Wide-angle photoproduction of pions
 P. Kroll
 Fachbereich Physik, Universität Wuppertal Jefferson lab., June 2018

Outline:

- The Handbag factorization for wide-angle processes
- Wide-angle Compton scattering
- Wide-angle photoproduction of pions
- The twist-3 contribution to photoproduction
- Results
- The 2-particle twist-3 DAs
- Summary

The handbag factorization

factorization in a hard subprocess, e.g. $\gamma q \rightarrow \gamma q$, and a soft proton matrix element, parameterized as a General Parton Distribution

$$
\begin{aligned}
& \left\langle p^{\prime} \lambda^{\prime}\right| \bar{\Psi}_{q}(-\bar{z} / 2) \Gamma \Psi_{q}(\bar{z} / 2)|p \lambda\rangle_{z^{+}=z_{\perp}=0} \\
& \left(\Gamma=\gamma^{+}, \gamma^{+} \gamma_{5}, i \sigma^{+i}, A^{+}=0\right)
\end{aligned}
$$

two classes of hard exclusive reactions:
DEEP VIRTUAL e.g. DVCS or electroproduction of mesons
rigorous proof for factorization in generalized Bjorken regime of large Q^{2} and W but fixed x_{B} and $-t / Q^{2} \ll 1$

WIDE-ANGLE e.g. RCS or photoproduction of mesons
arguments for factorization at large Mandelstam variables $s,-t,-u$
complementary: GPDs at small $-t$ in deep virtual and GPDs at large $-t$ in wide-angle processes

The handbag contribution to WACS (and WAPP)

$s,-t,-u \gg \Lambda^{2}$
$\Lambda \sim \mathcal{O}(1 \mathrm{GeV})$
typical hadronic scale

- work in a symmetric frame:

$$
p^{(\prime)}=\left[p^{+}, \frac{m^{2}-t / 4}{2 p^{+}}, \pm \boldsymbol{\Delta}_{\perp}\right]
$$

(otherwise additional contr.)

$$
\xi=\frac{\left(p-p^{\prime}\right)^{+}}{\left(p+p^{\prime}\right)^{+}}=0 \quad t=-\Delta_{\perp}^{2}
$$

- assumption:
parton virtualities $k_{i}^{2}<\Lambda^{2} \quad$, intrinsic transverse momenta $k_{\perp i}^{2} / x_{i}<\Lambda^{2}$
- consequences
$\hat{s}=\left(k_{j}+q\right)^{2} \simeq(p+q)^{2}=s$ $\hat{u}=\left(k_{j}^{\prime}-q\right)^{2} \simeq\left(p^{\prime}-q\right)^{2}=u \quad$ collinear with parent hadrons and $x_{j}, x_{j}^{\prime} \simeq 1$ propagators poles avoided active partons approximately on-shell

$$
x_{j}, x_{j}-1
$$

- physical situation: hard photon-parton scattering and soft emission and reabsorption of partons by hadrons

The Compton amplitudes

Radyushkin hep-ph/9803316; DFJK hep-ph/9811253; Huang-K.-Morii hep-ph/0110208 (light-cone helicities)

$$
\begin{gathered}
\mathcal{M}_{\mu^{\prime}+, \mu+}=2 \pi \alpha_{\mathrm{elm}}\left\{\mathcal{H}_{\mu^{\prime}+, \mu+}^{\gamma}\left[R_{V}^{\gamma}+R_{A}^{\gamma}\right]+\mathcal{H}_{\mu^{\prime}-, \mu-}^{\gamma}\left[R_{V}^{\gamma}-R_{A}^{\gamma}\right]\right\} \\
\mathcal{M}_{\mu^{\prime}-, \mu+}=\pi \alpha_{\mathrm{elm}} \frac{\sqrt{-t}}{m}\left\{\mathcal{H}_{\mu^{\prime}+, \mu+}^{\gamma}+\mathcal{H}_{\mu^{\prime}-, \mu-}^{\gamma}\right\} R_{T}^{\gamma}
\end{gathered}
$$

form factors: $R_{i}^{\gamma}(t)=\sum_{q} e_{q}^{2} R_{i}^{q}(t)$

$$
R_{V}^{q}=\int_{0}^{1} \frac{d x}{x} H^{q_{v}}(x, \xi=0, t) \quad E^{q_{v}} \rightarrow R_{T}^{q} \quad \tilde{H}^{q_{v}} \rightarrow R_{A}^{q}
$$

\widetilde{E} decouples at $\xi=0 ; \quad H^{q_{v}}=H^{q}-H^{\bar{q}}$ (sea quarks neglected)
subprocess amplitudes: $\mathcal{H}_{++++}=2 \sqrt{-s / u}$

$$
\mathcal{H}_{-+-+}=2 \sqrt{-u / s} \quad(+\mathrm{NLO})
$$

Analysis of nucleon form factors

need for Compton ffs, i.e. need for GPDs at large $-t$ deeply virtual processes provide GPDs only at small $-t$ but large $-t$ GPDs from nucleon ffs through sum rules:

$$
F_{i}^{p(n)}=e_{u} F_{i}^{u(d)}+e_{d} F_{i}^{d(u)}, \quad F_{i}^{a}=\int_{0}^{1} d x K_{v}^{a}(x, \xi=0, t)
$$

Dirac (Pauli) ff: $\quad K=H(E) \quad\left(\right.$ normalization from $\kappa_{q}=\int_{0}^{1} d x E_{v}^{q}(x, \xi=t=0)$) axial form factor: \widetilde{H}
(κ anomalous magn. moment)
ansatz $\quad K_{i}^{a}(x, \xi=0, t)=k_{i}^{a}(x) \exp \left[t f_{i}^{a}(x)\right]$
profile fct: $\quad f_{i}^{a}=\left(B_{i}^{a}+\alpha_{i}^{\prime a} \ln 1 / x\right)(1-x)^{3}+A_{i}^{a} x(1-x)^{2}$ forward limits $\quad H: q(x) \quad \widetilde{H}: \Delta q(x)$
$E: e_{i}=N_{i} x^{\alpha_{i}}(1-x)^{\beta_{i}} \quad$ additional parameters
DFJK hep-ph/0408173; update: Diehl-K, 1302.4604; (see also Guidal et al, hep-ph/0410252) fit to all data: $G_{M}^{i}, G_{E}^{i} / G_{M}^{i}(i=p, n)$ and use of ABM11, DSSV09 parton densities strong $x-t$ correlation (see also de Teramond et al (1801.09154))

Estimate of proton radius

Approx: distance between active parton and cluster of spectators
work in hadron's center of momentum frame
$\sum x_{i} \mathbf{b}_{\mathbf{i}}=0$
Fourier transform of H

$$
q(x, \mathbf{b})=\frac{1}{4 \pi} \frac{q(x)}{f_{q}(x)} \exp \left[-b^{2} /\left(4 f_{q}(x)\right)\right]
$$

$$
d_{q}(x)=\frac{\sqrt{\left\langle b^{2}\right\rangle_{x}^{q}}}{1-x}=\frac{2 \sqrt{f_{q}(x)}}{1-x} \rightarrow 2 \sqrt{A_{q}}
$$

for $x \rightarrow 1$
Regge-type term, A term, full profile fct Regge-like profile fct can (only) be used at small $x($ small $-t)$

(Regge-like: $A=0$ and $(1-x)^{3} \rightarrow 1$)

Large- t behavior of flavor form factors

at large t : dominance of narrow region of large x :
$q_{v} \sim(1-x)^{\beta_{q}}, f_{q} \sim A_{q}(1-x)^{2}$
(analogously for F_{2}^{q})
Saddle point method provides $1-x_{s}=\left(\frac{2}{\beta_{q}} A_{q}|t|\right)^{-1 / 2} \quad F_{1}^{q} \sim|t|^{-\left(1+\beta_{q}\right) / 2}$

ABM PDFs: $\beta_{u} \simeq 3.4, \beta_{d} \simeq 5$,
power laws from wave fct overlaps: Dagaonkar-Jain-Ralston (14)
power laws are a necessary but not sufficient signal of perturbative physics

The Compton cross section

$$
\begin{aligned}
\frac{d \sigma}{d t}= & \frac{d \hat{\sigma}}{d t}\left\{\frac{1}{2} \frac{(s-u)^{2}}{s^{2}+u^{2}}\left[R_{V}^{2}(t)+\frac{-t}{4 m^{2}} R_{T}^{2}(t)\right]\right. \\
& \left.+\frac{1}{2} \frac{t^{2}}{s^{2}+u^{2}} R_{A}^{2}(t)\right\}+\mathcal{O}\left(\alpha_{s}\right)
\end{aligned}
$$

$$
\frac{d \hat{\sigma}}{d t}=2 \pi \frac{\alpha_{\mathrm{elm}}^{2}}{s^{2}}\left[-\frac{u}{s}-\frac{s}{u}\right]
$$

Klein-Nishina cross section
$-t,-u>2.5 \mathrm{GeV}^{2}$
data: JLab E99-114
form factors from $\xi=0$ anlaysis

Photoproduction of pions

arguments for handbag factorization as for WACS

$$
s,-t,-u \ll \Lambda^{2}
$$

leading-twist contribution

$$
\begin{aligned}
\mathcal{M}_{0+\mu+}^{\pi} & =\frac{e_{0}}{2} \sum_{\lambda} \mathcal{H}_{0 \lambda \mu \lambda}^{\pi}\left[R_{V}^{\pi}+2 \lambda R_{A}^{\pi}\right] \\
\mathcal{M}_{0-\mu+}^{\pi} & =\frac{e_{0}}{2} \sum_{\lambda} \frac{\sqrt{-t^{\prime}}}{2 m} \mathcal{H}_{0+\mu+}^{\pi} R_{T}^{\pi}
\end{aligned}
$$

$$
R_{i}^{\pi^{0}}=\frac{1}{\sqrt{2}}\left[e_{u} R_{i}^{u}-e_{d} R_{i}^{d}\right] \quad R_{i}^{\pi^{+}}=R_{i}^{\pi^{-}}=R_{i}^{u}-R_{i}^{d}
$$

same flavor form factors as for WACS known, universality twist-2 subprocess amplitude

$$
\left(\langle 1 / \tau\rangle_{\pi}=\int d \tau / \tau \Phi_{\pi}(\tau)\right)
$$

$$
\mathcal{H}_{0 \lambda \mu \lambda}^{\pi^{0}}=2 \pi \alpha_{\mathrm{s}} f_{\pi} \frac{C_{F}}{N_{C}}\langle 1 / \tau\rangle_{\pi} \sqrt{-t / 2} \frac{(1+\mu) s-(1-\mu) u}{s u}
$$

cross section too small by factor 50-100
Huang-K., hep-ph/0005318

Photoproduction: Transversity GPDs?

Huang-Jakob-K-Passek-Kumericki, hep-ph/0309071
$H_{T}, E_{T}, \widetilde{H}_{T}, \tilde{E}_{T}$
transversity GPDs go along with
twist-3 pion wave functions
fed subprocess ampl. $\mathcal{H}_{0-\mu+}$ and $\mathcal{H}_{0+\mu-}$
projector $q \bar{q} \rightarrow \pi$ (3-part. $q \bar{q} g$ contr. neglected) Beneke-Feldmann (01)
$\sim q^{\prime} \cdot \gamma \gamma_{5} \Phi+\mu_{\pi} \gamma_{5}\left[\Phi_{P}-\imath \sigma_{\mu \nu}\left(\frac{q^{\prime \mu} k^{\prime \nu}}{q^{\prime} \cdot k^{\prime}} \frac{\Phi_{\sigma}^{\prime}}{6}+q^{\prime \mu} \frac{\Phi_{\sigma}}{6} \frac{\partial}{\partial \mathbf{k}_{\perp \nu}}\right)\right]$
definition: $\left\langle\pi^{+}\left(q^{\prime}\right)\right| \bar{d}(x) \gamma_{5} u(-x)|0\rangle=i f_{\pi} \mu_{\pi} \int d \tau \mathrm{e}^{i q^{\prime} x \tau} \Phi_{P}(\tau)$
local limit $x \rightarrow 0$ related to divergency of axial vector current
$\Longrightarrow \mu_{\pi}=m_{\pi}^{2} /\left(m_{u}+m_{d}\right) \simeq 2 \mathrm{GeV}$ at scale $2 \mathrm{GeV} \quad\left(\int d \tau \Phi_{P}(\tau)=1\right)$
Eq. of motion: $\quad \tau \Phi_{P}=\Phi_{\sigma} / N_{c}-\tau \Phi_{\sigma}^{\prime} /\left(2 N_{c}\right)$
solution:
$\Phi_{P}=1, \quad \Phi_{\sigma}=\Phi_{A S}=6 \tau(1-\tau) \quad$ Braun-Filyanov (90)
(WW approx.)

$$
\Longrightarrow \quad \mathcal{H}_{0-\mu+}=\mathcal{H}_{0+\mu-}=0
$$

to be contrasted with electroproduction of pions:

- the subprocess amplitudes in WW appr. are non-zero
- contribute to transversely polarized photons
- dominate the cross section for π^{0} production

Defurne et al (1608.01003)
π^{0} production off protons
curves: Goloskokov-K (1106.4897)

$$
Q^{2} \rightarrow \infty: d \sigma_{L} \gg d \sigma_{T}
$$

Pion photoproduction again

K.-Passek-Kumericki, (1802.06597)

In view of situation in electroproduction:
include full twist-3 contribution ($q \bar{q}+q \bar{q} g$ Fock components of the pion) both are needed in order to achieve gauge invariance they are related by eq. of motion (with light-cone gauge $A^{+}=0$):

$$
\begin{aligned}
& \bar{\tau} \Phi_{p}-\frac{1}{6} \bar{\tau} \Phi_{\sigma}^{\prime}-\frac{1}{3} \Phi_{\sigma}=2 \frac{f_{3 \pi}}{f_{\pi} \mu_{\pi}} \int_{0}^{\tau} \frac{d \tau_{g}}{\tau_{g}} \Phi_{3 \pi}\left(\tau-\tau_{g}, \bar{\tau}, \tau_{g}\right)=\Phi_{1}^{E O M}(\tau) \\
& \tau \Phi_{p}+\frac{1}{6} \tau \Phi_{\sigma}^{\prime}-\frac{1}{3} \Phi_{\sigma}=2 \frac{f_{3 \pi}}{f_{\pi} \mu_{\pi}} \int_{0}^{\bar{\tau}} \frac{d \tau_{g}}{\tau_{g}} \Phi_{3 \pi}\left(\tau, \bar{\tau}-\tau_{g}, \tau_{g}\right)=\Phi_{2}^{E O M}(\tau)
\end{aligned}
$$

for pions: $\Phi_{1}^{E O M}(\tau)=\Phi_{2}^{E O M}(\bar{\tau})$
$f_{3 \pi}=f_{3 \pi}\left(\mu_{R}^{2}\right) \quad \mu_{\pi}=\mu_{\pi}\left(\mu_{R}^{2}\right)$

The 2-particle twist-3 contribution

 amplitude for $\gamma q \rightarrow \pi^{0} q$

$$
\begin{aligned}
\mathcal{H}_{0-\lambda, \mu \lambda}^{t w i s t-3,2-\text { particle }} & =4 \pi \alpha_{\mathrm{s}} f_{\pi} \mu_{\pi} \frac{C_{F}}{N_{C}} \\
& \times \frac{\sqrt{-u s}}{\sqrt{2} s^{2} u^{2}} \int_{0}^{1} d \tau \phi_{2}^{\mathrm{EOM}}(\tau)\left[\mu \frac{t s}{\tau(1-\tau)}\right. \\
& \left.+\left(\frac{2 \lambda-\mu}{2(1-\tau)^{2}}+\frac{2 \lambda+\mu}{2 \tau(1-\tau)}\right)\left(s^{2}+u^{2}\right)\right]
\end{aligned}
$$

Huang-Jakob-K-Passek-Kumericki, hep-ph/0309071
(Φ_{P} and Φ_{σ} always appear in combinations $\Phi_{i}^{E O M}$) gauge invariant in QCD but not in QED violates $s-u$ crossing symmetry (Chew-Goldberger-Low-Nambu (57)
need also 3-particle twist-3 contribution

The 3-particle twist-3 contribution

$$
\begin{aligned}
& \mathcal{H}_{0-\lambda, \mu \lambda}^{\text {twist-3,3-particle }}=4 \pi \alpha_{\mathrm{s}} f_{3 \pi} \frac{C_{F}}{N_{C}} \frac{\sqrt{-u s}}{\sqrt{2} s^{2} u^{2}} \\
& \times \int_{0}^{1} d \tau \int_{0}^{1-\tau} \frac{d \tau_{g}}{\tau_{g}} \Phi_{3 \pi}\left(\tau, 1-\tau-\tau_{g}, \tau_{g}\right) \\
& \times\left\{(2 \lambda - \mu) \left[\left(\frac{1}{1-\tau}-\frac{1}{1-\tau-\tau_{g}}\right) \frac{s^{2}+u^{2}}{\tau_{g}}\right.\right. \\
&\left.+\left(1-\frac{1}{2} \frac{C_{A}}{C_{F}}\right)\left(\frac{1}{\tau}+\frac{1}{1-\tau-\tau_{g}}\right) \frac{t^{2}}{\tau_{g}}\right] \\
&\left.-\frac{2 \lambda+\mu}{\tau(1-\tau)}\left(s^{2}+u^{2}\right)-2 \mu \frac{s t}{\tau(1-\tau)}\right\}
\end{aligned}
$$

d) soft, part of DA
gauge invariant in QCD but not in QED
$s-u$ crossing symmetry violated
twist-3 3-particle projector $(q \bar{q} g \rightarrow \pi)$

$$
\mathcal{P}_{3, f g}^{\beta, c}=\frac{i}{g} \frac{f_{3 \pi}}{2 \sqrt{2 N_{C}}} \frac{\left(t^{c}\right)_{f g}}{C_{F} \sqrt{N_{C}}} \frac{\gamma_{5}}{\sqrt{2}} \sigma_{\mu \nu} q^{\prime \mu} g_{\perp}^{\nu \beta} \frac{\Phi_{3 \pi}\left(\tau_{a}, \tau_{b}, \tau_{g}\right)}{\tau_{g}} \quad g_{\perp}^{\nu \beta}=g^{\nu \beta}-\frac{k_{j}^{\prime \nu} q^{\prime \beta}+q^{\prime \nu} k_{j}^{\prime \beta}}{k_{j}^{\prime} \cdot q^{\prime}}
$$

π^{0} subprocess amplitudes

$$
\begin{aligned}
\mathcal{H}_{0-\lambda, \mu \lambda}^{t w i s t-3} & =\mathcal{H}^{\text {twist-3,2-particle }}+\mathcal{H}^{\text {twist-3,3-particle }} \\
& =4 \pi \alpha_{\mathrm{s}} f_{3 \pi} \frac{C_{F}}{N_{C}} \frac{2 \lambda-\mu}{2} \frac{\sqrt{-u s}}{s^{2} u^{2}} \int_{0}^{1} d \tau \int_{0}^{\bar{\tau}} \frac{d \tau_{g}}{\tau_{g}} \Phi_{3 \pi}\left(\tau, \bar{\tau}-\tau_{g}, \tau_{g}\right) \\
& \times\left[\left(\frac{1}{\bar{\tau}^{2}}-\frac{1}{\bar{\tau}\left(\bar{\tau}-\tau_{g}\right)}\right)\left(s^{2}+u^{2}\right)+\left(1-\frac{1}{2} \frac{C_{A}}{C_{F}}\right)\left(\frac{1}{\tau}+\frac{1}{\bar{\tau}-\tau_{g}}\right) \frac{t^{2}}{\tau_{g}}\right]
\end{aligned}
$$

$\mathcal{H}^{\text {twist-3 }}=0$ if $\Phi_{3 \pi}=0(\mathrm{WW}$ appr.)
sum is gauge invariant (QCD and QED) and $s \leftrightarrow u$ crossing symmetric generalization to other pseudoscalar mesons straightforward

The photoproduction amplitudes

$$
\begin{aligned}
\mathcal{M}_{0+\mu+}^{\pi} & =\frac{e_{0}}{2} \sum_{\lambda}\left\{\mathcal{H}_{0 \lambda \mu \lambda}^{\pi}\left[R_{V}^{\pi}+2 \lambda R_{A}^{\pi}\right]-2 \lambda \frac{\sqrt{-t}}{2 m} \mathcal{H}_{0-\lambda \mu \lambda}^{\pi} \bar{S}_{T}^{\pi}\right\} \\
\mathcal{M}_{0-\mu+}^{\pi} & =\frac{e_{0}}{2} \sum_{\lambda}\left\{\frac{\sqrt{-t}}{2 m} \mathcal{H}_{0 \lambda \mu \lambda}^{\pi} R_{T}^{\pi}-2 \lambda \frac{t}{2 m^{2}} \mathcal{H}_{0-\lambda \mu \lambda}^{\pi} S_{S}^{\pi}\right\}+e_{0} \mathcal{H}_{0-, \mu+}^{\pi} S_{T}^{\pi}
\end{aligned}
$$

form factors S_{i} are $1 / x$ moments of transversity GPDs
light-cone helicities, transform to ordinary helicities
Diehl(01)
$\Phi_{0 \nu^{\prime}, \mu \nu}=\mathcal{M}_{0 \nu^{\prime}, \mu \nu}+\frac{1}{2} \kappa\left[(-1)^{1 / 2-\nu^{\prime}} \mathcal{M}_{0-\nu^{\prime}, \mu \nu}+(-1)^{1 / 2+\nu} \mathcal{M}_{0 \nu^{\prime}, \mu-\nu}\right]+\mathcal{O}\left(m^{2} / s\right)$
$\kappa=\frac{2 m}{\sqrt{s}} \frac{\sqrt{-t}}{\sqrt{s}+\sqrt{-u}} \quad$ relevant for spin effects

Form factors

in addition to R_{V}, R_{A}, R_{T} :

$$
S_{T}^{a}(t)=\int_{-1}^{1} \frac{d x}{x} \operatorname{sign}(x) H_{T}^{a}(x, t), \quad \bar{S}_{T}^{a}(t) \rightarrow \bar{E}_{T}^{a}(x, t), \quad S_{S}^{a}(t) \rightarrow \widetilde{H}_{T}^{a}(x, t)
$$

$\bar{E}_{T}=2 \widetilde{H}_{T}+E_{T}$
transversity FFs (skewness $=0$)
only valence quarks contribute (charge conjugation symmetry) $F_{i}^{\pi^{0}}=\left(e_{u} F_{i}^{a}-e_{d} F_{i}^{d}\right) / \sqrt{2}$
from electroproduction: H_{T}, \bar{E}_{T} known at small $-t$ \widetilde{H}_{T} unknown, suppressed by $-t /\left(4 m^{2}\right)$
extrapolation to large $-t$: by term $A x(1-x)^{2}$ in profile fct.
with $A \simeq 0.5 \mathrm{GeV}^{-2}$ and $S_{S}^{\pi^{0}} \simeq \bar{S}_{T}^{\pi^{0}} / 2$

Large $-t$ behavior of form factors

the power law behavior of the elm. FF also holds for the $1 / x$ moments

$$
F_{i} \sim 1 /(-t)^{d_{i}}
$$

d_{i} determined by the powers β_{i} in $K_{i}(x, t=0) \rightarrow(1-x)^{\beta_{i}}$ for $x \rightarrow 1$

$$
d_{i}=\left(1+\beta_{i}\right) / 2
$$

	R_{V}	R_{A}	R_{T}	S_{T}	\bar{S}_{T}
u	2.25	2.22	2.83	2.5	2.5
d	3.0	2.61	3.12	3.5	3.0

The 3-particle twist-3 pion DA

$$
\begin{aligned}
\Phi_{3 \pi} & =360 \tau_{a} \tau_{b} \tau_{g}^{2}\left[1+\omega_{10}\left(\mu_{R}^{2}\right)\left(7 \tau_{g}-3\right) / 2\right. \\
& \left.+\omega_{20}\left(\mu_{R}^{2}\right)\left(2-4 \tau_{a} \tau_{b}-8 \tau_{g}+8 \tau_{g}^{2}\right)+\omega_{11}\left(\mu_{R}^{2}\right)\left(3 \tau_{a} \tau_{b}-2 \tau_{g}+3 \tau_{g}^{2}\right)+\ldots\right]
\end{aligned}
$$

(expansion in a series of Jacobi polynomials; coeff. evolve with scale)

Braun-Filyanov (90), Chernyak-Zhitnitsky(84)
choice: $\mu_{R}^{2}=\mu_{F}^{2}=t u / s$

Results on π^{0} cross section

data: CLAS (17) at $s=11.06 \mathrm{GeV}^{2}$
$s=11.06(9,20) \mathrm{GeV}^{2}$
solid(dotted, dashed)
$-t,-u \geq 2.5 \mathrm{GeV}^{2}$
dominance of twist-3
large parametric uncertainty (about 70\%)
parameters of $\Phi_{3 \pi}$ at $\mu_{0}=2 \mathrm{GeV}$:
$f_{3 \pi}=0.004 \mathrm{GeV}^{2} \quad \omega_{10}=-2.55$
from Ball (98)
fit to data: $\omega_{20}=8.0 \quad \omega_{11}=0$
close to values quoted in
Braun-Filyanov (90),Chernyak-Zhit.(84) energy dependence: $s^{-7} \frac{\mu_{\pi}^{2}}{s} \times$ logs from evolution $\times t$ dependence of form factors

Helicity correlation $A_{L L}$ and $K_{L L}$ in WACS

Klein-Nishina result

$$
\begin{aligned}
& \hat{A}_{L L}=\hat{K}_{L L}=\frac{s^{2}-u^{2}}{s^{2}+u^{2}} \\
& A_{L L}=K_{L L} \simeq \hat{A}_{L L} \frac{R_{A}}{R_{V}}
\end{aligned}
$$

JLab E99-114 $\left(s=6.9 \mathrm{GeV}^{2}\right.$
$\left.u=-1.04 \mathrm{GeV}^{2}\right)$
JLab E07-002 $\left(s=7.8 \mathrm{GeV}^{2} \quad t=-2.1 \mathrm{GeV}^{2}\right)$
application of handbag mechanism is at the limits
R_{A} badly known since F_{A} badly known, old data for $-t \lesssim 2 \mathrm{GeV}^{2}$ Kitagaki (83) MINERvA? or $K_{L L}$ from Jlab?

Helicity correlation in photoproduction

$A_{L L}^{t w i s t-2}=K_{L L}^{t w i s t-2}$ as for WACS
$A_{L L}^{t w i s t-3}=-K_{L L}^{t w i s t-3}$
characteristic signature for dominance of twist-3
like $\sigma_{T} \gg \sigma_{L}$ in pion electroprod.

$$
\begin{gathered}
A_{L L}^{t w i s t-3}=-K_{L L}^{t w i s t-3}=-4 \frac{S_{T}^{\pi^{0}}}{F^{\pi^{0}}}\left[S_{T}^{\pi^{0}}-\frac{t}{2 m^{2}} S_{S}^{\pi^{0}}+\kappa \frac{\sqrt{-t}}{2 m} \bar{S}_{T}^{\pi^{0}}\right] \\
F^{\pi^{0}}=\frac{-t}{2 m^{2}}\left[\left(\bar{S}_{T}^{\pi^{0}}\right)^{2}-\frac{t}{m^{2}}\left(S_{S}^{\pi^{0}}\right)^{2}+4 S_{S}^{\pi^{0}} S_{T}^{\pi^{0}}-8 \frac{m^{2}}{t}\left(S_{T}^{\pi^{0}}\right)^{2}\right]
\end{gathered}
$$

$K_{L L}$ data: Fanelli(15)(Hall A(05)) $s=7.8(6.9) \mathrm{GeV}^{2}, t=-2.1(u=-1.04) \mathrm{GeV}^{2}$

Other observables

$$
\begin{array}{rlrl}
& A_{L S}^{t w i s t-3} & =-K_{L S}^{t w i s t-3} & A_{L S}^{t w i s t-2}=K_{L S}^{t w i s t-2} \\
=-2 \frac{S_{T}^{\pi^{0}}}{F^{\pi^{0}}}\left[\frac{\sqrt{-t}}{m} \bar{S}_{T}^{\pi^{0}}-2 \kappa\left(S_{T}^{\pi^{0}}-\frac{t}{4 m^{2}} S_{S}^{\pi^{0}}\right)\right] &
\end{array}
$$

$$
\Sigma^{t w i s t-3}=1-4 \frac{\left(S_{T}^{\pi^{0}}\right)^{2}}{F^{\pi^{0}}} \quad \text { asymmetry for linearly polarized photons }
$$

data: Fanelli(15)(Hall $\mathrm{A}(05)) s=7.8(6.9) \mathrm{GeV}^{2}, t=-2.1(u=-1.04) \mathrm{GeV}^{2}$

$$
K_{L S}=-0.296 \pm 0.007(0.480 \pm 0.007)
$$

π^{0} production off neutrons and η production

$F_{i n}^{\pi^{0}}=\frac{1}{\sqrt{2}}\left[e_{u} F_{i}^{d}-e_{d} F_{i}^{u}\right]$

$$
F_{i}^{(8)} \simeq F_{i}^{(1)} \simeq \frac{1}{\sqrt{6}}\left[e_{u} F_{i}^{u}+e_{d} F_{i}^{d}\right]
$$

$\mathcal{M}_{i}^{\eta}=\cos \theta_{8} \mathcal{M}_{i}^{(8)}-\sin \theta_{1} \mathcal{M}_{i}^{(1)}$
solid: neutron
dashed: η

$$
s=11.06 \mathrm{GeV}^{2}
$$

The 2-particle twist-3 DAs

a combination of EOM is linear first order diff. equation for Φ_{σ}
solution:

$$
\begin{gathered}
\Phi_{\sigma}=6 \tau \bar{\tau}\left(\int d \tau \frac{\bar{\tau} \Phi_{1}^{E O M}-\tau \Phi_{2}^{E O M}}{2 \tau^{2} \bar{\tau}^{2}}+C\right) \\
\Phi_{P}=\frac{\Phi_{\sigma}}{6 \tau \bar{\tau}}+\frac{\Phi_{1}^{E O M}}{2 \tau}+\frac{\Phi_{2}^{E O M}}{2 \bar{\tau}}
\end{gathered}
$$

local limit: $\left\langle\pi^{+}\left(q^{\prime}\right)\right| \bar{d}(0) \gamma_{5} u(0)|0\rangle=i f_{\pi} \mu_{\pi} \quad\left(\int_{0}^{1} d \tau \Phi_{P}(\tau)=1\right)$ \Longrightarrow fixes constant of integration:

$$
C=1+\eta_{3}\left(7 \omega_{1,0}-2 \omega_{2,0}-\omega_{1,1}\right) \quad\left(\eta_{3}=f_{3 \pi} /\left(f_{\pi} \mu_{\pi}\right)\right)
$$

$\Phi_{P}=1+\sum_{n=2,4, \ldots} a_{n}^{P} C_{n}^{(1 / 2)}(2 \tau-1) \quad a_{2}^{P}=-\frac{10}{3} a_{4}^{P}=\frac{10}{7} \eta_{3}\left(7 \omega_{1,0}-2 \omega_{2,0}-\omega_{1,1}\right)$
$\Phi_{\sigma}=\eta_{\sigma} \tilde{\Phi}_{\sigma} \quad \tilde{\Phi}_{\sigma}=6 \tau \bar{\tau}\left[1+\sum_{n=2,4, \ldots} a_{n}^{\sigma} C_{n}^{(3 / 2)}(2 \tau-1)\right]$
$a_{2}^{\sigma}=\frac{1}{6} \frac{\eta_{3}}{\eta_{\sigma}}\left(12+3 \omega_{1,0}-4 \omega_{2,0}\right) \quad a_{4}^{\sigma}=\frac{1}{105} \frac{\eta_{3}}{\eta_{\sigma}}\left(22 \omega_{2,0}-3 \omega_{1,1}\right)$
$\eta_{\sigma}=1-\eta_{3}\left(12-4 \omega_{1,0}+\frac{8}{7} \omega_{2,0}+\frac{4}{7} \omega_{1,1}\right) \quad$ may be absorbed in μ_{π}
for $\eta_{3} \rightarrow 0: \Phi_{P} \rightarrow 1, \Phi_{\sigma} \rightarrow 2 \tau \bar{\tau} \quad$ WW approx.

The Gegenbauer coefficients

at scale $\mu_{0}=2 \mathrm{GeV}$:

$$
\begin{array}{rlrl}
a_{2}^{P}=-0.56, & a_{4}^{P}=0.17 \\
a_{2}^{\sigma}=-0.084, & a_{4}^{\sigma}=0.031, & \eta_{\sigma}=0.64
\end{array}
$$

$a_{n}^{P}=a_{n}^{\sigma}=0$ for $n \geq 6$
values of $a_{2}^{P, \sigma}$ compatible with other results
values of $a_{4}^{P, \sigma}$ have opposite sign

Dyson-Schwinger approach
light-cone quark model
chiral quark model

Shi et al (15)
Choi-Ji (17)
Nam-Kim (06)

An alternative

Braun-Filyanov (90), Ball (98)
instead of $A^{+}=0$ the contour (Fock-Schwinger) gauge $x^{\mu} A_{\mu}(x)=0$ is used

EOM more complicated but a recursion formula for the moments of the twist-3 DAs has been derived, allows also to calculate Φ_{P} and Φ_{σ} for given $\Phi_{3 \pi}$
they differ from our ones for the same $\Phi_{3 \pi}$

With these DAs the result for the subprocess amplitude is not gauge invariant

Reason: the Wilson lines $(\neq 1)$ in the vacuum-pion matrix elements affect the calculation of the amplitudes

At least for electroproduction of ρ_{T} the equivalence of the two methods has been shown Anikin et al (10)

Summary

handbag factorization applied to wide-angle photoproduction of pions

- In contrast to WACS, the leading-twist analysis (with helicity non-flip GPDs) fails by order of magnitude
- we calculated the full (2 - and 3 -particle) twist-3 contribution; in contrast to electroproduction the subprocess amplitude is regular in collinear approximation
- together with the transversity form factors ($1 / x$ moments of transversity GPDs) which are known from pion electroproduction at small $-t$ and are extrapolated to large $-t$ and a 3-particle twist-3 DA taken (partially) from literature we are able to fit the CLAS data at $s=11.06 \mathrm{GeV}^{2}$
- there are interesting spin effects, e.g. $A_{L L}^{t w i s t-3}=-K_{L L}^{t w i s t-3}$ but $A_{L L}^{t w i s t-2}=K_{L L}^{t w i s t-2}$ as for WACS

