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The handbag factorization

8 i factorization in a hard subprocess, e.g.
~vqg — ~q, and a soft proton matrix ele-
ment, parameterized as a
General Parton Distribution

/ \ (A" Wq(—=2/2)TW4(2/2) | PA) 2+ =2, =

p p T =~%7"s,i0™", AT =0)
two classes of hard exclusive reactions:
DEEP VIRTUAL e.g. DVCS or electroproduction of mesons

rigorous proof for factorization in generalized Bjorken regime of
large Q2 and W but fixed 25 and —t/Q? < 1

WIDE-ANGLE e.g. RCS or photoproduction of mesons
arguments for factorization at large Mandelstam variables s, —t, —u

complementary: GPDs at small —t in deep virtual and
GPDs at large —t in wide-angle processes
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The handbag contribution to WACS (and WAPP)

W Ld 4 s, —t, —u > A?
B S A ~ O(1GeV)
- ~— | g e v typical hadronic scale
p P 1
e work in a symmetric frame: (otherwise additional contr.)
p(/) — [ -|-’ mz;i/élj :l:AJ_] ¢ = Eg;g:gi _ 0 L —Ai

e assumption:

parton virtualities k¥ < A? | intrinsic transverse momenta k%, /x; < A?
® consequences propagators poles avoided
§=(kj+q*~(p+q?=s active partons approximately on-shell

i = (ki —q)* ~ (p' —q)* =u collinear with parent hadrons

and x;,z; ~ 1

e physical situation: hard photon-parton scattering and
soft emission and reabsorption of partons by hadrons
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The Compton amplitudes
Radyushkin hep-ph/9803316; DFJK hep-ph/9811253; Huang-K.-Morii hep-ph/0110208
(light-cone helicities)

./\/l,u/+,”-|- = QWOZelm{HZ/+,M+ [RXW/ + Rl] + HZ’—,M— [R‘W/ N Rl} }

v —t
Mu’—,u+ — Waelmw {%Z’+,u+ + HZL,_’H_}R%

form factors: R/ (t) =3 es R (t)

1
d -
R{, :/O %H%(x,gzo,t) E?% — RL  H? — RY%

E decouples at € =0; H9% = HY — HY (sea quarks neglected)

subprocess amplitudes: Hyi 1y = 2y/—s/u
H__|___|_ — 2\/ —U/S (—|— NLO)
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Analysis of nucleon form factors

need for Compton ffs, i.e. need for GPDs at large —t
deeply virtual processes provide GPDs only at small —¢
but large —t GPDs from nucleon ffs through sum rules:

(

1
Fz.p(n) = euFiu(d) + edFidW) : F? = / de K (x, & =0,1)
0

Dirac (Pauli) ff: K = H(FE) (normalization from r, = fol drEl(xz,& =t =0))

axial form factor: H (k anomalous magn. moment)

ansatz K¢ (x,& =0,t) = k() exp [tf{ ()]

profile fct: fé=(B*+a%mml/x)(1—x)°+ Alz(1l — x)?
forward limits H: q(x) H: Aqz)

E: e; = N;x%i(1 — x)Pi additional parameters

DFJK hep-ph/0408173; update: Diehl-K, 1302.4604; (see also Guidal et al, hep-ph/0410252)

fit to all data: G%,,G'%/G"%, (¢ = p,n) and

use of ABM11, DSSV09 parton densities strong x — ¢ correlation
(see also de Teramond et al (1801.09154))
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Estimate of proton radius

Approx: distance between active parton and cluster of spectators

work in hadron’s center of momentum frame b
sz’bi = 0 /\ X :
Fourier transform of H
1 q(x) 5 [ b
q(z,b) = exp |[—b°/(4f,(x 1-x
(#,0) = o 5 exp [0/ (4, (2))]

dq(x) — <62>g — 2 fCI(CE) >2\/A7q

l—=x l—=
forx — 1
Regge-type term, A term, full profile fct
Regge-like profile fct can (only) be used
at small x (small —t)
(Regge-like: A=0and (1 —x)° — 1)
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Large—t behavior of flavor form factors

at large t: dominance of narrow region of large x:
Gy ~ (1 —x)P, f, ~ A (1 —x)? (analogously for F})

—1/2
Saddle point method provides 1 — x, = (lA \t\) Fil ~ |t|=(484)/2

1.2 ¢

ABM PDFs: 8, ~ 3.4, B4 ~ 5,

power laws from wave fct overlaps: Dagaonkar-Jain-Ralston (14)

power laws are a necessary but not sufficient signal of perturbative physics
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pb/GeV?

The Compton cross section

do do (1 (s—u)’ [,

dt t{ 2 52 + u? [RV(t)+4m2RT()
Lot RQ(t)}—I—O( )
282 +u2 e

do

L gl L2

dt U
Klein-Nishina cross section

—t,—u > 2.5 GeV?
data: JLab E99-114
form factors from & = 0 anlaysis

PK 8



Photoproduction of pions
arguments for handbag factorization as for WACS s, —t, —u <K A?

a)
leading-twist contribution
Otptr = ZHOAHA v+ 2AR}]
- €0 vV — —t/
O—p+ — o 2 - Hoyrus By
R™ — 1 ey RY — egRY] R™ — R™ — RY_ R4
7 \/i u-=" 7 () ? 7 7
same flavor form factors as for WACS known, universality
twist-2 subprocess amplitude ((1/7)r = [dr/7Dr(T))
1+ p)s — (1 —
HOA,uA = 27T04sf7r <1/ yr/ —t/2 ( ,u)ssu( )

cross section too small by factor 50 - 100 Huang-K., hep-ph/0005318
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Photoproduction: Transversity GPDs?

- Huang-Jakob-K-Passek-Kumericki, hep-ph/0309071
Hr,Er, Hr, Er
transversity GPDs go along with
twist-3 pion wave functions

. fed subprocess ampl. Ho_,+ and Ho4 -
p

projector q@ — 7 (3-part. gqg contr. neglected) Beneke-Feldmann (01)

~q P+ s [% — 10, (qq“’z Yo g ghla 0 )}

definition: (7 (¢') | d(z)ysu(—x) | 0) = ifrpin [ dre'? @ p(T)

local limit z — O related to divergency of axial vector current

=l = M2 /(M +mg) ~ 2GeV at scale 2GeV ([ drep(r) =1)

Eq. of motion: 7®p = ®,/N. — 7P, /(2N,)

solution: bp =1, &, =P49=067(1—17) Braun-Filyanov (90)
(WW approx.)

— HO—u+ — HO—W— =0
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to be contrasted with electroproduction of pions:

— the subprocess amplitudes in

WW appr. are non-zero Loy // | J
| orTr
1.0 /T, $ t dt
— contribute to transversely 05| —
polarized photons <} —_—
£ 0—
+ doy,
— dominate the cross section for 0.5 | + di
: \ Q2 = 1.75 GeV?
7V production 10 | ‘ ‘ ~ @5 =0.36
0 0.03 0.06 0.09 0.12 0.15 0.18
tmin — t[GeV?]
— in agreement with experiment Defurne et al (1608.01003)

7 production off protons
curves: Goloskokov-K (1106.4897)
Q? = o0 :do, > dor
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Pion photoproduction again

K.-Passek-Kumericki, (1802.06597)

In view of situation in electroproduction:

include full twist-3 contribution (¢q + ggg Fock components of the pion)
both are needed in order to achieve gauge invariance

they are related by eq. of motion (with light-cone gauge A™ = 0):

1 1 - d
Ty — 57 — 50 = ff3 / 2 By — 7 T 1y) = BPOM (1)
’7'('/’[’7'('

T¢p + ET(I)Z 3 ®s f7r,u7r / — O3 (1,7 — 74, Tg) = Oy M (7)
for pions: ®FOM (1) = LOM (F)

far = far(U%)  pr = pa(pg)
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The 2-particle twist-3 contribution

amplitude for vq — ¢

twist—3,2—particle
HO—A, A

1
—us EOM
X \/53211,2 /O dr ¢2 (T) [,LL 7_(

2\ +

4 (AR
2(1 —7)2

Huang-Jakob-K-Passek-Kumericki, hep-ph /0309071

(®p and @, always appear in combinations ®F0M)

gauge invariant in QCD but not in QED
violates s — u crossing symmetry
(Chew-Goldberger-Low-Nambu (57)

need also 3-particle twist-3 contribution

) )

27(1 — 1)
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The 3-particle twist-3 contribution

thst 3,3—particle Aoy f3 CF vV —Uus
— s J3m

o ux Nc /25212
1—71
/dT/ —<I>37T7'1—7' Tg>Tg)
1 2 2
2)\ ,u [( >s + U
1—7

l—7—14 Ty

( _%%)( 1—7—79)21

_2>\+,u 21 2) st
7‘(1—7‘)( * ) 2”7‘(1—7)}

d) soft, part of DA gauge invariant in QCD but not in QED
s — u crossing symmetry violated

twist-3 3-particle projector (qgg — )

i far (g 5 1 B P3x(Ta; 7o, Tg) vB _ B

’ 99 9, =9"
3,fg — g 2v/2N¢o Crv/No V2 T + Tg + k; - q’
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7V subprocess amplitudes

twist—3 L Htwist—3,2—particle_|_Htwist—3,3—pa7’ticle

Ho A,
5 H _—us/ dT/ ﬁ@gﬂ — Ty, Tg)
) () <—ﬂ><— Sk
~ [(72 T(T—Tg))(s tu )+ (1 2 Cr —|—7_'—Tg Tg

HIwist=3 = (0 if O3, = 0 (WW appr.)

p— 47‘('&5 f37r CF 2)\

sum is gauge invariant (QCD and QED) and s <> u crossing symmetric

generalization to other pseudoscalar mesons straightforward
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The photoproduction amplitudes

T €0 T T T V —1 T QT
Otpt = o Z {Homx Ry + 2AR,] — 2)‘%7—[0—)\“)\ ST}

€0 —1 T s t ™ ™ T T
= Y { SRR — 205 M ST )+ eoHi i ST

7T p— —
O—pt 2 m

form factors S; are 1/x moments of transversity GPDs

light-cone helicities, transform to ordinary helicities Diehl(01)
1 —v/ 1
Py = Mows gt [ (D27 Moot (C1) 2 Mo | +O(m? )
2m __/—t relevant for spin effects

=5 Vetv—u

PK 16



Form factors
in addition to Ry, Ra, Rt: transversity FFs (skewness =0)

S2.(t) = / U2 om(e)Hi(a,t),  S(t) = Eo(n ), Si(t) — Ho(.t).

L
30 : | | | | | only valence quarks contribute
(charge conjugation symmetry)
25 B 0 d
FZ?T = (euF?:CL — edF,I: )/\/§
20
L5 ¢ from electroproduction:
1ol Hr, ET known at small —¢
. Hr unknown, suppressed by —t/(4m?)
O1.0 20 30 40 extrapolation to large —t:
~ B V=t [GeV] by term Az(1 — z)? in profile fct.
br =2Hr + bt with A ~ 0.5CGeV~2 and ST~ ~ §% /2
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Large —t behavior of form factors

the power law behavior of the elm. FF also holds for the 1/ moments

Fy ~1/(—t)%

d; determined by the powers 3; in K;(x,t =0) — (1 — x)” for z — 1
di = (14 5;)/2

Ry Rpn Rr Sr St

w || 225 222 283 25 25

d| 3.0 261 312 35 3.0
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The 3-particle twist-3 pion DA

D3 = 3607,7p7, [1 + wio(ur)(7mg — 3)/2
+  woo(pn)(2 — 41amy — 874 + 87'92) + w1 (ur)(3Tamy — 274 + 37'92) - }

( expansion in a series of Jacobi polynomials; coeff. evolve with scale)

Braun-Filyanov (90), Chernyak-Zhitnitsky(84)

choice: p% = p4% = tu/s
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0

Results on 7 cross section

LU - - -
s'do /dt(m?)
106 | [ubGeV'?] ﬁtl
105 |
104 i
103 |
107 |
101t | | | ‘ ‘ ‘
-08-06 -04-02 0 02 04 06 08
cos 6
data: CLAS (17) at s = 11.06 GeV? parameters of @3, at o = 2GeV:
s = 11.06(9, 20)GeV? far = 0.004GeV?  wig = —2.55
solid(dotted, dashed) from Ball (98)
—t,—u > 2.5 GeV? fit to data: w0 =80 w11 =0
dominance of twist-3 close to values quoted in

large parametric uncertainty (about 70%)  Braun-Filyanov (90),Chernyak-Zhit.(84)

2
energy dependence: 3_7“7” X logs from evolution X t dependence of form factors
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Helicity correlation A;; and K5 in WACS

1.0 T T T 0.45

0.40 | T |t Fa [GeV]
0.35
08| 0.30 f f—
0.25 |
0.20 } / \\\ — <
061 0151 [
0.10 f
0.05
0.4 0 A A
0 0 1.0 1.5 2.0 2 3.0
V=t [GeV]
0.2
Klein-Nishina result
A A 2 2
0 ‘ ‘ ; S”—u
30 60 90 120 150 A = K — S _—u_
6.0 ldeg LL LL s2 2
Arp = ~ App 224
LL LL R,

JLab E99-114 (s = 6.9GeV? u = —1.04GeV?)

JLab E07-002 (s = 7.8GeV? t = —2.1GeV?)

application of handbag mechanism is at the limits

R 4 badly known since F'4 badly known, old data for —t§2GeV2 Kitagaki (83)
MINERVA? or K7 from Jlab?
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Helicity correlation in photoproduction

1.0
0.8 1 twist—2 _ prtwist—2
0l ‘ . AT = K" as for WACS
0.4 |
0.2} . twist—3 twist—3
0 AL = —Kpp
02| ’
04t ' characteristic signature for dominance
-0.6 | Arr .
T of twist-3
V8000402 Jg e 04 00 08 like o > o, In pion electroprod.
s = 11.06 GeV*?
0
st — ot ST 0 t 0 \/ —t =0
Athst 3 — _Kt'wzst 3 — 4 T |:S7r . Sﬂ' STl' :|
LL LL o0 |[PT T 5598 TR T
70 —t 79\ 2 t 79\ 2 70 o9 m2 70 2i|
F™ = S — —(S 455 S —8—(S
ng[(T) —5 (55 )" +455 St (57

K data: Fanelli(15)(Hall A(05)) s = 7.8(6.9) GeV?, t = —2.1(u = —1.04) GeV?
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Other observables

1.0

081 e, by

06 i o KLL

04 F /

.-- K

02F e LS | ',

] ’
02| Ars ] — J
-04 - “
06 _— Arp I

-0.8 -06 -04 -02 0 02 04 06 08
cos 6
twist—3 twist—3 twist—2 twist—2
ALS — _KLS ALS = K s
0
_ 95T [VZlar® o (er® L g7
= = 0 T — /i( T 58S )
FT m 4m
0
(ST )?

Etwist—?) —1—-4

asymmetry for linearly polarized photons

Fr°
data: Fanelli(15)(Hall A(05)) s = 7.8(6.9) GeV?, t = —2.1(u = —1.04) GeV?
Krs = —0.296 + 0.007(0.480 £ 0.007)
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7 production off neutrons and 7 production

104
103 |
102 |
s"do /dt
[1tb GeV*]
1 yn(p) — 7'n(np)
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-0.8-06-04-02 0 02 04 06 08
cos 0
0
m __ 1 d U (8) ~ (1) ~ 1 U d
Ff, = o5 |euFy — eaF}'] FiY = Fy = e [e I + egFY']

M = cos 98/\/(2(-8) — sin 91/\/12(-1)

solid: neutron dashed: n s =11.06 GeV~
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The 2-particle twist-3 DAs

a combination of EOM is linear first order diff. equation for ®, solution:
] FQEOM _ 1 pEOM
O, =67T (/ dr 5272 +C
d (I)EOM (I)EOM
@ — o 1 2
P 6r7 i 2T i 2T

local limit: (77 (¢') | d(0)y5u(0) | 0) = ifrpin ([ dT®p(1) = 1)
—> fixes constant of integration:

C=1+4n3(Twio — 2wa — wi 1) (73 = fan/(frtin))

dp =1+ Zn:2,4,... afC’g/Q)(ZT —1) a3 =—2ay = Pns(Twio — 2wa,0 —wi,1)

b, =1,0y D, =607 (145, alCP¥?(2r — 1)]

1
a3 = § (124 3wi0 —4dw20)  af = 1552 (22w2,0 — 3wi,1)
1

n3(12 — dw1,0 + Swa0 + Fw11) may be absorbed in 1,
forns - 0: &p — 1, &, — 277 WW approx.
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The Gegenbauer coefficients

at scale pg = 2GeV:

al = —0.56, al’ =017,
a = —0.084, a = 0.031, ny = 0.64.

al =a? =0 forn>6

values of aQP’U compatible with other results

P,o . .
values of a;’" have opposite sign

Dyson-Schwinger approach Shi et al (15)
light-cone quark model Choi-Ji (17)
chiral quark model Nam-Kim (06)
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An alternative

Braun-Filyanov (90), Ball (98)
instead of AT = 0 the contour (Fock-Schwinger) gauge z*A,,(x) = 0 is used

EOM more complicated but a recursion formula for the moments of the twist-3
DAs has been derived, allows also to calculate ®p and o, for given @3

they differ from our ones for the same @3,
With these DAs the result for the subprocess amplitude is not gauge invariant

Reason: the Wilson lines (# 1) in the vacuum-pion matrix elements affect the
calculation of the amplitudes

At least for electroproduction of pr the equivalence of the two methods has

been shown Anikin et al (10)
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Summary

handbag factorization applied to wide-angle photoproduction of pions

e In contrast to WACS, the leading-twist analysis (with helicity non-flip
GPDs) fails by order of magnitude

e we calculated the full (2- and 3-particle) twist-3 contribution;
in contrast to electroproduction the subprocess amplitude is regular in

collinear approximation

e together with the transversity form factors (1/z moments of transversity
GPDs) which are known from pion electroproduction at small —¢ and are
extrapolated to large —t and a 3-particle twist-3 DA taken (partially) from
literature we are able to fit the CLAS data at s = 11.06 GeV*

e there are interesting spin effects, e.g. AL'*079 = — 1wst=3 byt
ATP2 = K772 as for WACS
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