
  

Two topics in hadronic physics

The axial anomaly and favor mixing for mesons with higher spin

     F. Giacosa (Kielce), A. Koenigstein (Frankfurt) & RDP, 1709.07454

Tetraquarks and (perhaps) two chiral phase transitions?

RDP & V. V. Skokov (RBRC -> NCSU), 1606.04111



  

Axial anomaly & the usual Goldstone bosons
 
          η & η´ mixing: close to pure SU(3)V states, octet & singlet

Mixing for vector mesons, JP = 1-: ϱ, ω & ϕ : favor eigenstates:

          ϱ & ω mainly light quarks, ϕ mainly strange

How does this generalize to mesons with JP = 1+, 2, 3...?    

Today: make one strong assumption, many testable predictions

Generally: how does the axial anomaly afect mesons with higher spin?

            The axial anomaly and favor mixing
 



  

                          Chiral symmetry
Quarks in QCD:

Chiral projectors:

For three favors, quarks are invariant under  

Classically, global symmetry of  SU(3)L x SU(3)R x U(1)A = Gf x U(1)A . 



  

                          Axial anomaly

Quantum symmetry is Gf x Z(3)A .  

With dynamically generated mass, breaks to SU(3)V.

Since mstrange ≫ mup ≈ mdown,  SU(3)V -> SU(2)V.

Eigenstates of (softly broken) SU(3)V , or favor?

Quantum mechanically (mqk = 0):

In vacuum, instantons have dominant size,   <rinst> ~ 1/3 fm (Shuryak).
      But instantons come in all sizes....  



  

                          Scalar multiplet
Simplest is to pair 

JP = 0-: π, Κ, η, η´ ;JP = 0+: σ(600), a0(980) + ....; or a0(1450)f0(1370), f0(1710)?

All terms must be invariant under Gf . Invariant under U(1)A : 

Under Z(3)A: 

 a1, a2 generated by zero modes of single instanton; a3 by two instantons



  

                       (pseudo-) Goldstone Bosons
Add  

When Φ = ϕ0  0,  

With the anomaly,  GB’s eigenstates of SU(3)V : η -> 3 π,  η’ -> η + 2 π 

η´  mainly singlet, η mainly octet.  Mix in calculable manner, θ ~ - 42o.

Without the anomaly, GB’s eigenstates of favor, not SU(3)V:
Gross, Wilczek & Treiman ‘78; RDP & Wilczek, ‘82

The anomaly prevents massive isospin violation in the GB’s.



  

                          Vector multiplet

Insert γμ between quarks: as γμ fips chirality, can only pair LL and RR

Neutral under U(1)A: 

Obvious mixing and mass terms,  



  

                          More vectors

  
Efects of anomaly indirect.

Start with 3rd order in ’s,   Wess-Zumino-Novikov-Witten:

JP = 1-: Vμ = Lμ + Rμ , ϱ(770), ω(782), K*(892) & ϕ(1020).  WZNW: ω->3π

No mass terms from the anomaly, so ϱ, ω, & ϕ are flavor eigenstates:                    
                                      

Obvious from decays: ρ -> 2π ,  ω -> 3π , ϕ -> KK

JP = 1+: Aμ = Lμ - Rμ , a1(1260), K1,A(?),f1(1285), f1(1420)   



  

            What happens with higher spins?
Assume that we can classify multiplets according to the unbroken Gf x Z(3)A .

Form mesons by inserting some Γ, ~ γ’s and D’s, between q and q-bar.

Heterochiral:

      Numerous anomaly terms: masses close to SU(3)V eigenstates.
      Do efects from anomaly decrease as the mass increases?

Homochiral: 

 
     Masses close to eigenstates of favor, as in the usual quark model. 

     

.



  

                       Heterochiral spin-one

Many anomaly terms, mixing  Φ and Φμ  

Φμ = Sμ+ i Pμ: obvious candidates:

Pμ : JPC = 1+- : b1(1235), K1,B, h1 (1170), h1(1380)   2S+1LJ = 1S1.  
Sμ: JPC = 1--, ϱ(1700), K*(1680), ω(1650),  ϕ(1680?) 2S+1LJ = 1P1.    
 
But h1 (1170), ω(1650) ->  ϱ π;  h1(1380), ϕ(1680?) -> KKbar*: homochiral

Where is the heterochiral spin one multiplet, with the spin one η1 & η1’ - ?

                                             



  

                  Heterochiral spin-two

Many anomaly terms, mixing  Φ and Φμν  (and others with Φμ)

Φμν = Sμν+ iPμν
 :  Sμν: JPC = 2++, a2, K2*, f2, f2’ ; exp.’y murky    

 
Pμν : JPC = 2-+ : π2(1670), K2  (1670), η2(1645) , η2(1870);  2S+1LJ = 1D2.  

η2(1645) -> a2(1320) π,  , η2(1870) ->  η + 2 π (like η’): heterochiral

η2(1645) & η2(1870) mix like η & η’ , θ ~ - 42o   Koenigstein & Giacosa 1608.08777

But: η2(1870) not in PDG summary table, needs confrmation



  

                  Lattice: no favor mixing?
Dudek, Edwards, Guo & Thomas, 1309.2609, mπ = 392 MeV
             “...little mixing...in most JPC channels...except η & η’ “

JPC = 2-+ : Exp.’y, no strange decays of η2(1870):
PDG: η2(1870) ->  ηππ , a2(1320)π, f2(1270)η, a0(980)π  KKbar+... not seen



  

Anti-symmetric 2-index = spin-1 feld: Ecker, Gasser, Pich & de Rafael, ‘89,
                     Lμ = ∂μLμν/M , Rμ = ∂μRμν/M

Included by lattice: Dudek, Edwards, Pearson, Richards, & Thomas 1004.4930

Vμ = Lμ+ Rμ: JPC = 1--, ϱ(1700), K*(1680), ω(1650),  ϕ(1680?) 2S+1LJ = 1P1.   

                                             
Aμ = Lμ - Rμ: JPC = 1+- : b1(1235), K1,B, h1 (1170), h1(1380)   2S+1LJ = 1S1.  

h1 (1170), ω(1650) ->  ϱ π;  h1(1380), ϕ(1680?) -> KKbar* .

Where is the heterochiral spin one multiplet, with the η1 & η1’ ?

                Homochiral spin-one multiplet



  

                  Homochiral spin-two multiplet

  
Obvious mixing and mass terms:

Only anomaly terms from higher derivatives: Wess-Zumino-Witten for spin-2?

JPC = 2++: Vμν=Lμν+Rμν , a2(1320), K2(1430), f2(1270) & f2’(1525);   2S+1LJ = 3P2.

Anomaly doesn’t contribute to mass terms, so eigenstates of favor, homochiral.

Decays of f2(1270) & f2’(1525) like ω & ϕ
                                            
JPC = 2--: Vμν = Lμν - Rμν , K2(1820) + ?    



  

                             f2’s on the lattice
Briceno, Dudek, Edwards & Wilson, 1708.06667
Luscher + coupled channel analysis with two mesons, mπ = 391 MeV
 
f2a(1470) -> 2π , f2b(1602) -> KKbar 

just like

f2(1270) ~ f2a(1470)

f2’(1525) ~ f2b(1602)

and the ω & ϕ: homochiral

N.B.:  C = - 1 for ω & ϕ

           C = + 1 for f2’s



  

                  Homochiral spin-three multiplet

JPC = 3--: Vμνρ = Lμνρ+Rμνρ:  ρ3(1690), K3
*(1780), ω3(1670) & φ3(1850)  2S+1LJ=3P2.

ω3(1670) -> ρπ,  ωππ ; φ3(1850) -> K Kbar, K Kbar*

PDG: mixing angle ~ 3o, homochiral



  



  

                                   Summary

Hadronic states between 1 and 2 GeV are very interesting.

Measurable at BESII, GlueX, CLAS12....PANDA at FAIR.

Classifcation of higher spin states by unbroken chiral symmetry?

Heterochiral: where is the spin one multiplet with the η1 & η1’ ?   

Spin two multiplet: JPC = 2-+ , esp. η2(1645) , confrm η2(1870) ?

Change in the magnitude of anomalous couplings for heavier states?

Homochiral: like usual quark model.

         Analogy of WZNW terms for spin-2?



Light tetraquarks and the chiral phase transition

V. V. Skokov (RBRC → NCSU) & RDP:  1606.04111 

XYZ, Pc states: strong evidence for tetraquark & pentaquark states,
         composed of both light and heavy quarks

Why do we need heavy quarks to see tetraquark states?
Jafe ’79…Schechter…Close…Tornqvist…Maiani…Giacosa….Peleaz ’15: 
“the” σ meson is “a” tetraquark (diquark anti-diquark).  But situation murky….

Tetraquarks alter the phase diagram of QCD 
     (versus quark mass, plane of temperature T and baryon chemical potential μ)

Tetraquarks: for three (not two) favors of very light quarks, 
     tetraquarks may generate a second chiral phase transition



Are there tetraquarks?

Briceno, Dudek, Edwards, & Wilson, 1607.05900  Lattice: Luscher, distillation...
                mπ = 391 MeV: σ bound state resonance just below ππ threshold
                mπ = 236 MeV: σ broad resonance, well above ππ threshold

Will assume there are tetraquarks independent of the usual felds
N.B.: near Tχ,  mσ may fall below 2 mπ….

half
width↑



Diquarks and tetraquarks for two favors

Jafe ’79: most attractive channel for 
quark-quark scattering is antisym. in both favor and color.

Color: 3 x 3 = 3 (antisym) + 6 (sym)

Two favors: 2 x 2 = 1 (antisym) + 3 (sym)

For two favors diquark is a color triplet, favor singlet,

(A, B, C = color; a, b = favor) Also χR.  χL and  χR singlets under Z(2)A.  

One complex valued tetraquark feld:



Sigma models and tetraquarks for two favors

The tetraquark feld   is a singlet under favor and Z(2)A.  

Split complex   into its real and imaginary parts,  r and  i.  

QCD is even under parity, so only even powers of  i can appears, forget  i.

But any powers of  r can! 

Hence  ⟨ r  is ⟩ always nonzero!

Couplings to φ start with U(1)A inv.:

The tetraquark  r is just a massive feld with a v.e.v. .  Should not afect
the chiral phase transition c/o exceptional tuning.



Tetraquarks for three favors

Three favors: 3 x 3 = 3 + 6 .  
Diquark feld favor anti-triplet, 3

LR tetraquark feld   transforms identically to 
Φ under Gf = SU(3)L x SU(3)R 

Under U(1)A, Φ has charge +1,   charge -2.

Since   & Φ in same representation of Gf, 
direct mixing term.  Z(3)A invariant:
Black, Fariborz, Schechter ph/9808415 + ….; 
’t Hooft, Isidori, Maiani, Polosa 0801.2288 + ….

An extra dozen couplings.  
e.g., U(1)A inv. cubic term:



“Mirror” model, T = 0

General model has 20 couplings
Fariborz, Jora, & Schechter: ph/0506170; 0707.0843; 0801.2552.  Pelaez, 1510.00653

“Mirror” model.  SU(3)V symmetric, so spectrum degenerate octet + singlets: 
π=K=η≠η’ etc.  Φ and   start with identical couplings

Assume only  Φ coupling is mass term:

Simple, because  Φ coupling mixes:



Spectrum of the mirror model

In the chiral limit, the mass eigenstates: 

All states are mixtures of Φ and  .  Of course 8 Goldstone bosons.
Satisfy generalized ’t Hooft relation (SU(3)V symmetric)

Even with same couplings, all masses are split by the mixing term.

At nonzero T, the thermal masses of the Φ and   cannot be equal!



Chiral transition for three favors, no tetraquark

Cubic terms always generate 
first order transitions.

T = 0: m2 < 0, 
⟨φ  ≠ 0      ⟩
=>

T  f≫ π: m2 > 0, 
⟨φ  = 0      =>⟩

T= Tχ: cannot fatten the potential =>

At Tχ, two degenerate minima,
with barrier between them.
Transition is frst order.



With tetraquarks, maybe two chiral transitions

T→

In chiral limit, may have have 
              two chiral phase transitions.  =>

At frst, both jump, remain nonzero.
At second, both jump to zero.

<= Also possible to have single chiral
phase transition, tetraquark crossover

←⟨φ⟩
⟨ζ →⟩

←⟨φ⟩
⟨ζ →⟩



”Columbia” phase diagram for light quarks

= crossover

I = one
chiral transition

II = two chiral transitions

Lattice: chiral transition crossover in QCD
If two chiral phase transitions for three massless favors, persists for nonzero mass
Implies new phase diagram in the plane of mu = md versus ms:

X = QCD, crossover                    

←critical line

critical line→

critical line→

tricritical point→



Tetraquarks in the plane of T and μ

Diquark felds are identical to the order parameters for color superconductivity.
Tetraquark condensate  = gauge invariant square of CS condensate.  Suggests:

↓chiral crossover line

↑tetraquark
  crossover

↓ color superconducting line

Line for chiral crossover might end, meet line for first order chiral transition at
Critical EndPoint (CEP).  Massless σ at CEP.   Rajagopal, Shuryak & Stephanov, ’99
             
In efective models, to fnd the CEP, must include tetraquarks: need the right σ!

←1st order chiral line

T
↑

μ→

❋



Four favors, three colors: hexaquarks

Diquark 2-index antisymmetric 
tensor:

So LR tetraquark is same:

Tetraquark couples to usual Φ through cubic, quadratic terms, so what.

Instead, consider triquark feld:

Triquark is a color singlet, fundamental rep. in favor.  
Hence a LR hexaquark feld is just like the usual Φ,
and mixes directly with it.

Analysis for general numbers of favors and colors is not trivial.  
Like color superconductivity.
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