go along with twist-3 pion wave functions fed subprocess ampl. $\mathcal{H}_{0-\mu+}$ and $\mathcal{H}_{0+\mu-}$

projector $q\bar{q} \rightarrow \pi$ (3-part. $q\bar{q}g$ contr. neglected) Beneke-Feldmann (01) $\sim q' \cdot \gamma \gamma_5 \Phi + \mu_{\pi} \gamma_5 \left[\Phi_P - \imath \sigma_{\mu\nu} \left(\frac{q'^{\mu}k'^{\nu}}{q' \cdot k'} \frac{\Phi'_{\sigma}}{6} + q'^{\mu} \frac{\Phi_{\sigma}}{6} \frac{\partial}{\partial \mathbf{k}_{\perp\nu}} \right) \right]$ definition: $\langle \pi^+(q') \mid \bar{d}(x)\gamma_5 u(-x) \mid 0 \rangle = if_{\pi}\mu_{\pi} \int d\tau e^{iq'x\tau} \Phi_P(\tau)$ local limit $x \rightarrow 0$ related to divergency of axial vector current $\implies \mu_{\pi} = m_{\pi}^2/(m_u + m_d) \simeq 2 \text{ GeV}$ at scale 2 GeV $(\int d\tau \Phi_P(\tau) = 1)$ Eq. of motion: $\tau \Phi_P = \Phi_{\sigma}/N_c - \tau \Phi'_{\sigma}/(2N_c)$ solution: $\Phi_P = 1, \quad \Phi_{\sigma} = \Phi_{AS} = 6\tau(1-\tau)$ Braun-Filyanov (90) (WW approx.)

$$\implies \qquad \mathcal{H}_{0-\mu+} = \mathcal{H}_{0+\mu-} = 0$$

to be contrasted with electroproduction of pions:

- the subprocess amplitudes in
 WW appr. are non-zero
- contribute to transversely polarized photons
- dominate the cross section for π^0 production
- in agreement with experiment

Pion photoproduction again

K.-Passek-Kumericki, (1802.06597)

In view of situation in electroproduction:

include full twist-3 contribution $(q\bar{q} + q\bar{q}g$ Fock components of the pion) both are needed in order to achieve gauge invariance they are related by eq. of motion (with light-cone gauge $A^+ = 0$):

$$\bar{\tau}\Phi_p - \frac{1}{6}\bar{\tau}\Phi'_{\sigma} - \frac{1}{3}\Phi_{\sigma} = 2\frac{f_{3\pi}}{f_{\pi}\mu_{\pi}}\int_0^{\tau} \frac{d\tau_g}{\tau_g} \Phi_{3\pi}(\tau - \tau_g, \bar{\tau}, \tau_g) = \Phi_1^{EOM}(\tau)$$

$$\tau \Phi_p + \frac{1}{6} \tau \Phi'_{\sigma} - \frac{1}{3} \Phi_{\sigma} = 2 \frac{f_{3\pi}}{f_{\pi} \mu_{\pi}} \int_0^{\bar{\tau}} \frac{d\tau_g}{\tau_g} \Phi_{3\pi}(\tau, \bar{\tau} - \tau_g, \tau_g) = \Phi_2^{EOM}(\tau)$$

for pions: $\Phi_1^{EOM}(\tau) = \Phi_2^{EOM}(\bar{\tau})$ $f_{3\pi} = f_{3\pi}(\mu_R^2) \qquad \mu_{\pi} = \mu_{\pi}(\mu_R^2)$

PK 12

The 2-particle twist-3 contribution

amplitude for $\gamma q
ightarrow \pi^0 q$

$$\mathcal{H}_{0-\lambda,\,\mu\lambda}^{twist-3,2-particle} = 4\pi\alpha_{\rm s} f_{\pi} \,\mu_{\pi} \,\frac{C_F}{N_C}$$

$$\times \frac{\sqrt{-us}}{\sqrt{2s^2u^2}} \int_0^1 d\tau \,\phi_2^{\text{EOM}}(\tau) \left[\mu \,\frac{ts}{\tau(1-\tau)} + \left(\frac{2\lambda-\mu}{2(1-\tau)^2} + \frac{2\lambda+\mu}{2\tau(1-\tau)}\right) \,(s^2+u^2) \right]$$

Huang-Jakob-K-Passek-Kumericki, hep-ph/0309071 (Φ_P and Φ_σ always appear in combinations Φ_i^{EOM}) gauge invariant in QCD but not in QED violates s - u crossing symmetry (Chew-Goldberger-Low-Nambu (57)

need also 3-particle twist-3 contribution

The 3-particle twist-3 contribution

d) soft, part of DA

gauge invariant in QCD but not in QED s-u crossing symmetry violated

twist-3 3-particle projector $(q\bar{q}g \rightarrow \pi)$

$$\mathcal{P}_{3,fg}^{\beta,c} = \frac{i}{g} \frac{f_{3\pi}}{2\sqrt{2N_C}} \frac{(t^c)_{fg}}{C_F\sqrt{N_C}} \frac{\gamma_5}{\sqrt{2}} \sigma_{\mu\nu} q'^{\mu} g_{\perp}^{\nu\beta} \frac{\Phi_{3\pi}(\tau_a, \tau_b, \tau_g)}{\tau_g} \qquad \qquad g_{\perp}^{\nu\beta} = g^{\nu\beta} - \frac{k'_j^{\nu} q'^{\beta} + q'^{\nu} k'_j^{\beta}}{k'_j \cdot q'}$$

Q

π^0 subprocess amplitudes

$$\mathcal{H}_{0-\lambda,\mu\lambda}^{twist-3} = \mathcal{H}^{twist-3,2-particle} + \mathcal{H}^{twist-3,3-particle}$$

$$= 4\pi\alpha_{s} f_{3\pi} \frac{C_{F}}{N_{C}} \frac{2\lambda-\mu}{2} \frac{\sqrt{-us}}{s^{2}u^{2}} \int_{0}^{1} d\tau \int_{0}^{\bar{\tau}} \frac{d\tau_{g}}{\tau_{g}} \Phi_{3\pi}(\tau,\bar{\tau}-\tau_{g},\tau_{g})$$

$$\times \left[\left(\frac{1}{\bar{\tau}^{2}} - \frac{1}{\bar{\tau}(\bar{\tau}-\tau_{g})} \right) \left(s^{2} + u^{2} \right) + \left(1 - \frac{1}{2} \frac{C_{A}}{C_{F}} \right) \left(\frac{1}{\tau} + \frac{1}{\bar{\tau}-\tau_{g}} \right) \frac{t^{2}}{\tau_{g}} \right]$$

 $\mathcal{H}^{twist-3} = 0$ if $\Phi_{3\pi} = 0$ (WW appr.)

sum is gauge invariant (QCD and QED) and $s \leftrightarrow u$ crossing symmetric generalization to other pseudoscalar mesons straightforward

The photoproduction amplitudes

$$\mathcal{M}_{0+\mu+}^{\pi} = \frac{e_0}{2} \sum_{\lambda} \left\{ \mathcal{H}_{0\lambda\mu\lambda}^{\pi} \left[R_V^{\pi} + 2\lambda R_A^{\pi} \right] - 2\lambda \frac{\sqrt{-t}}{2m} \mathcal{H}_{0-\lambda\mu\lambda}^{\pi} \bar{S}_T^{\pi} \right\}$$
$$\mathcal{M}_{0-\mu+}^{\pi} = \frac{e_0}{2} \sum_{\lambda} \left\{ \frac{\sqrt{-t}}{2m} \mathcal{H}_{0\lambda\mu\lambda}^{\pi} R_T^{\pi} - 2\lambda \frac{t}{2m^2} \mathcal{H}_{0-\lambda\mu\lambda}^{\pi} S_S^{\pi} \right\} + e_0 \mathcal{H}_{0-,\mu+}^{\pi} S_T^{\pi}$$

form factors S_i are 1/x moments of transversity GPDs

light-cone helicities, transform to ordinary helicities Diehl(01)

$$\begin{split} \Phi_{0\nu',\mu\nu} &= \mathcal{M}_{0\nu',\mu\nu} + \frac{1}{2} \kappa \Big[(-1)^{1/2-\nu'} \mathcal{M}_{0-\nu',\mu\nu} + (-1)^{1/2+\nu} \mathcal{M}_{0\nu',\mu-\nu} \Big] + \mathcal{O}(m^2/s) \\ \kappa &= \frac{2m}{\sqrt{s}} \frac{\sqrt{-t}}{\sqrt{s+\sqrt{-u}}} \end{split}$$
 relevant for spin effects

Form factors

in addition to R_V, R_A, R_T :

transversity FFs (skewness =0)

$$S_T^a(t) = \int_{-1}^1 \frac{dx}{x} \operatorname{sign}(x) H_T^a(x,t), \quad \bar{S}_T^a(t) \to \bar{E}_T^a(x,t), \quad S_S^a(t) \to \widetilde{H}_T^a(x,t),$$

only valence quarks contribute (charge conjugation symmetry) $F_i^{\pi^0} = (e_u F_i^a - e_d F_i^d)/\sqrt{2}$

from electroproduction: H_T , \bar{E}_T known at small -t \widetilde{H}_T unknown, suppressed by $-t/(4m^2)$

extrapolation to large -t: by term $Ax(1-x)^2$ in profile fct. with $A \simeq 0.5 \,\mathrm{GeV}^{-2}$ and $S_S^{\pi^0} \simeq \bar{S}_T^{\pi^0}/2$

Large -t behavior of form factors

the power law behavior of the elm. FF also holds for the 1/x moments

 $F_i \sim 1/(-t)^{d_i}$

 d_i determined by the powers β_i in $K_i(x, t = 0) \rightarrow (1 - x)^{\beta_i}$ for $x \rightarrow 1$

 $d_i = (1 + \beta_i)/2$

	R_V	R_A	R_T	S_T	\bar{S}_T
u	2.25	2.22	2.83	2.5	2.5
d	3.0	2.61	3.12	3.5	3.0

The 3-particle twist-3 pion DA

$$\Phi_{3\pi} = 360\tau_a\tau_b\tau_g^2 \left[1 + \omega_{10}(\mu_R^2)(7\tau_g - 3)/2 + \omega_{20}(\mu_R^2)(2 - 4\tau_a\tau_b - 8\tau_g + 8\tau_g^2) + \omega_{11}(\mu_R^2)(3\tau_a\tau_b - 2\tau_g + 3\tau_g^2) + \dots \right]$$

(expansion in a series of Jacobi polynomials; coeff. evolve with scale)

Braun-Filyanov (90), Chernyak-Zhitnitsky(84)

choice: $\mu_R^2 = \mu_F^2 = tu/s$

Results on π^0 cross section

data: CLAS (17) at $s = 11.06 \,\mathrm{GeV}^2$ parameters of $\Phi_{3\pi}$ at $\mu_0 = 2 \,\mathrm{GeV}$: $s = 11.06(9, 20) \,\mathrm{GeV}^2$ $f_{3\pi} = 0.004 \,\mathrm{GeV}^2$ $\omega_{10} = -2.55$ solid(dotted, dashed)from Ball (98) $-t, -u \ge 2.5 \,\mathrm{GeV}^2$ fit to data: $\omega_{20} = 8.0$ $\omega_{11} = 0$ dominance of twist-3close to values quoted inlarge parametric uncertainty (about 70%)Braun-Filyanov (90), Chernyak-Zhit.(84)energy dependence: $s^{-7} \frac{\mu_{\pi}^2}{s} \times \log s$ from evolution $\times t$ dependence of form factors

Helicity correlation A_{LL} and K_{LL} in WACS

Klein-Nishina result $\hat{A}_{LL} = \hat{K}_{LL} = \frac{s^2 - u^2}{s^2 + u^2}$ $A_{LL} = K_{LL} \simeq \hat{A}_{LL} \frac{R_A}{R_V}$

JLab E99-114 ($s = 6.9 \text{GeV}^2$ $u = -1.04 \text{GeV}^2$) JLab E07-002 ($s = 7.8 \text{GeV}^2$ $t = -2.1 \text{GeV}^2$) application of handbag mechanism is at the limits R_A badly known since F_A badly known, old data for $-t \leq 2 \text{ GeV}^2$ Kitagaki (83) MINERvA? or K_{LL} from Jlab?

Helicity correlation in photoproduction

$$A_{LL}^{twist-2} = K_{LL}^{twist-2} \text{ as for WACS}$$

$$A_{LL}^{twist-3} = -K_{LL}^{twist-3}$$

characteristic signature for dominance of twist-3 like $\sigma_T \gg \sigma_L$ in pion electroprod.

$$A_{LL}^{twist-3} = -K_{LL}^{twist-3} = -4\frac{S_T^{\pi^0}}{F^{\pi^0}} \left[S_T^{\pi^0} - \frac{t}{2m^2} S_S^{\pi^0} + \kappa \frac{\sqrt{-t}}{2m} \bar{S}_T^{\pi^0} \right]$$
$$F^{\pi^0} = \frac{-t}{2m^2} \left[(\bar{S}_T^{\pi^0})^2 - \frac{t}{m^2} (S_S^{\pi^0})^2 + 4S_S^{\pi^0} S_T^{\pi^0} - 8\frac{m^2}{t} (S_T^{\pi^0})^2 \right]$$

 K_{LL} data: Fanelli(15)(Hall A(05)) $s = 7.8(6.9) \,\text{GeV}^2$, $t = -2.1(u = -1.04) \,\text{GeV}^2$

Other observables

π^0 production off neutrons and η production

solid: neutron dashed: η $s = 11.06 \,\mathrm{GeV}^2$

The 2-particle twist-3 DAs

a combination of EOM is linear first order diff. equation for Φ_{σ}

solution:

$$\Phi_{\sigma} = 6\tau\bar{\tau} \left(\int d\tau \frac{\bar{\tau}\Phi_1^{EOM} - \tau\Phi_2^{EOM}}{2\tau^2\bar{\tau}^2} + C \right)$$
$$\Phi_P = \frac{\Phi_{\sigma}}{6\tau\bar{\tau}} + \frac{\Phi_1^{EOM}}{2\tau} + \frac{\Phi_2^{EOM}}{2\bar{\tau}}$$

local limit: $\langle \pi^+(q') \mid \bar{d}(0)\gamma_5 u(0) \mid 0 \rangle = if_\pi \mu_\pi$ $(\int_0^1 d\tau \Phi_P(\tau) = 1)$ \implies fixes constant of integration:

$$C = 1 + \eta_3 (7\omega_{1,0} - 2\omega_{2,0} - \omega_{1,1}) \qquad (\eta_3 = f_{3\pi} / (f_\pi \mu_\pi))$$

 $\Phi_P = 1 + \sum_{n=2,4,\dots} a_n^P C_n^{(1/2)} (2\tau - 1) \qquad a_2^P = -\frac{10}{3} a_4^P = \frac{10}{7} \eta_3 (7\omega_{1,0} - 2\omega_{2,0} - \omega_{1,1})$

$$\begin{split} \Phi_{\sigma} &= \eta_{\sigma} \tilde{\Phi}_{\sigma} \qquad \tilde{\Phi}_{\sigma} = 6\tau \bar{\tau} \left[1 + \sum_{n=2,4,...} a_{n}^{\sigma} C_{n}^{(3/2)} (2\tau - 1) \right] \\ a_{2}^{\sigma} &= \frac{1}{6} \frac{\eta_{3}}{\eta_{\sigma}} (12 + 3\omega_{1,0} - 4\omega_{2,0}) \qquad a_{4}^{\sigma} = \frac{1}{105} \frac{\eta_{3}}{\eta_{\sigma}} (22\omega_{2,0} - 3\omega_{1,1}) \\ \eta_{\sigma} &= 1 - \eta_{3} (12 - 4\omega_{1,0} + \frac{8}{7}\omega_{2,0} + \frac{4}{7}\omega_{1,1}) \qquad \text{may be absorbed in } \mu_{\pi} \\ \text{for } \eta_{3} \to 0: \ \Phi_{P} \to 1, \ \Phi_{\sigma} \to 2\tau \bar{\tau} \qquad \text{WW approx.} \end{split}$$

The Gegenbauer coefficients

at scale $\mu_0 = 2 \,\mathrm{GeV}$:

$$a_2^P = -0.56, \qquad a_4^P = 0.17,$$

 $a_2^\sigma = -0.084, \qquad a_4^\sigma = 0.031, \qquad \eta_\sigma = 0.64.$

 $a_n^P = a_n^\sigma = 0$ for $n \ge 6$

values of $a_2^{P,\sigma}$ compatible with other results values of $a_4^{P,\sigma}$ have opposite sign

Dyson-Schwinger approachShi et al (15)light-cone quark modelChoi-Ji (17)chiral quark modelNam-Kim (06)

An alternative

Braun-Filyanov (90), Ball (98)

instead of $A^+ = 0$ the contour (Fock-Schwinger) gauge $x^{\mu}A_{\mu}(x) = 0$ is used

EOM more complicated but a recursion formula for the moments of the twist-3 DAs has been derived, allows also to calculate Φ_P and Φ_{σ} for given $\Phi_{3\pi}$

they differ from our ones for the same $\Phi_{3\pi}$

With these DAs the result for the subprocess amplitude is not gauge invariant

Reason: the Wilson lines ($\neq 1$) in the vacuum-pion matrix elements affect the calculation of the amplitudes

At least for electroproduction of ρ_T the equivalence of the two methods has been shown Anikin et al (10)

Summary

handbag factorization applied to wide-angle photoproduction of pions

- In contrast to WACS, the leading-twist analysis (with helicity non-flip GPDs) fails by order of magnitude
- we calculated the full (2- and 3-particle) twist-3 contribution; in contrast to electroproduction the subprocess amplitude is regular in collinear approximation
- together with the transversity form factors (1/x moments of transversity GPDs) which are known from pion electroproduction at small -t and are extrapolated to large -t and a 3-particle twist-3 DA taken (partially) from literature we are able to fit the CLAS data at $s = 11.06 \text{ GeV}^2$
- there are interesting spin effects, e.g. $A_{LL}^{twist-3} = -K_{LL}^{twist-3}$ but $A_{LL}^{twist-2} = K_{LL}^{twist-2}$ as for WACS