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²  Tiny, but heavy, nucleus: 
        less than 1 trillionth in volume of  an atom 
        slow-moving mass and charge centers 
²  Light, but fast, electrons:  
        quantum probability, … 
² Massless, charge neutral photons: 
        localized charges, … 

q  From Atomic Structure to Nano-Science: 
Atom: 

Infinite opportunities to create & improve … ! 

Molecule: 

“Water” 

Crystal: 

Rare-Earth metal  

Nanomaterial: 

Carbon-based Fullerene 

From QED to QCD, … 



From QED to QCD, … 

q  From Hadron Structure to Femto-Science: 
Proton: ²  Extremely light and fast quarks: 

       No still picture of  the structure, … 
       fluctuation, quantum probability, … 
² Massless, but charged gluons: 
        non-local charge, … 
² Heavy quarks: 
        “localized” charges, … 

“Light-flavor” 

Nuclei – “Molecule” 

Short-range  
correlation 

XYZ – “Nuclei” 

“Heavy-flavor” 

“Femtography” 

New frontier of  hadron physics … ! 



Outline of  the rest of  my talk 

q How to “see” hadron structure in experiment? 

q How to quantify hadron structure in QCD? 

q Summary and outlook 

q How to calculate hadron structure in QCD? 

q How to explore hadron structure using lattice 
QCD calculations? 



Hadron structure in QCD 

q What do we need to know for the structure? 

²  In theory: hP, S|O( , , Aµ)|P, Si – Hadronic matrix elements 

with all possible operators: O( , , Aµ)

²  In fact: None of  these matrix elements is a direct physical  
observable in QCD – color confinement! 

²  In practice: Accessible hadron structure  
= hadron matrix elements of  quarks and gluons, which  

1)  can be related to physical cross sections of  hadrons 
and leptons with controllable approximation; and/or 

2)  can be calculated in lattice QCD 

q Single-parton structure “seen” by a short-distance probe: 

bT

kT
xp

²  5D structure: 
Z

d2bT1) 
f(x, kT , µ) 2D confined motion! – TMDs: 

2) 
F (x, bT , µ)

Z
d2kT – GPDs: 2D spatial imaging! 

3) 
Z

d2kT d
2bT f(x, µ) – PDFs: Number density! 



Hadron structure in QCD 

q What do we need to know for the structure? 

²  In theory: hP, S|O( , , Aµ)|P, Si – Hadronic matrix elements 

with all possible operators: O( , , Aµ)

²  In fact: None of  these matrix elements is a direct physical  
observable in QCD – color confinement! 

²  In practice: Accessible hadron structure  
= hadron matrix elements of  quarks and gluons, which  

1)  can be related to physical cross sections of  hadrons 
and leptons with controllable approximation; and/or 

2)  can be calculated in lattice QCD 

q Multi-parton correlations: 

Quantum interference 3-parton matrix element – not a probability! 

�(Q,~s) / + + + · · ·

2

p,~s k

 t ⇠ 1/Q
– Expansion   
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q  Two hadrons: 

DY
totσ : ⊗

1 O
QR
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

s 

DIS
totσ : ⊗

1 O
QR
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

“See” hadron structure in experiments 

q  One hadron: e p 

Predictive power:   
       Ability to calculate the “probes” + Universal Parton Distributions, … 

Hard-part 
Probe 

Parton-distribution 
Structure 

Power corrections 
Approximation 

Factorization 



Global QCD analyses – a successful story 

q World data with “Q” > 2 GeV 
    + Factorization: 

@f(x, µ2)
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= ⌃f 0
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+ DGLAP  Evolution: 

DIS: 

H-H: 

Universal PDFs 



Global QCD analyses – a successful story 

q World data with “Q” > 2 GeV 
    + Factorization: 
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+ DGLAP  Evolution: 

DIS: 

H-H: 

q  The “BIG” question(s) 

Why these PDFs behave as what have been extracted from the fits? 

What have been tested is the evolution from μ1 to μ2 
But, does not explain why they have the shape to start with! 

Can QCD calculate and predict the shape of  PDFs at the input scale, 
and other parton correlation functions? 

Universal PDFs 



Operator definition of  PDFs, … 

q Definition – from QCD factorization: 

PDFs are well defined in QCD, but, can’t be calculated perturbatively 
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² Depends on the choice of  the gauge link: 

U(0, ⇠) = e�ig
R ⇠
0 dsµAµ

q  Transverse momentum dependent PDFs (TMDs): 
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Lattice QCD 

q Hadron masses: Predictions with limited inputs 

Cannot calculate PDFs, TMDs, …, directly, whose operators  
are time-dependent 

q  Lattice “time” is Euclidean: ⌧ = i t

Input 



PDFs from lattice QCD 

q Moments of  PDFs – matrix elements of  local operators 

hxn(µ2)iq ⌘
Z 1

0
dx x

n
q(x, µ2)

q Works, but, hard and limited moments: 

hx3iqhx2iq

Dolgov et al., hep-lat/0201021                        Gockeler et al.,  hep-ph/0410187	

Limited moments – hard to get the full x-dependent distributions! 



PDFs from lattice QCD 

q How to get x-dependent PDFs with a limited moments? 

Cannot distinguish valence quark contribution from sea quarks 

²  Assume a smooth functional form with some parameters 
²  Fix the parameters with the lattice calculated moments 

xq(x) = a x

b(1� x)c(1 + ✏

p
x+ � x)

W. Dermold et al., Eur.Phys.J.direct C3  
(2001) 1-15	



From quasi-PDFs to PDFs 

Ji, arXiv:1305.1539	
q  “Quasi” quark distribution (spin-averaged): 

q̃(x, µ
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q Proposed matching: 

Quasi-PDFs  è  Normal PDFs   when Pz è∞ ? 

z 
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0 

ξz 

Quasi-PDFs  =\=  PDFs 

q Excellent idea and great potential: 

IDEA: Calculate something =\= PDFs, but, carry all the information of  PDFs 

² Quasi-PDFs could be calculated using the lattice QCD method 

²  Extract PDFs from what you can calculate, … 

CHALLENGES: 



“Quasi-PDFs” have no parton interpretation 

q Normal PDFs conserve parton momentum:   
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q  “Quasi-PDFs” do not conserve “parton” momentum:   
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Note: “Quasi-PDFs” are not boost invariant 



Lattice calculation of  quasi-PDFs 
Lin et al., arXiv:1402.1462	

q Exploratory study: 

Quasi-Quark Distribution 
with different Pz 

Predicted quark distribution 
along with global fitted one 

Matching – taking into account: 

Target mass:  (MN/Pz)2  
High twist:       a+b/Pz

2 



Pseudo-PDFs 

q Pseudo-PDFs = generalization of  PDFs: 
Radyushkin, 2017	

² Definition: 

M↵(⌫ = p · ⇠, ⇠2) ⌘ hp| (0)�↵�v(0, ⇠, v ·A) (⇠)|pi
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²  Interpretation: 

Off-light-cone extension of  PDFs:  f(x) = P(x, ⇠2 = 0)

q Quasi-PDFs: 
⇠µ = (0, 0?, ⇠z)
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No longer Lorentz invariant 

q  TMDs: 
⇠µ = (0+, ⇠�, ⇠?)

with ⇠µ = (0+, ⇠�, 0?)

P(x,�⇠

2
?) ⌘

Z
d

2
k? e

i~k?·~⇠?F(x, k2?)
TMDs with a straight 

gauge link 



Pseudo-PDFs 

q Pseudo-PDFs: 
Orginos, et al, 2017 
1706.05373	

M↵(⌫ = p · ⇠, ⇠2) ⌘ hp| (0)�↵�v(0, ⇠, v ·A) (⇠)|pi
⌘ 2p↵Mp(⌫, ⇠

2) + ⇠↵(p2/⌫)M⇠(⌫, ⇠
2) ⇡ 2p↵Mp(⌫, ⇠

2)

² Model quasi-PDFs: with 

²  Lattice calculation with              : ↵ = 0

P(x, ⇠2) ⌘
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d⌫
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e

ix ⌫M
p=p

0(⌫, ⇠2)/M
p=p
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⇠µ = (0, 0?, ⇠z)
Remove UV! 

q Numerical results: 



Go beyond quasi- and pseudo-PDFs? 

q A pQCD factorization approach: 
Ma and Qiu, arXiv:1404.6860 
                        arXiv:1709.03018	

²  Recall: Collinear factorization of  DIS cross section – single hadron 

�
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PDFs CO Factorization 
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Perturbative 
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Power 
corrections 

Single hadron 
Matrix elements 

²  Renormalizable + factorizable + lattice 
calculable “cross section”: PDFs 

DGLAP-Evolution 
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Key: controllable hard scale! 



q What is lattice “cross section”? 

Single hadron matrix elements, with the following properties: 

²  Lattice calculable:  

Calculable using lattice QCD with an Euclidean time 

² UV Renormalizable: 

Ensure a well-defined continuum limit, UV & IR finite! 

Factorizable to PDFs with IR-safe hard coefficients 

² CO Factorizable: 

Share the same perturbative collinear divergences with PDFs 

with controllable power corrections 

q Key requirement: 

A controllable large “momentum” scale –  conjugate to hadron momentum 

to define the “collision” dynamics of  the “cross section” 
to ensure the necessary condition for the factorization 

Lattice “cross section” 
Ma and Qiu, arXiv:1404.6860 
                        arXiv:1709.03018	



q Current correlators: 

q Complementarity and advantages: 
² Complementary to existing approaches for extracting PDFs, 

² Quasi-PDFs and pseudo-PDFs are special cases,   
² Have tremendous potentials: 

Neutron PDFs, … (no free neutron target!) 
Meson PDFs, such as pion, …  
More direct access to gluons – gluonic current, … 

² Coordinate space:  

Tjj(p, s, ⇠) = lim
⇠0!0+

hp, s|T{ j�(⇠0, ~⇠) j�(0)}|p, si

²  Factorization:  

Corrections +

⌦

�

+

2p+
�(x� k

+
/p

+)

An example, … 
Ma and Qiu, arXiv:1404.6860 
                        arXiv:1709.03018	

p and ⇠ define 
collision kinematics 



A little bit more details, … 

q  Lattice cross sections – definition: 

²  is calculable in lattice QCD with an Euclidean time  

�n(⇠
2,!, P 2) = hP |T{On(⇠)}|P i ! = P · ⇠

Oj1j2(⇠) ⌘ ⇠dj1+dj2�2 Z�1
j1

Z�1
j2

j1(⇠) j2(0)

where the operator is defined as 

dj : Dimension of the current

with 

Zj : Renormalization constant of the current

q  Lattice cross sections – requirements: 

²  has the same and factorizable logarithmic CO divergences as PDFs 

²  has a well-defined continuum limit as the lattice spacing,               and a ! 0

q  Lattice cross sections – two-current correlations: 

q  Lattice cross sections – quasi- and pseudo-PDFs: 

jS(⇠) = ⇠2Z�1
S [ q q](⇠), jV (⇠) = ⇠Z�1

V [ q� · ⇠ q](⇠),
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4
F c
µ⌫F

c
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q (⇠2) q(⇠) � · ⇠�(⇠, 0) q(0) �(⇠, 0) = Pe�ig

R 1
0 ⇠·A(�⇠) d�

Ma and Qiu, arXiv:1404.6860 
                        arXiv:1709.03018	



q  Lattice cross sections – definition: 

²  is calculable in lattice QCD with an Euclidean time  

�n(⇠
2,!, P 2) = hP |T{On(⇠)}|P i ! = P · ⇠

Oj1j2(⇠) ⌘ ⇠dj1+dj2�2 Z�1
j1

Z�1
j2

j1(⇠) j2(0)

where the operator is defined as 

dj : Dimension of the current

with 

Zj : Renormalization constant of the current

q  Lattice cross sections – requirements: 

²  has the same and factorizable logarithmic CO divergences as PDFs 

²  has a well-defined continuum limit as the lattice spacing,               and a ! 0

q  Identify good lattice cross sections: 

�

Lat
E (⇠z, 1/a, Pz)

Z ! �E(⇠z, µ̃
2
, Pz)

m

�M(⇠z, µ̃
2
, Pz)

C ! fi(x, µ
2) ,

– Renormalization  

– Factorization  

A “new” collaboration between lattice QCD and perturbative QCD! 

A little bit more details, … 
Ma and Qiu, arXiv:1404.6860 
                        arXiv:1709.03018	



q  Take care by construction: 

Renormalization – summary 

Construct operators by using renormalizable, or conserved currents 

q Renormalization of  quasi- and pseudo-PDFs: 

Ishikawa, Ma, Qiu and Yoshida 
                        arXiv: 1701.03108 

Quasi-quark distributions is multiplicatively renormalizable 

q̃Ri (⇠z, µ
2, pz) = e�Ci|⇠z|Z�1

wi Z
�1
vi q̃i(⇠z, µ

2, pz)

Three classes of  elementary divergent diagrams: 

Pseudo-quark distributions takes care of  the UV renormalization by 

P(x, ⇠2) ⌘
Z

d⌫

2⇡
e

ix ⌫M
p=p

0(⌫, ⇠2)/M
p=p

0(0, ⇠2)
Different matching 



Renormalization – quasi-quark 

q Coordinate-space definition: 

q Why the proof  is hard: 

q Broken Lorentz symmetry: 
Both 3D and 4D loop-integration can generate UV divergences 



q Quasi-quark at one-loop:   
1

2
�zn2

z = �1

q  Fig. 1(a):   
² Cutoff  “a” between fields 
² Conclusion independent of  

regulator 
²  3D-integration:  d4l = d3 l̄ dlz

1st term vanishes for  r1 6= r2

Renormalization – quasi-quark 



q Quasi-quark at one-loop:   
1

2
�zn2

z = �1

q Complete one-loop contribution: 

²  At one-loop, all 3D integrations are finite 
² Divergence only come from the region when all momentum  
     components go to infinity 

Localized UV divergence in all directions! 

Very different from the UV behavior of  normal PDFs: (1,λ2,λ), λè∞ 

Renormalization – quasi-quark 



q Power counting and divergent sub-diagrams:   
Ishikawa, Ma, Qiu,  
Yoshida (2017)	

(a)  - 1/a, ln(1/a): 

(b)  - ln(1/a): 

(c)  - ln(1/a): 

Happen only when all loop momenta go to infinity – localized! 

q Example of  convergent sub-diagrams:   

Renormalization – quasi-quark 



q Power divergence: 
Ishikawa, Ma, Qiu,  
Yoshida (2017)	

  q  Interpretation: 

q  Log divergence in from gauge link: 

Renormalization – quasi-quark 



q  Log divergence from gluon-gauge link vertex: 
Ishikawa, Ma, Qiu,  
Yoshida (2017)	

  

q UV from vertex correction: 

q Renormalization to all orders: 

Renormalization – quasi-quark 



Factorization 

q Does the renormalized lattice cross section and 
quasi-PDFs share the same CO properties with 
PDFs? 

q Can we extract PDFs from lattice cross section 
and/or renormalized quasi-PDFs reliably? 

⌦

�

+

2p+
�(x� k

+
/p

+)

+ Corrections 



q  Factorized formula for lattice cross section: 

Factorization 
Ma and Qiu, arXiv:1404.6860 
                        arXiv:1709.03018	

with 
q Steps needed to prove: 

Let        be small but not vanishing,  apply OPE to the operator,  ⇠2

Local, symmetric and traceless with spin J with 

With reduced matrix element: 

with 

No approximation yet! 



q Approximation – leading power/twist: 

Factorization 
Ma and Qiu, arXiv:1404.6860 
                        arXiv:1709.03018	

With symmetry factor: 

with 

Note:  our proof  of  factorization is valid only when                  and   |!| ⌧ 1 |p2⇠2| ⌧ 1

q Extrapolate into large ω region: 

²  Validity of  OPE guarantees that σn is an analytic function of  ω, 
so as its Taylor series of  ω around ω=0, defined above 

²  If  we fix ξ to be short-distance,  while we increase ω by adjusting p, 
we can’t introduce any new perturbative divergence 

²  That is, σn remains to be an analytic function of  ω unless ω = ∞      

Factorization holds for any finite value of  ω and p2ξ2, if  ξis short-distance 



Coefficient/matching functions 

q Matching coefficients for current-current correlators:  

Need  

a) Calculate                             - coefficient in CO factorization with p2=0  

b) Expand                             in power series of    x!

c) Extract                          with   

q  LO matching:  

k

µ = xp

µ

p2 = 0

Fig. (b,c) 

Flavor change current 
No crossing diagram 

Fig. (a) 



Connection to quasi- and pseudo-PDFs 

q Momentum-space version – Fourier transform:  

With                           , and valid for  

Care is needed for the physical region when  

Contribution from large               region – poles and cuts 

q Comparison with other approaches:  

Quasi-PDFs: 

Pseudo-PDFs: ⇠0 = 0, ~p = pz, ~⇠ = ⇠z with fixed ⇠z

⇠0 = 0, ~p = pz, ~⇠ = ⇠z with fixed pz



One-loop example:  quark èquark 

q Expand the factorization formula:   
Ma and Qiu, arXiv:1404.6860	

q  Feynman diagrams:   

Same diagrams for both 
 
                  and 
 
But, in different gauge: 

f̃q/q fq/q

nz ·A = 0 for

˜fq/q n ·A = 0 for fq/q

q Gluon propagator in nz . A = 0:   
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x
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x

, µ̃

2
, Pz) fj/h(x, µ

2)

To order       : ↵s



One-loop “quasi-quark” distribution in a quark 

q Real + virtual contribution:   

q Cancelation of  CO divergence:   

Only the first term is CO divergent for  0 < y < 1, which is the same 
as the divergence of  the normal quark distribution – necessary!  

Ma and Qiu, arXiv:1404.6860	

⇥

where 

Here, a UV cutoff  is used – other scheme is discussed in the paper 

q UV renormalization:   

Different treatment for the upper limit of           integration  - “scheme” l2?



One-loop coefficient functions 
Ma and Qiu, arXiv:1404.6860	

q MS scheme for                  :  fq/q(x, µ
2)

where 

Explicit verification of  the CO factorization at one-loop   

q Generalized “+” description:   
For a testing function 

h(t)

t = x̃/x

Note:                                      as ⇤t ! O
✓

eµ
PZ

◆
PZ ! 1 the linear power UV divergence! 

CO, UV IR finite! 



Summary and outlook 

q  “lattice cross sections” = single hadron matrix elements  
       calculable in Lattice QCD, renormalizable + factorizable in QCD 

q  Lattice QCD can be used to study hadron structure, but,  
     more works are needed!  

q  Extract PDFs by global analysis of  data on “Lattice x-sections”.  
Same should work for other distributions (TMDs, GPDs)  

Going beyond the quasi-PDFs 

q  Conservation of  difficulties – complementarity: 
         High energy scattering experiments  

      – less sensitive to large x parton distribution/correlation 
    “Lattice factorizable cross sections” 
      – more suited for large x PDFs, but limited to large x for now 

Thank you! 





Renormalization 

q Gluon-to-quark at one-loop:   

q Caution for momentum-space version:   

Finite-term: 


