

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building <u>MS</u> ITD Results

Summary

Structure of Pseudo- and Quasi-PDFs A.V. Radyushkin (ODU/Jlab)

JLab Theory Seminar April 16, 2018

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Parton Densities and Transverse Momentum Cut-Off

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-off

- Pseudo-PDF
- Rate of approa
- Target mass
- Hard tail
- $P \rightarrow$
- Gauge link Renormalizatio
- Reduced

Evolution in lattice data ^{Data} Building <u>MS</u> ITD Results

Summary

• Original Feynman approach to PDFs f(x): infinite momentum $P_3 \rightarrow \infty$ limit of $k_3 = xP_3$ momentum distributions (~ quasi-PDFs $Q(x, P_3)$) 2/28

- f(x) were treated as k_{\perp} -integrated $f(x, k_{\perp})$ distributions
- Understood from the start: $Q(x, P_3 \rightarrow \infty) \rightarrow f(x)$ limit exists only if $f(x, k_{\perp})$ rapidly decreases with k_{\perp}
- "Transverse momentum cut-off", $\langle k_{\perp}^2 \rangle \sim 1/R_{\rm hadr}^2$
- Question 1: why $Q(x, P_3)$ differs from f(x)?
- Question 2: how does $Q(x, P_3)$ convert into f(x) when $P_3 \rightarrow \infty$?
- Qualitative answer: yP_3 comes from two sources: from the motion of the hadron (xP_3) and from Fermi motion of quarks inside the hadron $(y - x)P_3 \sim 1/R_{hadr}$

(y − x)P₃ ~ 1/R_{hadr} part has the same origin as transverse momentum
 ⇒ One should be able to relate quasi-PDFs to TMDs

Parton Densities and Transverse Momentum Cut-Off

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-off

- Pseudo-PDF
- Rate of appro-
- corrections
- Hard tail
- $P \rightarrow \infty$ I Gauge link Renormalization
- Reduced

Evolution in lattice data Data Building MS ITD Results

Summary

Basic matrix element (ignoring spin)

 $\langle p|\phi(0)\phi(z)|p\rangle = \mathcal{M}(-(pz), -z^2)$

3/28

- Lorentz invariance: *M* depends on *z* through (*pz*) and *z*²
- Take $z = (0, 0, 0, z_3)$, then $-(pz) \equiv \nu = Pz_3$ and $-z^2 = z_3^2$
- loffe time ν : $\mathcal{M}(\nu, z_3^2) =$ loffe time pseudo-distribution (pseudo-ITD)
- Introduce quasi-PDF (Ji,2013)

$$Q(y,P) = \frac{P}{2\pi} \int_{-\infty}^{\infty} dz_3 \, e^{-iyPz_3} \, \mathcal{M}(Pz_3, z_3^2) = \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \, e^{-iy\nu} \, \mathcal{M}(\nu, \nu^2/P^2)$$

• Take
$$z = (z_+ = 0, z_-, z_1, z_2)$$
, then $\nu = -p^+ z^-$ and $-z^2 = z_1^2 + z_2^2$. TMD:

$$\mathcal{M}(\nu, z_1^2 + z_2^2) = \int_{-1}^1 dx \ e^{ix\nu} \int_{-\infty}^\infty dk_1 dk_2 e^{i(k_1 z_1 + k_2 z_2)} \mathcal{F}(x, k_1^2 + k_2^2)$$

• Take $z_1 = 0, z_2 = \nu/P$ and use for qPDF

$$Q(y,P) = P \int_{-1}^{1} dx \int_{-\infty}^{\infty} dk_1 \mathcal{F}(x,k_1^2 + (y-x)^2 P^2)$$

• qPDF variable y has the $-\infty < y < \infty$ support, since $-\infty < k_2 < \infty$

loffe-time distributions and Pseudo-PDFs

4/28

Pseudo-&Quasi-PDFs

Parton Densities

Transverse Momentum Cut-of

Pseudo-PDF

Rate of approact Target mass corrections Hard tail $P \rightarrow \infty$ lim Gauge link Renormalization Reduced

Evolution in lattice data Data Building MS ITD Results

Summary

• Pseudo-PDF $\mathcal{P}(x, -z^2)$: Fourier transform of pseudo-ITD with respect to ν

$$\mathcal{M}(\nu, -z^2) = \int_{-1}^{1} dx \, e^{-ix\nu} \, \mathcal{P}(x, -z^2)$$

• Limits $-1 \le x \le 1$ for any Feynman diagram. Relation to TMD

$$\mathcal{P}(x, z_{\perp}^2) = \int d^2 \mathbf{k}_{\perp} e^{i(\mathbf{k}_{\perp} \mathbf{z}_{\perp})} \mathcal{F}(x, k_{\perp}^2)$$

- When $\mathcal{F}(x, k_{\perp}^2)$ rapidly vanishes with k_{\perp} , pseudo-PDF and pseudo-ITD are regular for $z^2 = 0$, and $\mathcal{P}(x, 0) = f(x)$
- Quasi-PDF to pseudo-PDF relation

$$Q(y,P) = \frac{|P|}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 \, e^{-i(y-x)Pz_3} \, \mathcal{P}(x,z_3^2)$$

Expand
$$\mathcal{P}(x,z_3^2)$$
 in z_3^2
$$\mathcal{P}(x,z_3^2)=\sum_{l=0}^\infty (z_3^2\Lambda^2)^l\,\mathcal{P}_l(x)$$

• Q(y, P) approaches f(y) like

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \left(\frac{\Lambda^2}{P^2}\right)_{\square}^l \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{P}_l(y)$$

Quasi-PDFs and Pseudo-PDFs

Pseudo-&Quasi-PDFs

Parton Densitie

Transverse Momentum Cut-c

Pseudo-PDF

Rate of approad Target mass corrections Hard tail $P \rightarrow \infty$ lin Gauge link

Renormalizati Reduced

Evolution in lattice data Data Building <u>MS</u> ITD Results

Summary

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \left(\frac{\Lambda^2}{P^2}\right)^l \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{P}_l(y)$$

- Support mismatch: $-\infty < y < \infty$ for qPDF Q(y, P), while $\mathcal{P}_l(y)$'s vanish outside $-1 \le y \le 1$
- Do not take this expansion too literally
- Innocently-looking derivatives of $\mathcal{P}_l(y)$ generate infinite tower of singular functions like $\delta(y)$, $\delta(y \pm 1)$ and their derivatives
- Recall: even if a function f(y) has a nontrivial support Ω (say, −1 ≤ y ≤ 1), one may formally represent it by a series

$$f(y) = \sum_{N=0}^{\infty} \frac{(-1)^N}{N!} M_N \,\delta^{(N)}(y)$$

over the functions $\delta^{(N)}(y)$ with an apparent support at one point y = 0 only • M_N are moments of f(y)

$$M_N = \int_{\Omega} dy \, y^N \, f(y)$$

While the difference between Q(y, P) and f(y) is formally given by a series in powers of 1/P², its coefficients are not the ordinary functions of y

Moments of Quasi-PDFs

Pseudo-&Quasi-PDFs

Pseudo-PDF

In terms of TMDs:

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \int d^2k_{\perp} \frac{k_{\perp}^{2l}}{4^l P^{2l}(l!)^2} \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{F}(y,k_{\perp}^2)$$

 ${\ensuremath{\bullet}}$ To eliminate mismatch, take y^n moments $\langle y^n\rangle_Q$ of the quasi-PDFs

$$\langle y^n \rangle_Q \equiv \int_{-\infty}^{\infty} dy \, y^n Q(y, P) = \sum_{l=0}^{[n/2]} \frac{n!}{(n-2l)!(l!)^2} \frac{\langle x^{n-2l} k_{\perp}^{2l} \rangle_{\mathcal{F}}}{4^{l} P^{2l}}$$

• $\langle x^{n-2l}k_{\perp}^{2l}\rangle_{\mathcal{F}}$ are the combined moments of TMDs

$$\langle x^{n-2l} k_{\perp}^{2l} \rangle_{\mathcal{F}} \equiv \int_{-1}^{1} dx \, x^{n-2l} \int d^2 k_{\perp} \, k_{\perp}^{2l} \, \mathcal{F}(x, k_{\perp}^2)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Expansion makes sense only when $\mathcal{F}(x,k_{\perp}^2)$ vanishes faster than any power of $1/k_{\perp}^2$
- Is it possible to study the approach of Q(y, P) to f(y) for fixed y?

6/28

Relations between quasi-PDFs and TMDs 7/28

Pseudo-&Quasi-PDFs

- Parton Densities
- Transverse Momentum Cut-c
- Pseudo-PDF Rate of appro
- Target mass corrections Hard tail $P \rightarrow \infty$ lim Gauge link Renormalization Reduced
- Evolution in lattice data Data Building <u>MS</u> ITD Results

Summary

*z*₃-dependence has the same origin as *k*_⊥ dependence of TMDs
Quasi-PDFs can be obtained from TMDs (A.R., 2016)

$$Q(y,P)/P = \int_{-1}^{1} dx \int_{-\infty}^{\infty} dk_1 \mathcal{F}(x,k_1^2 + (y-x)^2 P^2)$$

Or from pseudo-PDFs

$$Q(y,P) = \frac{P}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 \ e^{i(x-y)(Pz_3)} \mathcal{P}(x,z_3^2)$$

Try factorized model

$$\mathcal{P}(x, z_3^2) = f(x)I(z_3^2)$$

• Popular idea: Gaussian dependence $I(z_3^2) = e^{-z_3^2 \Lambda^2/4}$

$$Q_G^{\text{fact}}(y, P) = \frac{P}{\Lambda \sqrt{\pi}} \int_{-1}^1 dx \, f(x) \, e^{-(y-x)P^2/\Lambda^2}$$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ● のへの

Numerical results for Gaussian model

Pseudo-&Quasi-PDFs

Parton Densities

Transverse Momentum Cut-o

Pseudo-PDF

Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building <u>MS</u> ITC Results

Summary

- Curves for $P/\Lambda = 0.75, 1.5, 2.25$ are close to qPDFs obtained by Lin et al (2016), upper momentum P = 1.3 GeV, effective $\Lambda \approx 600$ MeV
- Need $P \sim 4.5 \Lambda \approx 2.7 \text{ GeV}$ to get reasonably close to input PDF
- Note a lot of dirt for negative y, even for $P/\Lambda = 4.5$

8/28

Rate of approach

Pseudo-&Quasi-PDFs

Rate of approach

- How do the quasi-PDF curves approach the limiting PDF curve point by point in y?
- Take a simple input PDF f(x) = 1 x (and Gaussian dependence on k_{\perp})

Analytic form:

$$\begin{split} Q(y,P) = &\frac{1}{2}(1-y) \Big[\mathrm{erf}\left[(1-y)P/\Lambda\right] + \mathrm{erf}\left[yP/\Lambda\right] \Big] \\ &+ \frac{\Lambda}{2\sqrt{\pi}P} \left[e^{-(1-y)^2P^2/\Lambda^2} - e^{-y^2P^2/\Lambda^2} \right] \end{split}$$

P-dependence reflects the k⊥-dependence of TMD
 In the middle of the 0 < y < 1 interval

$$Q(1/2, P) = \frac{1}{2} - \frac{\Lambda e^{-P^2/4\Lambda^2}}{\sqrt{\pi}P} \left[1 - \frac{2\Lambda^2}{P^2} - \dots\right]$$

• The approach to the limiting value is $\sim e^{-P^2/4\Lambda^2}$ rather than a powerlike • For y = 1, the approach is like $\sqrt{\Lambda^2/P^2}$

$$Q(1,P) = \frac{\Lambda}{2\sqrt{\pi}P} \left[1 - e^{-P^2/\Lambda^2} \right]$$

rather than like Λ^2/P^2

9/2<u>8</u>

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Rate of approach, cont.

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-o

Rate of approach

Target mass corrections Hard tail $P \rightarrow \infty$ lim Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITT Results

Summary

-0.5

Non-analytic behavior with respect to
$$\Lambda^2/P^2$$
 is present at another end-point as well

$$\sum_{\frac{1}{5} - 10}^{\frac{P}{\Lambda} = 1} Q(0, P) = \frac{1}{2} + \frac{\Lambda}{2\sqrt{\pi}P} \left[1 - 2e^{-P^2/\Lambda^2} \left(1 - \frac{\Lambda^2}{4P^2} - \dots \right) \right]$$

• Quasi-PDF approaches 1/2, average of its 0_+ and 0_- limits of the input PDF

- Curves illustrating P-dependence of quasi-PDFs for particular values of y
- With just three points, at $P/\Lambda = 0.75, 1.5$ and 2.25, it is rather difficult to make an accurate extrapolation to correct $P = \infty$ values
- k⊥ effects generate a very nontrivial TMD-dependent pattern of nonperturbative evolution of the quasi-PDFs Q(y, P)
- It cannot be described by a $\mathcal{O}(\Lambda^2/P^2)$ correction on the point-by-point basis in *y*-variable

Target mass corrections

Pseudo-&Quasi-PDFs

Parton Densities

Transverse Momentum Cut-o

Pseudo-PDF Bate of approac

Target mass corrections

Hard tail $P \rightarrow \infty$ lin Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building <u>MS</u> ITC Results

Summary

- All $(\Lambda^2/P^2)^n$ corrections come from $\langle k_{\perp}^{2n} \rangle_{\mathcal{F}}$ moments of TMD $F(x, k_{\perp}^2)$
- Statement is based on the ordinary Taylor expansion. In scalar case

$$\phi(0)\phi(z) = \sum_{n=0}^{\infty} \phi(0)(z\partial)^N \phi(0)$$

- Usual statement: $(1/P^2)^N$ terms come from higher twists and target mass corrections (TMCs)
- Expand $(z\partial)^N$ over the combinations $\{z\partial\}^l$ involving traceless tensor $\{z\mu_1 \dots z\mu_n\}$

$$\{z\partial\}^l \equiv \{z_{\mu_1}\dots z_{\mu_l}\}\,\partial^{\mu_1}\dots\partial^{\mu_l}$$

Obtain twist expansion. In scalar case

$$\phi(0)\phi(z) = \sum_{l=0}^{\infty} \left(\frac{z^2}{4}\right)^l \sum_{N=0}^{\infty} \frac{N+1}{l!(N+l+1)!} \phi(0) \{z\partial\}^N (\partial^2)^l \phi(0)$$

• For matrix elements, combination $\{z\partial\}^N$ translates into

$$\{pz\}^N \equiv z_{\mu_1} \dots z_{\mu_N} \{p^{\mu_1} \dots p^{\mu_N}\}$$

- Take n = 2. Then $\{zp\}^2 = (zp)^2 + \frac{1}{4}z^2M^2$
- Transformation to quasi-PDF converts z^2 into $1/P^2$ which gives M^2/P^2 TMC

Target mass corrections, cont.

Pseudo-&Quasi-PDFs

Parton

- Transverse Momentum Cut-o
- Pseudo-PDF

Target mass corrections

Hard tail $P \rightarrow \infty$ lime Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITD Results

Summary

- Evident conclusion: TMCs in qPDFs are created "by hand"
- Apply twist decomposition to simplest matrix element, and define $\langle p|\phi(0)\partial^2\phi(0)|p\rangle = \lambda^2 \langle p|\phi(0)\phi(0)|p\rangle$

$$\langle p|\phi(0)(z\partial)^2\phi(0)|p\rangle = -\left[(zp)^2 + \frac{1}{4}z^2M^2\right]\,\langle x^2\rangle_f + \frac{z^2}{4}\,\lambda^2$$

Using expression of ME in terms of the TMD

$$\langle p|\phi(0)(z\partial)^2\phi(0)|p\rangle = -(zp)^2 \langle x^2 \rangle_f + \frac{z^2}{2} \langle k_{\perp}^2 \rangle_F$$

This gives relation M² (x²)_f + λ² = 2(k²_⊥)_F
 In explicit form,

$$\langle p | \phi(0) \partial^2 \phi(0) | p \rangle = -M^2 \int_0^1 dx \, x^2 f(x) + 2 \int_0^1 dx \, \int d^2 k_\perp \, k_\perp^2 \, \mathcal{F}(x, k_\perp^2)$$

• Simple estimate. Take $f(x) = 4(1-x)^3$, then

$$\frac{M^2}{2} \int_0^1 dx \, x^2 f(x) = \frac{M^2}{30} \approx 0.03 \, \text{GeV}^2$$

- More realistic valence PDFs f(x) are singular for x = 0, and integral is even smaller. For $f(x) \sim (1-x)^3/\sqrt{x}$, it equals to $M^2/66 \approx 0.013 \,\mathrm{GeV}^2$
- For Gaussian TMD $\langle k_{\perp}^2 \rangle_G = \Lambda^2 \sim 0.1 \text{ GeV}^2$ for $\Lambda = 300 \text{ MeV}$

Renormalizable theories and hard term

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-

Pseudo-PDF

Rate of approac

Target mass

Hard tail

 $P \rightarrow \infty$ limi Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building <u>MS</u> ITC Results

Summary

• In QCD $\mathcal{F}(x,k_{\perp}^2)$ has $1/k_{\perp}^2$ hard part and moments $\langle x^{n-2l}k_{\perp}^{2l}\rangle_{\mathcal{F}}$ diverge

- In the l = 0 case, the divergence is logarithmic
- Reflects the perturbative evolution of quasi-PDFs Q(y, P) for large P
- Logarithmic singularity in z_3^2 in coordinate representation. At one loop,

$$\mathcal{M}^{\text{hard}}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \,\ln(z_3^2) \int_0^1 du \, B(u) \, \mathcal{M}^{\text{soft}}(u\nu, 0)$$

• Altarelli-Parisi (AP) evolution kernel

$$B(u) = \left[\frac{1+u^2}{1-u}\right]_{-1}$$

• The function $\mathcal{M}(\nu,\nu^2/P^2)$ that generates the quasi-PDF gets

$$\mathcal{M}^{\rm hard}(\nu,\nu^2/P^2) = -\frac{\alpha_s}{2\pi} C_F \, \ln(\nu^2/P^2) \int_0^1 du \, B(u) \, \int_{-1}^1 dx \, e^{-iux\nu} \, f^{\rm soft}(x)$$

- Hard part of the quasi-PDF Q(y, P) has a $\ln P^2$ term $Q^{\text{hard}}(y, P) = \ln(P^2) \Delta(y) + \dots$
- It is nonzero in the $-1 \le y \le 1$ region only

$$\Delta(y) = \frac{\alpha_s}{2\pi} C_F \int_0^1 \frac{du}{u} B(u) f^{\text{soft}}(y/u)$$

Hard part of quasi-PDF

Pseudo-&Quasi-PDFs

- Parton
- Transverse Momontum Cutv
- Pseudo-PDF
- Rate of approac
- Target mass corrections
- Hard tail
- $P \rightarrow \infty$ lim Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building <u>MS</u> ITE Results

Summary

- $\ln z_3^2$ singularity of the ITD leads to a logarithmic perturbative evolution of the quasi-PDF Q(y, P) for large P
- For TMDs, the $\ln z^2$ behavior translates into large- k_{\perp} hard tail

$$\mathcal{F}^{hard}(x,k_{\perp}^2) = \frac{\Delta(x)}{\pi k_{\perp}^2}$$

• Regularizing $1/k_{\perp}^2 \rightarrow 1/(k_{\perp}^2+m^2)$ gives

$$\int_{-\infty}^{\infty} \frac{dk_1}{k_1^2 + (x-y)^2 P^2 + m^2} = \frac{\pi}{\sqrt{(x-y)^2 P^2 + m^2}}$$

Determines the hard part of a quasi-distribution

$$Q^{\text{hard}}(y,P) = \int_{-1}^{1} dx \, \frac{\Delta(x)}{\sqrt{(x-y)^2 + m^2/P^2}}$$
$$= C_F \, \frac{\alpha_s}{2\pi} \, \int_{-1}^{1} \, \frac{d\xi}{|\xi|} R(y/\xi, m^2/\xi^2 P^2) \, f^{\text{soft}}(\xi)$$

• Generating kernel $R(\eta, m^2/P^2)$

$$R(\eta; m^2/P^2) = \int_0^1 du \, \frac{B(u)}{\sqrt{(\eta - u)^2 + m^2/P^2}}$$

Structure of kernel

Pseudo-&Quasi-PDFs

Parton Densities

Transverse Momentum Cut-o Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit

Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building <u>MS</u> ITD Results

Summary

- Kernel for several values of P/m
- Understand m as IR cut-off $\sim 1/R_{\rm hadr} \sim 0.5~{\rm GeV}$
- In the $m/P \rightarrow 0$ limit

$$\frac{1}{\sqrt{(x-y)^2 + m^2/P^2}} \bigg|_{m^2/P^2 \to 0} = \left(\frac{1}{|x-y|}\right)_+ + \delta(x-y)\ln\left[4y(1-y)\frac{P^2}{m^2}\right]$$

• $\delta(x-y)$ gives $\ln P^2$ evolution in $-1 \le y \le 1$ region • Outside $|\eta| \le 1$ region, limit $m/P \to 0$ is finite

$$R(\eta;0) = \int_0^1 \frac{du}{|\eta - u|} B(u)$$

• Kernel can be written as a series in $1/\eta$,

$$R(\eta;0)|_{\eta>1} = -\sum_{n=1}^{\infty} \frac{\gamma_n}{\eta^{n+1}} \quad , \quad R(\eta;0)|_{\eta<-1} = \sum_{n=1}^{\infty} \frac{\gamma_n}{\eta^{n+1}}$$

Kernel outside central region

Pseudo-&Quasi-PDFs

Parton

- Transverse Momentum Cuter
- Pseudo-PDF
- Rate of approact
- Target mass corrections

Hard tail

 $P \rightarrow \infty$ lim Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building <u>MS</u> ITD Results

Summary

 $\bullet \ \gamma_n$ are proportional to anomalous dimensions of operators with n derivatives

 $R(\eta;0)|_{\eta>1} = -\sum_{n=1}^{\infty} \frac{\gamma_n}{\eta^{n+1}}$, $R(\eta;0)|_{\eta<-1} = \sum_{n=1}^{\infty} \frac{\gamma_n}{\eta^{n+1}}$

16/28

$$\gamma_n = \int_0^1 du \, u^n \, B(u)$$

• $\gamma_0 = 0$, hence the asymptotic behavior for large $|\eta|$ is

$$R(\eta; 0)|_{|\eta| \gg 1} = -\frac{4}{3} \frac{\operatorname{sgn}(\eta)}{\eta^2} + \mathcal{O}(1/\eta^3)$$

$$R(\eta; 0)|_{\eta > 1} = \frac{1 + \eta^2}{\eta - 1} \ln\left(\frac{\eta - 1}{\eta}\right) + \frac{3}{2(\eta - 1)} + 1$$

Realistic value $P/m \sim 3$
Curve is very far from asymptotic shape
Neglecting α_s correction is a better approximation than using it in the $m/P = 0$ limit

Subtlety of $P \to \infty$ limit

Pseudo-&Quasi-PDFs

- Parton
- Transverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced___

Evolution in lattice data Data Building MS ITD Results

Summary

Recall the structure of the hard part

$$Q^{\text{hard}}(y,P) = \int_{-1}^{1} dx \, \frac{\Delta(x)}{\sqrt{(x-y)^2 + m^2/P^2}}$$
$$= C_F \, \frac{\alpha_s}{2\pi} \, \int_{-1}^{1} \, \frac{d\xi}{|\xi|} R(y/\xi,m^2/\xi^2 P^2) \, f^{\text{soft}}(\xi)$$

• Outside
$$|\eta| < 1$$
, the kernel has finite $P \to \infty$ limit

$$R(\eta;0)|_{\eta>1} = \frac{1+\eta^2}{\eta-1}\ln\left(\frac{\eta-1}{\eta}\right) + \frac{3}{2(\eta-1)} + 1$$

- Even when powers of Λ^2/P^2 may be neglected, quasi-PDFs differ from PDFs
- Shape of Q(y, P) for y > 1 is calculable (if PDF is known)
- One should see that lattice gives it, and subtract
- Only then one gets PDF with $|x| \leq 1$ support

Gauge link complications

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Pseudo-&Quasi-PDFs

Parton

- Transverse Momentum Cut-o Pseudo-PDF
- Rate of approach
- Target mass
- Hard tail

$P ightarrow \infty$ limit

- Gauge link
- Renormalizati Reduced pseudo-ITD
- Evolution in lattice data Data Building <u>MS</u> ITC Results

Summary

- Terms outside $|y| \le 1$ are generated by $\ln z_3^2$ term
- In QCD, there is one more source of the z^2 -dependence of pseudo-ITD: gauge link $\hat{E}(0,z;A)$
- It has specific ultraviolet divergences
- $\bullet~$ Use Polyakov regularization $1/z^2 \rightarrow 1/(z^2-a^2)$ for gluon propagator in coordinate space
- Effect of the UV cut-off a is similar to that of the lattice spacing
- At one loop, link-related UV singular terms have the structure

$$\Gamma_{\rm UV}(z_3, a) \sim -\frac{\alpha_s}{2\pi} C_F \left[2\frac{|z_3|}{a} \tan^{-1}\left(\frac{|z_3|}{a}\right) - 2\ln\left(1 + \frac{z_3^2}{a^2}\right) \right]$$

- For fixed a, these terms vanish when $z_3 \rightarrow 0$
- No violation of quark number conservation

Link contribution to quasi-PDFs

Addition due to UV singular terms

$$Q^{\rm UV}(y,P) = \int_{-1}^{1} dx \, R^{\rm UV}(y-x;a) \, f(x) \; ,$$

• Kernel $R_{\rm UV}(y-x;a)$ is given by

$$R^{\rm UV}(y-x;a) = \frac{P}{2\pi} \int_{-\infty}^{\infty} dz_3 \, e^{-i(y-x)Pz_3} \, \Gamma_{\rm UV}(z_3,a)$$

• Take $\ln(1+z_3^2/a^2)$ "vertex" term. Its Fourier transform gives

$$R_V(y,x;Pa) \sim -\frac{1}{|y-x|}e^{-|y-x|Pa} - \delta(y-x)\int_{-\infty}^{\infty} \frac{d\zeta}{|y-\zeta|}e^{-|y-\zeta|Pa}$$

- Taking a = 0 gives $\sim 1/|y x|$ term similar to that appearing in the evolution-related kernel
- However, for a = 0 the ζ -integral accompanying the $\delta(y x)$ term diverges when $\zeta \to \pm \infty$
- Need to keep nonzero *a* to have the exponential suppression factor that guarantees that $R_V(y, x; Pa)$ is given by a mathematically well-defined expression

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-co Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link

Renormalizatio Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITE Results

Summary

Renormalize or exterminate?

Pseudo-&Quasi-PDFs

Parton Densitie

Transverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced

Evolution in lattice data Data Building MS ITI Results

Summary

- Structure of factorization for DIS in Feynman gauge
- Gluon insertions generate gauge link $\hat{E}(0, z; A)$
- Quark self-energy diagram is not factorized as $S^c(z) \times \langle AA \rangle$
- Link self-energy diagrams and UV-singular parts of vertex diagrams should be excluded together with associated z_3^2 -dependence
- It is not sufficient just to subtract UV divergences

・ コット (雪) (小田) (コット 日)

Easy way out: consider reduced pseudo-ITD

$$\mathfrak{M}(\nu,z_3^2)\equiv \frac{\mathcal{M}(\nu,z_3^2)}{\mathcal{M}(0,z_3^2)}$$

• $\mathfrak{M}(\nu, z_3^2)$ has finite $a \to 0$ limit

Reduced loffe-time pseudo-distribution

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link

Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building <u>MS</u> ITD Results

Summary

- Reduced pseudo-ITD $\mathfrak{M}(\nu,z_3^2)$ is a physical observable (like, say, DIS structure functions)
- No need to specify renormalization scheme, scale, etc.
- $\mathfrak{M}(\nu, z_3^2)$ is singular in $z_3 \to 0$ limit, $\ln z_3^2$ terms reflect perturbative evolution
- At one loop (with mass-type IR regularization)

$$\begin{split} \mathfrak{M}(\nu, z_3^2) &= \mathfrak{M}^{\text{soft}}(\nu, 0) - \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \left\{ \frac{1+w^2}{1-w} \left[\ln\left(z_3^2 m^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] \right. \\ &\left. + 4 \, \frac{\ln(1-w)}{1-w} \right\} \left[\mathfrak{M}^{\text{soft}}(w\nu, 0) - \mathfrak{M}^{\text{soft}}(\nu, 0) \right] \end{split}$$

- For light-cone PDF, one should take $z^2 = 0$ and use some scheme for resulting UV divergence, say, $\overline{\rm MS}$
- Ioffe-time distribution $\mathcal{I}(\nu, \mu^2)$ is UV scheme and scale dependent

$$\mathcal{I}(\nu,\mu^2) = \int_{-1}^{1} dx \, e^{ix\nu} \, f(x,\mu^2)$$

• At one loop (with the same mass-type IR regularization)

$$\begin{aligned} \mathcal{I}(\nu,\mu^2) = \mathfrak{M}^{\text{soft}}(\nu,0) - \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \left[\mathfrak{M}^{\text{soft}}(w\nu,0) - \mathfrak{M}^{\text{soft}}(\nu,0) \right] \\ \times \left\{ \frac{1+w^2}{1-w} \ln(m^2/\mu^2) + 2(1-w) \right\}_{\mathcal{M}} \quad \text{and} \quad \mathbb{R} \quad \mathbb{$$

Pseudo-

&Quasi-PDFs

Reduced

Reduced loffe-time pseudo-distribution

• Writing $\overline{\mathrm{MS}}$ ITD in terms of reduced pseudo-ITD

$$\begin{split} \mathcal{I}(\nu,\mu^2) = \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{2\pi} C_F \, \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ \times \left\{ B(w) \, \left[\ln\left(z_3^2\mu^2 \frac{e^{2\gamma_E}}{4}\right) + 1 \right] + \left[4\frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\} \end{split}$$

- Altarelli-Parisi kernel $B(w) = \left[(1 + w^2)/(1 w) \right]_+$
- Multiplicative scale difference between z^2 and \overline{MS} cut-offs $\mu^2 = 4e^{-2\gamma_E}/z_3^2$
- Simple rescaling relation is modified when all terms are taken into account

- Term with $[\ln(1-w)]/(1-w)$ produces large negative contribution
- In Feynman gauge, it comes from vertex diagrams
- Gluon is attached to running tz₃ position on the link
- z₃-dependence is generated then by effective scale smaller than z₃ = .

22/28

Evolution in lattice data

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-o Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced Target DD

Evolution in lattice data Data Building MS ITE Results

Summary

- Exploratory lattice study of reduced pseudo-ITD $\mathfrak{M}(\nu, z_3^2)$ for the valence $u_v d_v$ parton distribution in the nucleon [Orginos et al. 2017]
- When plotted as function of ν, data both for real and imaginary parts lie close to respective universal curves
- Data show no polynomial z_3 -dependence for large z_3 though z_3^2/a^2 changes from 1 to ~ 200
- Apparently no higher-twist terms in the reduced pseudo-ITD
- Real part corresponds to the cosine Fourier transform of $q_v(x) = u_v(x) d_v(x)$

$$\Re(\nu) \equiv \operatorname{Re} \mathfrak{M}(\nu) = \int_0^1 dx \, \cos(\nu x) \, q_v(x)$$

• Overall curve corresponds to the function

$$f(x) = \frac{315}{32}\sqrt{x}(1-x)^3$$

- Obtained by forming cosine Fourier transforms of $x^a(1-x)^b$ -type functions and fitting a, b
- Shape is dominated by points with smaller values of Re M(ν, z₃²) → E → E → E → E

Evolution in lattice data, cont.

Pseudo-&Quasi-PDFs

Parton Densitie

Transverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS IT Results

Summary

- Points corresponding to 7a ≤ z₃ ≤ 13a values
- Some scatter for points with $\nu \gtrsim 10$
- Otherwise, practically all the points lie on the universal curve based on f(x).
- No z_3 -evolution visible in large- z_3 data
- Points in $a \le z_3 \le 6a$ region
- All points lie higher than universal curve
- Perturbative evolution increases real part of the pseudo-ITD when z₃ decreases
- Conjecture that the observed higher values of ℜ for smaller-z₃ points may be a consequence of evolution
- z_3 -dependence of the lattice points for "magic" loffe-time value $\nu = 3\pi/4$
- Shape of eye-ball fit line is $\Gamma(0, z_3^2/30a^2)$
- "Perturbative" ln(1/z₃²) behavior for small z₃, rapidly vanishes for z₃ > 6a
- $\Re(\nu, z_3^2)$ decreases when z_3 increases

Building $\overline{\mathrm{MS}}$ ITD

Parton

Transverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS ITD Results

Summary

- Data show a logarithmic evolution behavior in small z_3 region
- Starts to visibly deviate from a pure logarithmic $\ln z_3^2$ pattern for $z_3\gtrsim 5a$
- This sets the boundary $z_3 \leq 4a$ on the "logarithmic region"
- "Evolution" part of 1-loop correction

$$\mathcal{I}_{R}^{\text{ev}}(\nu,\mu^{2}) = \Re(\nu,z_{3}^{2}) + \frac{\alpha_{s}}{2\pi} C_{F} \int_{0}^{1} dw \, \Re(w\nu,z_{3}^{2}) B(w) \, \ln\left(z_{3}^{2}\mu^{2} \frac{e^{2\gamma_{E}}}{4}\right)$$

• For $z_3 = 2e^{-\gamma_E}/\mu$, the logarithm vanishes, and we have

$$\mathcal{I}_R^{\rm ev}(\nu,\mu^2) = \Re(\nu,(2e^{-\gamma_E}/\mu)^2) = \Re(\nu,(1.12/\mu)^2)$$

- This happens only if, for some α_s , the $\ln z_3^2$ -dependence of the1-loop term cancels actual z_3^2 -dependence of the data, visible as scatter in the data
- Fitted value: $\alpha_s/\pi \approx 0.1$
- $\bullet\,$ Remaining part of $\mathcal{I}(\nu,\mu^2)$ is due to corrections beyond the leading log approximation

$$\begin{aligned} \mathcal{I}_{R}^{\mathrm{NL}}(\nu) &= \frac{\alpha_{s}}{2\pi} C_{F} \int_{0}^{1} dw \, \Re_{f}(w\nu) \left\{ B(w) + \left[4 \, \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_{+} \right\} \\ &\equiv \frac{\alpha_{s}}{2\pi} C_{F} \left[B \otimes \Re_{f} + L \otimes \Re_{f} \right] \end{aligned}$$

Numerical results

26/28

Parton Densitie

Transverse Momentum Cut-o Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building MS IT Results

Summary

- $L \otimes \mathfrak{R}_f$ is negative and rather large
- In $\nu < 5$ region, $L \otimes \Re_f \approx -3.5B \otimes \Re_v$
- Combined effect is close to LLA evolution with modified rescaling factor

 $\mathcal{I}_R(\nu,\mu^2) \approx \Re(\nu,(4/\mu)^2)$

- Actual calculations should be done using "exact" formula
- We choose $\mu = 1/a$ which, at lattice spacing of 0.093 fm is \approx 2.15 GeV
- Using $\alpha_s/\pi = 0.1$ and $z_3 \le 4a$ data, we generate the points for $\mathcal{I}_R(\nu, (1/a)^2)$
- Upper curve corresponds to the ITD of the CJ15 global fit PDF for μ =2.15 GeV

Evolved points are close to some universal curve with a rather small scatter

• The curve itself corresponds to the cosine transform of a normalized $\sim x^a(1-x)^b$ distribution with a = 0.35 and b = 3

Numerical results, cont.

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data ^{Data} Building <u>MS</u> ITD Results

Summary

- $\bullet ~\sim x^{0.35}(1-x)^3$ PDF compared to CJ15 and MMHT global fits for $\mu=2.15~{\rm GeV}$
- Unable to reproduce $\sim x^{-0.5}$ Regge behavior
- Possible reasons: quenched approximation, large pion mass

27/28

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

Parton

Transverse Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail $P \rightarrow \infty$ limit Gauge link Renormalization Reduced pseudo-ITD

Evolution in lattice data Data Building <u>MS</u> ITC Results

Summary

- $\bullet\,$ Analyzed nonperturbative structure of quasi-PDFs Q(y,P) using their relation to pseudo-ITDs and TMDs
- Shown that $(\Lambda^2/P^2)^n$ expansion for Q(y, P) involves generalized functions
- Using factorized models for TMDs, studied rate of approach of quasi-PDFs Q(y,P) to PDFs f(y) when $P \to \infty$
- Demonstrated that target-mass corrections are a small part of k_{\perp}^2 corrections artificially singled out from them
- Analyzed perturbative structure of quasi-PDFs using their relation to pseudo-ITDs and TMDs
- Shown that evolution log $\ln z_3^2$ gives $\sim 1/y^2$ behavior of qPDFs for large y
- $\sim 1/y$ terms come from UV singular link-related terms
- Argued that link-related terms should be "exterminated"
- Proposed to use reduced pseudo-ITD
- Studied evolution of exploratory lattice data for reduced pseudo-ITD