Two topics in hadronic physics

The axial anomaly and flavor mixing for mesons with higher spin

F. Giacosa (Kielce), A. Koenigstein (Frankfurt) & RDP, 1709.07454

Tetraquarks and (perhaps) two chiral phase transitions?

RDP & V. V. Skokov (RBRC -> NCSU), 1606.04111

The axial anomaly and flavor mixing

Axial anomaly & the usual Goldstone bosons

 η & η' mixing: close to pure SU(3)_v states, octet & singlet

Mixing for vector mesons, $J^{P} = 1 - \varrho$, $\omega \& \phi$: flavor eigenstates:

 $\varrho \& \omega$ mainly light quarks, ϕ mainly strange

How does this generalize to mesons with $J^{P} = 1+, 2, 3...?$

Today: make one strong assumption, many testable predictions

Generally: how does the axial anomaly affect mesons with *higher* spin?

Chiral symmetry

Quarks in QCD:

 $\overline{q}(\not\!\!D+m)q = \overline{q}_L \not\!\!D q_L + \overline{q}_R \not\!\!D q_R + m_{qk}(\overline{q}_L q_R + \overline{q}_R q_L)$

Chiral projectors:

$$\mathcal{P}_{L,R} = (1 \mp \gamma_5)/2 , \ \mathcal{P}_{L,R}^2 = \mathcal{P}_{L,R} , \ \mathcal{P}_L \mathcal{P}_R = 0$$

$$q_{L,R} = \mathcal{P}_{L,R} q , \ \overline{q}_{L,R} = q^{\dagger} \mathcal{P}_{L,R} \gamma_0 = \overline{q} \mathcal{P}_{R,L}$$

For three flavors, quarks are invariant under

$$q_{\rm L,R} \longrightarrow e^{\pm i\alpha/2} U_{\rm L,R} q_{\rm L,R}$$

Classically, global symmetry of $SU(3)_L \times SU(3)_R \times U(1)_A = G_{ff} \times U(1)_A$.

Axial anomaly

Quantum mechanically $(m_{qk} = 0)$:

$$\partial^{\mu} \,\overline{q}^{a} \gamma_{\mu} \gamma_{5} q^{a} = \frac{3g^{2}}{16\pi^{2}} \,\varepsilon^{\mu\nu\rho\sigma} \mathrm{tr} \,G_{\mu\nu} \,G_{\rho\sigma}$$

Quantum symmetry is $G_{ff} \times Z(3)_A$.

With dynamically generated mass, breaks to $SU(3)_{v}$.

Since $m_{strange} \gg m_{up} \approx m_{down}$, $SU(3)_V \rightarrow SU(2)_V$.

Eigenstates of (softly broken) $SU(3)_v$, or flavor?

In vacuum, instantons have dominant size, $<r_{inst}> ~ 1/3$ fm (Shuryak). But instantons come in all sizes....

Scalar multiplet

Simplest is to pair

$$\Phi^{ij} = \overline{q}_R^j q_L^i = \overline{q}^j \mathcal{P}_L q^i , \ \Phi \to e^{-i\alpha} U_L \Phi U_R^{\dagger}$$

 $J^{P} = 0-: \pi, K, \eta, \eta'; J^{P} = 0+: \sigma(600), a_{0}(980) +; or a_{0}(1450)f_{0}(1370), f_{0}(1710)?$

All terms must be invariant under G_{ff} . Invariant under $U(1)_{A}$:

$$\mathcal{V} = m^2 \operatorname{tr} \Phi^{\dagger} \Phi + \lambda_1 (\operatorname{tr} \Phi^{\dagger} \Phi)^2 + \lambda_2 \operatorname{tr} (\Phi^{\dagger} \Phi)^2 + \dots$$

Under $Z(3)_A$:

 $\mathcal{V}^{Z(3)} = -a_1(\det(\Phi) + \text{c.c.}) - a_2 \text{tr}(\Phi^{\dagger}\Phi)(\det(\Phi) + \text{c.c.})$

$$-a_3((\det(\Phi))^2 + c.c.) + ...$$

 a_1 , a_2 generated by zero modes of single instanton; a_3 by two instantons

(pseudo-) Goldstone Bosons

Add

$$\mathcal{L}_{mass} = \text{tr}H(\Phi + \Phi^{\dagger}) \qquad H = \# \begin{pmatrix} m_{up} & 0 & \\ 0 & m_{down} & 0 \\ 0 & 0 & m_{strange} \end{pmatrix}$$

When $\langle \Phi \rangle = \phi_0 \neq 0$, $m_\pi^2 \sim m_u + m_d$, $m_K^2 \sim m_{u,d} + m_s$

With the anomaly, GB's eigenstates of $SU(3)_V : \eta \rightarrow 3\pi$, $\eta' \rightarrow \eta + 2\pi$ η' mainly singlet, η mainly octet. Mix in calculable manner, $\theta \sim -42^\circ$.

With *out* the anomaly, GB's eigenstates of flavor, *not* $SU(3)_V$: Gross, Wilczek & Treiman '78; RDP & Wilczek, '82

$$\pi^0 \sim \overline{u}u \ , \ \eta \sim \overline{d}d \ , \ \eta' \sim \overline{s}s$$

The anomaly prevents massive isospin violation in the GB's.

Vector multiplet

Insert γ_{μ} between quarks: as γ_{μ} flips chirality, can only pair LL and RR

$$L^{ij}_{\mu} = \overline{q}^j_{\rm L} \, \gamma_{\mu} \, q^i_{\rm L} \, , \ R^{ij}_{\mu} = \overline{q}^j_{\rm R} \, \gamma_{\mu} \, q^i_{\rm R}$$

Neutral under $U(1)_A$:

$$L_{\mu} \longrightarrow U_{\rm L} \, L_{\mu} \, U_{\rm L}^{\dagger} \, , \; R_{\mu} \longrightarrow U_{\rm R} \, R_{\mu} \, U_{\rm R}^{\dagger}$$

Obvious mixing and mass terms,

$$\beta \operatorname{tr}(L_{\mu} \Phi^{\dagger} \partial_{\mu} \Phi + R_{\mu} \Phi \partial_{\mu} \Phi^{\dagger}) + m_{V}^{2} \operatorname{tr}(L_{\mu}^{2} + R_{\mu}^{2}) + \kappa \operatorname{tr} H(L_{\mu}^{2} + R_{\mu}^{2})$$

More vectors

Effects of anomaly indirect.

Start with 3^{rd} order in ∂ 's, Wess-Zumino-Novikov-Witten:

 $\varepsilon^{\mu\nu\alpha\beta} \operatorname{tr}[L_{\mu}\Phi(\partial_{\nu}\Phi^{\dagger})\Phi(\partial_{\alpha}\Phi^{\dagger})\Phi(\partial_{\beta}\Phi^{\dagger}) + R_{\mu}\Phi^{\dagger}(\partial_{\nu}\Phi)\Phi^{\dagger}(\partial_{\alpha}\Phi)\Phi^{\dagger}(\partial_{\beta}\Phi)]\}$

 $J^{P} = 1-: V_{\mu} = L_{\mu} + R_{\mu}, \varrho(770), \omega(782), K^{*}(892) \& \phi(1020).$ WZNW: $\omega > 3\pi$

No mass terms from the anomaly, so ϱ , ω , & ϕ are *flavor* eigenstates:

$$ho_{\mu}, \, \omega_{\mu} \sim l \gamma_{\mu} l \, , \, l = u, d \; ; \; \phi_{\mu} \sim \overline{s} \gamma_{\mu} s$$

Obvious from decays: $\rho \ \mathcap > 2\pi$, $\ \omega \ \mathcap > 3\pi$, $\ \varphi \ \mathcap < KK$

$$J^{P} = 1^{+}: A_{\mu} = L_{\mu} - R_{\mu}, a_{1}(1260), K_{1,A}(?), f_{1}(1285), f_{1}(1420)$$

What happens with higher spins?

Assume that we can classify multiplets according to the unbroken $G_{ff} \times Z(3)_A$.

Form mesons by inserting some Γ , ~ γ 's and D's, between q and q-bar.

Heterochiral:

$$[\Gamma_{\mu\nu\dots},\gamma_5] = 0 : \Phi_{\mu\nu\dots} = \overline{q}_R \Gamma_{\mu\nu\dots} q_L , \Phi_{\mu\nu\dots} \to e^{-i\alpha} U_L \Phi_{\mu\nu\dots} U_R^{\dagger}$$

Numerous anomaly terms: masses close to $SU(3)_V$ eigenstates.

Do effects from anomaly decrease as the mass increases?

Homochiral:

$$\{\Gamma_{\mu\nu\dots},\gamma_5\} = 0 : L_{\mu\nu\dots} = \overline{q}_L \Gamma_{\mu\nu\dots} q_L ; R_{\mu\nu\dots} = \overline{q}_R \Gamma_{\mu\nu\dots} q_R$$
$$L_{\mu\nu\dots} \to U_L^{\dagger} L_{\mu\nu\dots} U_L ; R_{\mu\nu\dots} = U_R^{\dagger} R_{\mu\nu\dots} U_R$$

Masses close to eigenstates of flavor, as in the usual quark model.

Heterochiral spin-one

 $\Gamma_{\mu} = \overleftrightarrow{D}_{\mu}$, $\Phi^{ij}_{\mu} = \overline{q}^{i}_{R} \overleftrightarrow{D}_{\mu} q^{j}_{L}$ Many anomaly terms, mixing Φ and Φ_{μ}

$$-\varepsilon^{ijk}\varepsilon^{i'j'k'}(b_{A}^{(1)}\Phi^{ii'}\Phi_{\mu}^{jj'}\Phi_{\mu}^{kk'}+b_{A}^{(2)}\Phi^{ii'}\partial^{\mu}\Phi^{jj'}\Phi_{\mu}^{kk'}+\text{c.c.})$$

$$-b_{A}^{(3)}(\varepsilon^{ijk}\varepsilon^{i'j'k'}\Phi^{ii'}\Phi^{jj'}\Phi_{\mu}^{kk'}-\text{c.c.})^{2}+\dots$$

 $\Phi_{\mu} = S_{\mu} + i P_{\mu}$: obvious candidates:

$$P_{\mu}: J^{PC} = 1 + -: b_{1}(1235), K_{1,B}, h_{1}(1170), h_{1}(1380) ^{2S+1}L_{J} = {}^{1}S_{1}.$$

$$S_{\mu}: J^{PC} = 1 - -, \varrho(1700), K^{*}(1680), \omega(1650), \phi(1680?) ^{2S+1}L_{J} = {}^{1}P_{1}.$$

But $h_1(1170)$, $\omega(1650) \rightarrow \rho \pi$; $h_1(1380)$, $\phi(1680?) \rightarrow KKbar^*$: *homo*chiral

Where is the heterochiral spin one multiplet, with the spin one $\eta_1 \& \eta_1'$ - ?

Heterochiral spin-two $\Gamma_{\mu\nu} = \overleftrightarrow{D}_{\mu} \overleftrightarrow{D}_{\nu} + \overleftrightarrow{D}_{\nu} \overleftrightarrow{D}_{\mu} - (\text{tr} = 0) , \quad \Phi^{ij}_{\mu\nu} = \overline{q}^{i}_{\text{R}} \Gamma_{\mu\nu} q^{j}_{\text{L}}$

Many anomaly terms, mixing Φ and $\Phi_{\mu\nu}$ (and others with Φ_{μ})

 $-c_A^{(1)} \varepsilon^{ijk} \varepsilon^{i'j'k'} \Phi^{ii'} \Phi^{jj'}_{\mu\nu} \Phi^{kk'}_{\mu\nu} + c_A^{(2)} \varepsilon^{ijk} \varepsilon^{i'j'k'} \partial^{\mu} \Phi^{ii'} \partial^{\nu} \Phi^{jj'} \Phi^{kk'}_{\mu\nu} + \text{c.c.}$ $-c_A^{(3)} \left(\varepsilon^{ijk}\varepsilon^{i'j'k'}\Phi^{ii'}\Phi^{jj'}\Phi^{kk'}_{\mu\nu} - \text{c.c.}\right)^2 + \dots$ $\Phi_{\mu\nu} = S_{\mu\nu} + iP_{\mu\nu}$: $S_{\mu\nu}$: $J^{PC} = 2++, a_2, K_2^*, f_2, f_2'$; exp.'y murky $P_{\mu\nu}$: J^{PC} = 2-+ : $\pi_2(1670)$, $K_2(1670)$, $\eta_2(1645)$, $\eta_2(1870)$; ^{2S+1} L_1 = ¹ D_2 . $\eta_2(1645) \rightarrow a_2(1320) \pi$, $\eta_2(1870) \rightarrow \eta + 2 \pi$ (like η'): *hetero*chiral $\eta_2(1645)$ & $\eta_2(1870)$ mix like η & η' , $\theta \sim -42^{\circ}$ Koenigstein & Giacosa 1608.08777

But: $\eta_2(1870)$ not in PDG summary table, needs confirmation

Lattice: *no* flavor mixing?

Dudek, Edwards, Guo & Thomas, 1309.2609, $m_{\pi} = 392 \text{ MeV}$ "...*little* mixing...in most J^{PC} channels...except $\eta \& \eta$ "

J^{PC} = 2-+ : Exp.'y, *no* strange decays of η₂(1870): PDG: η₂(1870) -> ηππ, a₂(1320)π, f₂(1270)η, a₀(980)π KKbar+... *not* seen

Homochiral spin-one multiplet

 $\gamma_{\mu}\gamma_{\nu} = g_{\mu\nu} - i\sigma_{\mu\nu} , \ \Gamma_{\mu\nu} = \sigma_{\mu\nu} \ , \ \ L_{\mu\nu} = \overline{q}_L \sigma_{\mu\nu} q_L \ , \ R_{\mu\nu} = \overline{q}_R \sigma_{\mu\nu} q_R$

Anti-symmetric 2-index = spin-1 field: Ecker, Gasser, Pich & de Rafael, '89, $L_{\mu} = \partial_{\mu} L_{\mu\nu} / M , R_{\mu} = \partial_{\mu} R_{\mu\nu} / M$

Included by lattice: Dudek, Edwards, Pearson, Richards, & Thomas 1004.4930

$$V_{\mu} = L_{\mu} + R_{\mu}: J^{PC} = 1 - , \ \varrho(1700), \ K^{*}(1680), \ \omega(1650), \ \phi(1680?)^{2S+1}L_{J} = {}^{1}P_{1.}$$

$$A_{\mu} = L_{\mu} - R_{\mu}: J^{PC} = 1 + - : \ b_{1}(1235), \ K_{1,B}, \ h_{1}(1170), \ h_{1}(1380) \quad {}^{2S+1}L_{J} = {}^{1}S_{1}.$$

$$h_{1}(1170), \ \omega(1650) \rightarrow \ \varrho \ \pi; \ h_{1}(1380), \ \phi(1680?) \rightarrow \ KKbar^{*}.$$

Where is the heterochiral spin one multiplet, with the $\eta_1 \& \eta_1'$?

Homochiral spin-two multiplet

$$\Gamma_{\mu\nu} = \gamma_{\mu} \overleftrightarrow{D}_{\nu} + \gamma_{\nu} \overleftrightarrow{D}_{\mu} + (\text{tr} = 0) , \quad L_{\mu\nu} = \overline{q}_{L} \Gamma_{\mu\nu} q_{L} , \quad R_{\mu\nu} = \overline{q}_{R} \Gamma_{\mu\nu} q_{R}$$

Obvious mixing and mass terms:

 $\beta \operatorname{tr}(L_{\mu\nu}\partial_{\mu}\Phi^{\dagger}\partial_{\nu}\Phi + R_{\mu}\partial_{\mu}\Phi\partial_{\nu}\Phi^{\dagger}) + m_{V}^{2}\operatorname{tr}(L_{\mu\nu}^{2} + R_{\mu\nu}^{2}) + \kappa \operatorname{tr}H(L_{\mu\nu}^{2} + R_{\mu\nu}^{2})$

Only anomaly terms from higher derivatives: *Wess-Zumino-Witten for spin-2?*

$$J^{PC} = 2 + +: V_{\mu\nu} = L_{\mu\nu} + R_{\mu\nu}, a_2(1320), K_2(1430), f_2(1270) \& f_2'(1525); {}^{2S+1}L_J = {}^{3}P_2.$$

Anomaly doesn't contribute to mass terms, so eigenstates of flavor, homochiral.

Decays of $f_2(1270) \& f_2'(1525)$ like $\omega \& \phi$

$$J^{PC} = 2 - : V_{\mu\nu} = L_{\mu\nu} - R_{\mu\nu}, K_2(1820) + ?$$

f_2 's on the lattice

Briceno, Dudek, Edwards & Wilson, 1708.06667

Luscher + coupled channel analysis with two mesons, $m_{\pi} = 391$ MeV

 $f_2^{a}(1470) \rightarrow 2\pi$, $f_2^{b}(1602) \rightarrow KKbar$

Homochiral spin-three multiplet

 $\Gamma_{\mu\nu\rho} = \gamma_{\mu} \overleftarrow{D}_{\nu} \overleftarrow{D}_{\rho} + \operatorname{sym}, \operatorname{tr} = 0 \ , \ L_{\mu\nu\rho} = \overline{q}_{L} \Gamma_{\mu\nu\rho} q_{L} \ , \ R_{\mu\nu\rho} = \overline{q}_{R} \Gamma_{\mu\nu\rho} q_{R}$

 $J^{PC} = 3 - : V_{\mu\nu\rho} = L_{\mu\nu\rho} + R_{\mu\nu\rho}: \rho_3(1690), K_3^*(1780), \omega_3(1670) \& \phi_3(1850)^{-2S+1}L_J = {}^{3}P_2.$

ω₃(1670) -> ρπ, ωππ ; φ₃(1850) -> K Kbar, K Kbar*

PDG: mixing angle ~ 3°, homochiral

	$\int I = 1(\bar{u}d, \bar{d}u, \frac{\bar{d}d - \bar{u}u}{\sqrt{2}})$			
J^{PC} , ${}^{2S+1}L_J$	$\begin{cases} I = 1(-\bar{u}s, \bar{s}u, ds, \bar{s}d) \\ I = 0(\frac{\bar{u}u + \bar{d}d}{\sqrt{2}}, \bar{s}s)^{\star\star} \end{cases}$	Microscopic currents	Chiral multiplet	Transformation under $SU(3)_{L} \times SU(3)_{R} \times \times U(1)_{A}$
$0^{-+}, {}^{1}S_{0}$	$\begin{cases} \pi \\ K \\ \eta, \eta'(958) \end{cases}$	$P^{ij}=rac{1}{2}ar{q}^j \mathrm{i} \gamma^5 q^i$	$\Phi = S + iP$	τ2iari τri [†]
$0^{++}, {}^{3}P_{0}$	$\begin{cases} a_0(1450) \\ K_0^*(1430) \\ f_0(1370), f_0(1710)^{\star} \end{cases}$	$S^{ij}=rac{1}{2}ar q^j q^i$	$(\Phi^{ij}=ar{q}^j_{ m R}q^i_{ m L})$	$\Phi \to e^{-2i\kappa} U_{\rm L} \Phi U_{\rm R}^+$
1 , ¹ S ₁	$\begin{cases} \rho(770) \\ K^*(892) \\ \omega(782), \phi(1020) \end{cases}$	$V^{ij}_\mu = rac{1}{2} ar q^j \gamma_\mu q^i$	$L_{\mu} = V_{\mu} + A_{\mu} \ (L^{ij}_{\mu} = ar{q}^j_{ m L} \gamma_{\mu} q^i_{ m L})$	$L_{\mu} \to U_{\rm L} L_{\mu} U_{\rm L}^{\dagger}$
$1^{++}, {}^{3}P_{1}$	$\begin{cases} a_1(1260) \\ K_{1,A} \\ f_1(1285), f_1(1420) \end{cases}$	$A^{ij}_{\mu}=rac{1}{2}ar{q}^j\gamma^5\gamma_{\mu}q^i$	$egin{aligned} R_\mu &= V_\mu - A_\mu \ (R^{ij}_\mu &= ar q^j_{ m R} \gamma_\mu q^i_{ m R}) \end{aligned}$	$R_{\mu} ightarrow U_{\mathrm{R}} R_{\mu} U_{\mathrm{R}}^{\dagger}$
1+-, ¹ P ₁	$\begin{cases} b_1(1235) \\ K_{1,B} \\ h_1(1170), h_1(1380) \end{cases}$	$P^{ij}_{\mu}=-rac{1}{2}ar{q}^j\gamma^5 \overset{ ightarrow}{D}_{\mu}q^i$	$\Phi_{\mu}=S_{\mu}+\mathrm{i}P_{\mu}$	$-2iau - i^{\dagger}$
1 , ³ D ₁	$\begin{cases} \rho(1700) \\ K^*(1680) \\ \omega(1650), \phi(?) \end{cases}$	$S^{ij}_{\mu}=rac{1}{2}ar{q}^{j}\mathrm{i}\overleftrightarrow{D}_{\mu}q^{i}$	$(\Phi^{ij}_{\mu}=ar{q}^{j}_{ m R}{ m i} \overleftrightarrow{D}_{\mu}q^{i}_{ m L})$	$\Psi_{\mu} \to e^{-\mu} U_{\rm L} \Psi_{\mu} U_{\rm R}$
$2^{++}, {}^{3}P_{2}$	$\begin{cases} a_2(1320) \\ K_2^*(1430) \\ f_2(1270), f_2'(1525) \end{cases}$	$V^{ij}_{\mu u}=rac{1}{2}ar{q}^j(\gamma_\mu { m i} \stackrel{\leftrightarrow}{D}_\mu+\cdots)q^i$	$L_{\mu u} = V_{\mu u} + A_{\mu u} \ (L^{ij}_{\mu u} = ar{q}^j_{ m L}(\gamma_\mu { m i} \stackrel{\leftrightarrow}{D}_ u + \cdots) q^i_{ m L})$	$L_{\mu\nu} \to U_{\rm L} L_{\mu\nu} U_{\rm L}^{\dagger}$
2, ³ D ₂	$\begin{cases} \rho_2(?) \\ K_2(1820) \\ \omega_2(?), \phi_2(?) \end{cases}$	$A^{ij}_{\mu\nu} = \frac{1}{2} \bar{q}^j (\gamma^5 \gamma_\mu \mathrm{i} \overset{\leftrightarrow}{D}_\nu + \cdots) q^i$	$R_{\mu u} = V_{\mu u} - A_{\mu u}$ $(R^{ij}_{\mu u} = ar{q}^j_{ m R}(\gamma_\mu \stackrel{\leftrightarrow}{D}_ u + \cdots)q^i_{ m R})$	$R_{\mu\nu} ightarrow U_{\rm R} R_{\mu\nu} U_{\rm R}^{\dagger}$
$2^{-+}, {}^{1}D_{2}$	$\begin{cases} \pi_2(1670) \\ K_2(1770) \\ \eta_2(1645), \eta_2(1870) \end{cases}$	$P^{ij}_{\mu\nu} = -\frac{1}{2}\bar{q}^j(i\gamma^5 \overset{\leftrightarrow}{D}_{\mu} \overset{\leftrightarrow}{D}_{\nu} + \cdots)q^i$	$\Phi_{\mu\nu} = S_{\mu\nu} + \mathrm{i}P_{\mu\nu}$	aa
$2^{++}, {}^{3}F_{2}$	$\begin{cases} a_2(?) \\ K_2^*(?) \\ f_2(?), f_2'(?) \end{cases}$	$S^{ij}_{\mu u} = -\frac{1}{2} \bar{q}^j (\widecheck{D}_\mu \widecheck{D}_ u + \cdots) q^i$	$(\Phi^{\prime\prime}_{\mu u}=ar{q}^{\prime}_{ m R}(D_{\mu}D_{ u}+\cdots)q^{i}_{ m L})$	$\Psi_{\mu\nu} \to e^{-\omega} U_{\rm L} \Psi_{\mu\nu} U_{\rm R}^{\dagger}$
3, ³ D ₃	$\begin{cases} \rho_3(1690) \\ K_3^*(1780) \\ \omega_3(1670), \phi_3(1850) \end{cases}$:	÷	÷

Summary

- Hadronic states between 1 and 2 GeV are very interesting.
- Measurable at BESII, GlueX, CLAS12....PANDA at FAIR.
- Classification of higher spin states by *un*broken chiral symmetry?
- Heterochiral: where is the spin one multiplet with the $\eta_1 \& \eta_1'$?

Spin two multiplet: $J^{PC} = 2^{+}$, esp. $\eta_2(1645)$, confirm $\eta_2(1870)$?

Change in the magnitude of anomalous couplings for heavier states?

Homochiral: like usual quark model.

Analogy of WZNW terms for spin-2?

Light tetraquarks and the chiral phase transition

V. V. Skokov (RBRC \rightarrow NCSU) & RDP: 1606.04111

XYZ, P_c states: *strong* evidence for tetraquark & pentaquark states, composed of both light and *heavy* quarks

Why do we need heavy quarks to see tetraquark states? Jaffe '79...Schechter...Close...Tornqvist...Maiani...Giacosa....Peleaz '15: "the" o meson is "a" tetraquark (diquark anti-diquark). But situation murky....

Tetraquarks *alter* the phase diagram of QCD

(versus quark mass, plane of temperature T and baryon chemical potential μ)

Tetraquarks: for three (*not* two) flavors of *very* light quarks, tetraquarks *may* generate a second chiral phase transition

Are there tetraquarks?

Briceno, Dudek, Edwards, & Wilson, 1607.05900 Lattice: Luscher, distillation... $m_{\pi} = 391$ MeV: σ bound state resonance just below $\pi\pi$ threshold $m_{\pi} = 236$ MeV: σ broad resonance, well above $\pi\pi$ threshold

Will assume there are tetraquarks independent of the usual fields N.B.: near T_{γ} , m_{σ} may fall below 2 m_{π}

Diquarks and tetraquarks for two flavors

Jaffe '79: most attractive channel for quark-quark scattering is antisym. in *both* flavor and color.

Color: $3 \times 3 = \underline{3}$ (antisym) + 6 (sym)

Two flavors: $2 \times 2 = 1$ (antisym) + 3 (sym)

For two flavors diquark is a color triplet, flavor singlet,

$$\chi_L^A = \epsilon^{ABC} \ \epsilon^{ab} (q_L^{aB})^T \mathcal{C}^{-1} q_L^{bC}$$

(A, B, C = color; a, b = flavor) Also χ_R . χ_L and χ_R singlets under Z(2)_A.

One complex valued tetraquark field:

$$\zeta = (\chi^A_R)^* \chi^A_L$$

Sigma models and tetraquarks for two flavors

- The tetraquark field ζ is a *singlet* under flavor and Z(2)_A.
- Split complex ζ into its real and imaginary parts, ζ_r and ζ_i .
- QCD is even under parity, so only even powers of ζ_i can appears, forget ζ_i . But *any* powers of ζ_r can!

$$\mathcal{V}_{\zeta_r}^A = h_r \zeta_r + m_r^2 \, \zeta_r^2 + \kappa_r \zeta_r^3 + \lambda_r \, \zeta_r^4$$

- Hence $\langle \zeta_r \rangle$ is *always* nonzero!
- Couplings to φ start with U(1)_A inv.: $\mathcal{V}_{\zeta\Phi} = \kappa \zeta_r \operatorname{tr} \Phi^{\dagger} \Phi$
- The tetraquark ζ_r is just a massive field with a v.e.v. . Should *not* affect the chiral phase transition c/o exceptional tuning.

Tetraquarks for three flavors

Three flavors: $3 \times 3 = 3 + 6$. $\chi_L^{aA} = \epsilon^{abc} \, \epsilon^{ABC} \, (q_L^{bB})^T \mathcal{C}^{-1} q_L^{cC}$ Diquark field flavor *anti-triplet*, <u>3</u>

LR tetraquark field ζ transforms *identically* to Φ under $G_{fl} = SU(3)_L \times SU(3)_R$

Under U(1)_A, Φ has charge +1, ζ charge -2.

Since $\zeta \& \Phi$ in *same* representation of G_{fl}, *direct* mixing term. $Z(3)_A$ invariant: Black, Fariborz, Schechter ph/9808415 +; 't Hooft, Isidori, Maiani, Polosa 0801.2288 +

An extra *dozen* couplings. e.g., $U(1)_A$ inv. cubic term:

$$\mathcal{V}_{\zeta\Phi}^{\infty} = \kappa \, \epsilon^{abc} \epsilon^{a'b'c'} \left(\zeta^{aa'} \Phi^{bb'} \Phi^{cc'} + \text{c.c.} \right)$$

$$\mathcal{V}^{A}_{\zeta\Phi} = \widetilde{m}^{2} \mathrm{tr} \left(\zeta^{\dagger} \Phi + \Phi^{\dagger} \zeta \right)$$

$$\zeta^{ab} = (\chi_R^{aA})^* \chi_L^{bA}$$

$$\zeta^{ab} = (\chi_R^{aA})^* \chi_L^{bA}$$

$$\chi^{ab} = (\chi^{aA}_R)^* \chi^{bA}_L$$

"Mirror" model, T = 0

Spectrum : $\Phi = \pi, K, \eta, \eta'; a_0, \kappa, \sigma_8, \sigma_0$, $\zeta = \widetilde{\pi}, \widetilde{K}, \widetilde{\eta}, \widetilde{\eta}'; \widetilde{a}_0, \widetilde{\kappa}, \widetilde{\sigma}_8, \widetilde{\sigma}_0$

General model has 20 couplings Fariborz, Jora, & Schechter: ph/0506170; 0707.0843; 0801.2552. Pelaez, 1510.00653

"Mirror" model. $SU(3)_v$ symmetric, so spectrum degenerate octet + singlets: $\pi = K = \eta \neq \eta$ " etc. Φ and ζ start with *identical* couplings

$$\mathcal{V}_{\Phi} = m^2 \operatorname{tr} \Phi^{\dagger} \Phi - \kappa \left(\det \Phi + \mathrm{c.c.} \right) + \lambda \operatorname{tr} (\Phi^{\dagger} \Phi)^2 + \dots$$
$$\mathcal{V}_{\zeta} = m^2 \operatorname{tr} \zeta^{\dagger} \zeta - \kappa \left(\det \zeta + \mathrm{c.c.} \right) + \lambda \operatorname{tr} (\zeta^{\dagger} \zeta)^2 + \dots$$

Assume only $\zeta \Phi$ coupling is mass term: $\mathcal{V}_{\zeta \Phi}^{A} = -\widetilde{m}^{2} \operatorname{tr}(\zeta^{\dagger} \Phi + \Phi^{\dagger} \zeta)$

Simple, because $\zeta \Phi$ coupling mixes: $\pi \leftrightarrow \widetilde{\pi}$, $\eta' \leftrightarrow \widetilde{\eta}' + \dots$

Spectrum of the mirror model

In the chiral limit, the mass eigenstates:

$$\pi, \widetilde{\pi} = 0, \ 2\widetilde{m}^2, \ \eta', \widetilde{\eta}' = 3\kappa\phi, \ 3\kappa\phi + 2\widetilde{m}^2$$

 $a_0, \widetilde{a}_0 = m^2 + \kappa \phi + 6\lambda \phi^2 \pm \widetilde{m}^2, \ \sigma_0, \widetilde{\sigma}_0 = m^2 - 2\kappa \phi + 6\lambda \phi^2 \pm \widetilde{m}^2$

All states are mixtures of Φ and ζ . Of course 8 Goldstone bosons. Satisfy *generalized* 't Hooft relation (SU(3)_v symmetric)

$$m_{\eta'}^2 + m_{\tilde{\eta}'}^2 - m_{\pi}^2 - m_{\tilde{\pi}}^2 = m_{a_0}^2 + m_{\tilde{a}_0}^2 - m_{\sigma}^2 - m_{\tilde{\sigma}}^2$$

Even with same couplings, all masses are *split* by the mixing term.

At nonzero T, the thermal masses of the Φ and ζ can*not* be equal!

Chiral transition for three flavors, no tetraquark

Cubic terms *always* generate *first* order transitions.

 $T = 0: m^2 < 0,$

 $\langle \varphi \rangle \neq 0$

=>

$$\mathcal{V} = \frac{m^2}{2}\phi^2 - \kappa\phi^3 + \lambda\phi^4$$

 $T = T_{\chi}$: can*not* flatten the potential =>

At T_{χ} , two degenerate minima, with barrier between them. Transition is first order.

With tetraquarks, *maybe* two chiral transitions

In chiral limit, *may* have have *two* chiral phase transitions. =>

At first, both jump, remain nonzero. At second, both jump to zero.

$$m_{\Phi}^2(T) = 3T^2 + m^2$$

 $m_{\zeta}^2(T) = 5T^2 + m^2$
 $\widetilde{m}^2 = (100)^2$

<= Also possible to have single chiral phase transition, tetraquark crossover

 $\widetilde{m}^2 = (120)^2$

"Columbia" phase diagram for light quarks

Lattice: chiral transition crossover in QCD

If two chiral phase transitions for three massless flavors, persists for nonzero mass Implies new phase diagram in the plane of $m_u = m_d$ versus m_s :

Tetraquarks in the plane of T and $\boldsymbol{\mu}$

Diquark fields are *identical* to the order parameters for color superconductivity. Tetraquark condensate = gauge invariant square of CS condensate. Suggests:

Line for chiral crossover *might* end, meet line for *first* order chiral transition at *Critical EndPoint* (CEP). Massless o at CEP. Rajagopal, Shuryak & Stephanov, '99

In *effective* models, to find the CEP, *must* include tetraquarks: need the *right* σ !

Four flavors, three colors: hexaquarks

Diquark 2-index antisymmetric tensor:

$$\chi_L^{(ab)A} = \epsilon^{abcd} \epsilon^{ABC} \ (q_L^{cB})^T \mathcal{C}^{-1} q_L^{dC}$$

So LR tetraquark is same:

 $\zeta^{(ab),(cd)} = (\chi_R^{(ab)A})^{\dagger} \chi_L^{(cd)A}$

Tetraquark couples to usual Φ through cubic, quadratic terms, so what.

Instead, consider *tri*quark field: $\chi_L^a = \epsilon^{abcd} \epsilon^{ABC} q_L^{bA} (q_L^{cB})^T \mathcal{C}^{-1} q_L^{dC}$

Triquark is a color singlet, fundamental rep. in flavor. Hence a LR *hexa*quark field is just like the usual Φ , and mixes *directly* with it. $\xi^{ab} = (\chi^a_R)^{\dagger} \chi^b_L$

Analysis for general numbers of flavors and colors is *not* trivial. Like color superconductivity.