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Original Feynman approach to PDFs f(x):
infinite momentum P3 →∞ limit of k3 = xP3 momentum distributions
(∼ quasi-PDFs Q(x, P3))
f(x) were treated as k⊥-integrated f(x, k⊥) distributions
Understood from the start: Q(x, P3 →∞)→ f(x) limit exists
only if f(x, k⊥) rapidly decreases with k⊥
“Transverse momentum cut-off”, 〈k2

⊥〉 ∼ 1/R2
hadr

Question 1: why Q(x, P3) differs from f(x)?
Question 2: how does Q(x, P3) convert into f(x) when P3 →∞?
Qualitative answer: yP3 comes from two sources:
from the motion of the hadron (xP3) and
from Fermi motion of quarks inside the hadron (y − x)P3 ∼ 1/Rhadr

(y − x)P3 ∼ 1/Rhadr part has the same origin as transverse momentum
⇒ One should be able to relate quasi-PDFs to TMDs
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p p

0z. .

M(−(pz),−z2)

Basic matrix element (ignoring spin)

〈p|φ(0)φ(z)|p〉 =M(−(pz),−z2)

Lorentz invariance: M depends on z
through (pz) and z2

Take z = (0, 0, 0, z3), then −(pz) ≡ ν = Pz3 and −z2 = z2
3

Ioffe time ν: M(ν, z2
3) = Ioffe time pseudo-distribution (pseudo-ITD)

Introduce quasi-PDF (Ji,2013)

Q(y, P ) =
P

2π

∫ ∞
−∞

dz3 e
−iyPz3M(Pz3, z

2
3) =

∫ ∞
−∞

dν

2π
e−iyνM(ν, ν2/P 2)

Take z = (z+ = 0, z−, z1, z2), then ν = −p+z− and −z2 = z2
1 + z2

2 . TMD:

M(ν, z2
1 + z2

2) =

∫ 1

−1
dx eixν

∫ ∞
−∞

dk1dk2e
i(k1z1+k2z2)F(x, k2

1 + k2
2)

Take z1 = 0, z2 = ν/P and use for qPDF

Q(y, P ) =P

∫ 1

−1
dx

∫ ∞
−∞

dk1F(x, k2
1 + (y − x)2P 2)

qPDF variable y has the −∞ < y <∞ support, since −∞ < k2 <∞
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Ioffe-time distributions and Pseudo-PDFs 4/28

Pseudo-PDF P(x,−z2): Fourier transform of pseudo-ITD with respect to ν

M(ν,−z2) =

∫ 1

−1
dx e−ixν P(x,−z2)

Limits −1 ≤ x ≤ 1 for any Feynman diagram. Relation to TMD

P(x, z2
⊥) =

∫
d2k⊥e

i(k⊥z⊥)F(x, k2
⊥)

When F(x, k2
⊥) rapidly vanishes with k⊥, pseudo-PDF and pseudo-ITD are

regular for z2 = 0, and P(x, 0) = f(x)
Quasi-PDF to pseudo-PDF relation

Q(y, P ) =
|P |
2π

∫ 1

−1
dx

∫ ∞
−∞

dz3 e
−i(y−x)Pz3 P(x, z2

3)

Expand P(x, z2
3) in z2

3

P(x, z2
3) =

∞∑
l=0

(z2
3Λ2)l Pl(x)

Q(y, P ) approaches f(y) like

Q(y, P ) =f(y) +

∞∑
l=1

(
Λ2

P 2

)l
∂2l

∂y2l
Pl(y)
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Quasi-PDFs and Pseudo-PDFs 5/28

Q(y, P ) =f(y) +
∞∑
l=1

(
Λ2

P 2

)l
∂2l

∂y2l
Pl(y)

Support mismatch: −∞ < y <∞ for qPDF Q(y, P ),
while Pl(y)’s vanish outside −1 ≤ y ≤ 1

Do not take this expansion too literally
Innocently-looking derivatives of Pl(y) generate infinite tower of singular
functions like δ(y), δ(y ± 1) and their derivatives
Recall: even if a function f(y) has a nontrivial support Ω (say, −1 ≤ y ≤ 1),
one may formally represent it by a series

f(y) =
∞∑
N=0

(−1)N

N !
MN δ(N)(y)

over the functions δ(N)(y) with an apparent support at one point y = 0 only
MN are moments of f(y)

MN =

∫
Ω
dy yN f(y)

While the difference between Q(y, P ) and f(y) is formally given by a series
in powers of 1/P 2, its coefficients are not the ordinary functions of y



Pseudo-
&Quasi-PDFs

Parton
Densities
Transverse
Momentum Cut-off

Pseudo-PDF

Rate of approach

Target mass
corrections

Hard tail

P → ∞ limit

Gauge link

Renormalization

Reduced
pseudo-ITD

Evolution in
lattice data
Data

Building MS ITD

Results

Summary

� � � � � �� �� ������

����

����

����

����

����

z3/a

Re M(⌫, z2
3)

Moments of Quasi-PDFs 6/28

In terms of TMDs:

Q(y, P ) =f(y) +
∞∑
l=1

∫
d2k⊥

k2l
⊥

4lP 2l(l!)2

∂2l

∂y2l
F(y, k2

⊥)

To eliminate mismatch, take yn moments 〈yn〉Q of the quasi-PDFs

〈yn〉Q ≡
∫ ∞
−∞

dy ynQ(y, P ) =

[n/2]∑
l=0

n!

(n− 2l)!(l!)2

〈xn−2lk2l
⊥ 〉F

4lP 2l

〈xn−2lk2l
⊥ 〉F are the combined moments of TMDs

〈xn−2lk2l
⊥ 〉F ≡

∫ 1

−1
dx xn−2l

∫
d2k⊥ k

2l
⊥ F(x, k2

⊥)

Expansion makes sense only when F(x, k2
⊥) vanishes faster than any

power of 1/k2
⊥

Is it possible to study the approach of Q(y, P ) to f(y) for fixed y?
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Relations between quasi-PDFs and TMDs 7/28

z3-dependence has the same origin as k⊥ dependence of TMDs

Quasi-PDFs can be obtained from TMDs (A.R., 2016)

Q(y, P )/P =

∫ 1

−1
dx

∫ ∞
−∞

dk1F(x, k2
1 + (y − x)2P 2)

Or from pseudo-PDFs

Q(y, P ) =
P

2π

∫ 1

−1
dx

∫ ∞
−∞

dz3 ei(x−y)(Pz3) P(x, z2
3)

Try factorized model

P(x, z2
3) = f(x)I(z2

3)

Popular idea: Gaussian dependence I(z2
3) = e−z

2
3Λ2/4

Qfact
G (y, P ) =

P

Λ
√
π

∫ 1

−1
dx f(x) e−(y−x)P2/Λ2
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Numerical results for Gaussian model 8/28

Take PDF f(x) = uv(x)− dv(x) = 315
32

√
x(1− x)3θ(0 ≤ x ≤ 1)

obtained by pseudo-PDF method (Orginos et al. 2017)

-2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0
Q(y, P )

1.5

P/⇤ = 0.75

2.25

4.5

Input PDF

y
Curves for P/Λ = 0.75, 1.5, 2.25 are close to qPDFs obtained by Lin et al
(2016), upper momentum P = 1.3 GeV, effective Λ ≈ 600 MeV

Need P ∼ 4.5 Λ ≈ 2.7 GeV to get reasonably close to input PDF

Note a lot of dirt for negative y, even for P/Λ = 4.5
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Rate of approach 9/28

How do the quasi-PDF curves approach the limiting PDF curve point by
point in y?
Take a simple input PDF f(x) = 1− x (and Gaussian dependence on k⊥)

y

Q(y, P ) 100

2

5

10

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

P/⇤ = 1

Analytic form:

Q(y, P ) =
1

2
(1− y)

[
erf [(1− y)P/Λ] + erf [yP/Λ]

]
+

Λ

2
√
πP

[
e−(1−y)2P2/Λ2

− e−y
2P2/Λ2

]
P -dependence reflects the k⊥-dependence of TMD
In the middle of the 0 ≤ y ≤ 1 interval

Q(1/2, P ) =
1

2
−

Λe−P
2/4Λ2

√
πP

[
1−

2Λ2

P 2
− . . .

]
The approach to the limiting value is ∼ e−P2/4Λ2

rather than a powerlike
For y = 1, the approach is like

√
Λ2/P 2

Q(1, P ) =
Λ

2
√
πP

[
1− e−P

2/Λ2
]

rather than like Λ2/P 2
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Rate of approach, cont. 10/28

y

Q(y, P ) 100

2

5

10

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

P/⇤ = 1

Non-analytic behavior with respect to Λ2/P 2 is present at
another end-point as well

Q(0, P ) =
1

2
+

Λ

2
√
πP

[
1− 2e−P

2/Λ2
(

1−
Λ2

4P 2
− . . .

)]

Quasi-PDF approaches 1/2, average of its 0+ and 0− limits of the input PDF

1 2 3 4 5 6

0.2

0.4

0.6

Q(y, P )

P/Λ

y = 0.2

0.1

0
0.5

0.7

y = 1

Curves illustrating P -dependence of
quasi-PDFs for particular values of y

With just three points, at
P/Λ = 0.75, 1.5 and 2.25, it is rather
difficult to make an accurate
extrapolation to correct P =∞ values

k⊥ effects generate a very nontrivial TMD-dependent pattern of
nonperturbative evolution of the quasi-PDFs Q(y, P )

It cannot be described by a O(Λ2/P 2) correction on the point-by-point
basis in y-variable
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Target mass corrections 11/28

All (Λ2/P 2)n corrections come from 〈k2n
⊥ 〉F moments of TMD F (x, k2

⊥)
Statement is based on the ordinary Taylor expansion. In scalar case

φ(0)φ(z) =
∞∑
n=0

φ(0)(z∂)Nφ(0)

Usual statement: (1/P 2)N terms come from higher twists and target mass
corrections (TMCs)
Expand (z∂)N over the combinations {z∂}l involving traceless tensor
{zµ1 . . . zµn}

{z∂}l ≡ {zµ1 . . . zµl} ∂
µ1 . . . ∂µl

Obtain twist expansion. In scalar case

φ(0)φ(z) =

∞∑
l=0

(
z2

4

)l ∞∑
N=0

N + 1

l!(N + l + 1)!
φ(0){z∂}N (∂2)lφ(0)

For matrix elements, combination {z∂}N translates into

{pz}N ≡ zµ1 . . . zµN {p
µ1 . . . pµN }

Take n = 2. Then {zp}2 = (zp)2 + 1
4
z2M2

Transformation to quasi-PDF converts z2 into 1/P 2 which gives M2/P 2

TMC
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Target mass corrections, cont. 12/28

Evident conclusion: TMCs in qPDFs are created “by hand”
Apply twist decomposition to simplest matrix element, and define
〈p|φ(0)∂2φ(0)|p〉 = λ2〈p|φ(0)φ(0)|p〉

〈p|φ(0)(z∂)2φ(0)|p〉 = −
[
(zp)2 +

1

4
z2M2

]
〈x2〉f +

z2

4
λ2

Using expression of ME in terms of the TMD

〈p|φ(0)(z∂)2φ(0)|p〉 = − (zp)2 〈x2〉f +
z2

2
〈k2
⊥〉F

This gives relation M2〈x2〉f + λ2 = 2〈k2
⊥〉F

In explicit form,

〈p|φ(0)∂2φ(0)|p〉 = −M2

∫ 1

0
dx x2f(x) + 2

∫ 1

0
dx

∫
d2k⊥ k

2
⊥ F(x, k2

⊥)

Simple estimate. Take f(x) = 4(1− x)3, then

M2

2

∫ 1

0
dx x2f(x) =

M2

30
≈ 0.03 GeV2

More realistic valence PDFs f(x) are singular for x = 0, and integral is even
smaller. For f(x) ∼ (1− x)3/

√
x, it equals to M2/66 ≈ 0.013 GeV2

For Gaussian TMD 〈k2
⊥〉G = Λ2 ∼ 0.1 GeV2 for Λ = 300 MeV

Target-mass corrections are much smaller than k⊥ effects
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Renormalizable theories and hard term 13/28

In QCD F(x, k2
⊥) has 1/k2

⊥ hard part and moments 〈xn−2lk2l
⊥ 〉F diverge

In the l = 0 case, the divergence is logarithmic
Reflects the perturbative evolution of quasi-PDFs Q(y, P ) for large P
Logarithmic singularity in z2

3 in coordinate representation. At one loop,

Mhard(ν, z2
3) = −

αs

2π
CF ln(z2

3)

∫ 1

0
duB(u)Msoft(uν, 0)

Altarelli-Parisi (AP) evolution kernel

B(u) =

[
1 + u2

1− u

]
+

The functionM(ν, ν2/P 2) that generates the quasi-PDF gets

Mhard(ν, ν2/P 2) = −
αs

2π
CF ln(ν2/P 2)

∫ 1

0
duB(u)

∫ 1

−1
dx e−iuxν f soft(x)

Hard part of the quasi-PDF Q(y, P ) has a lnP 2 term

Qhard(y, P ) = ln(P 2) ∆(y) + . . .

It is nonzero in the −1 ≤ y ≤ 1 region only

∆(y) =
αs

2π
CF

∫ 1

0

du

u
B(u)f soft(y/u)

Thus, the ln z2
3 singularity of the ITD leads to a logarithmic perturbative

evolution of the quasi-PDF Q(y, P ) for large P .
For TMDs, the ln z2 behavior translates into the

Fhard(x, k2
⊥) =

∆(x)

πk2
⊥

form for the large-k⊥ hard tail. The ∼ 1/k2
⊥ form is singular for k⊥ = 0,

while we want TMDs to be finite in this limit. Using the regularization
1/k2
⊥ → 1/(k2

⊥ +m2) and substituting it in the TMD/quasi-PDF conversion
formula (??), we arrive at the integral∫ ∞

−∞

dk1

k2
1 + (x− y)2P 2 +m2

=
π√

(x− y)2P 2 +m2

It determines the hard part of a quasi-distribution

Qhard(y, P ) =

∫ 1

−1
dx

∆(x)√
(x− y)2 +m2/P 2

Using the expression (??) for ∆(x), we have

Qhard(y, P ) = CF
αs

2π

∫ 1

−1

dξ

|ξ|
R(y/ξ,m2/ξ2P 2) f soft(ξ)

where the kernel R(η,m2/P 2) is given by

R(η;m2/P 2) =

∫ 1

0
du

B(u)√
(η − u)2 +m2/P 2
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Hard part of quasi-PDF 14/28

ln z2
3 singularity of the ITD leads to a logarithmic perturbative evolution of

the quasi-PDF Q(y, P ) for large P
For TMDs, the ln z2 behavior translates into large-k⊥ hard tail

Fhard(x, k2
⊥) =

∆(x)

πk2
⊥

Regularizing 1/k2
⊥ → 1/(k2

⊥ +m2) gives∫ ∞
−∞

dk1

k2
1 + (x− y)2P 2 +m2

=
π√

(x− y)2P 2 +m2

Determines the hard part of a quasi-distribution

Qhard(y, P ) =

∫ 1

−1
dx

∆(x)√
(x− y)2 +m2/P 2

= CF
αs

2π

∫ 1

−1

dξ

|ξ|
R(y/ξ,m2/ξ2P 2) f soft(ξ)

Generating kernel R(η,m2/P 2)

R(η;m2/P 2) =

∫ 1

0
du

B(u)√
(η − u)2 +m2/P 2
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Structure of kernel 15/28

-0.5 0.5 1.0 1.5 2.0
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-40

-20

20
20
10
3

R

⌘ Kernel for several values of P/m

Understand m as IR cut-off
∼ 1/Rhadr ∼ 0.5 GeV

In the m/P → 0 limit

1√
(x− y)2 +m2/P 2

∣∣∣∣∣
m2/P2→0

=

(
1

|x− y|

)
+

+ δ(x− y) ln

[
4y(1− y)

P 2

m2

]

δ(x− y) gives lnP 2 evolution in −1 ≤ y ≤ 1 region
Outside |η| ≤ 1 region, limit m/P → 0 is finite

R(η; 0) =

∫ 1

0

du

|η − u|
B(u)

Kernel can be written as a series in 1/η,

R(η; 0)|η>1 = −
∞∑
n=1

γn

ηn+1
, R(η; 0)|η<−1 =

∞∑
n=1

γn

ηn+1
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Kernel outside central region 16/28

R(η; 0)|η>1 = −
∞∑
n=1

γn

ηn+1
, R(η; 0)|η<−1 =

∞∑
n=1

γn

ηn+1

γn are proportional to anomalous dimensions of operators with n derivatives

γn =

∫ 1

0
duunB(u)

γ0 = 0, hence the asymptotic behavior for large |η| is

R(η; 0)||η|�1 = −
4

3

sgn(η)

η2
+O(1/η3)

Explicit expression for m/P = 0

R(η; 0)|η>1 =
1 + η2

η − 1
ln

(
η − 1

η

)
+

3

2(η − 1)
+ 1

-0.5 0.5 1.0 1.5 2.0

-80

-60

-40

-20

20
20
10
3

R

⌘

Realistic value P/m ∼ 3

Curve is very far from asymptotic shape

Neglecting αs correction is a better
approximation than using it in the
m/P = 0 limit
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Subtlety of P → ∞ limit 17/28

Recall the structure of the hard part

Qhard(y, P ) =

∫ 1

−1
dx

∆(x)√
(x− y)2 +m2/P 2

= CF
αs

2π

∫ 1

−1

dξ

|ξ|
R(y/ξ,m2/ξ2P 2) f soft(ξ)

Outside |η| < 1, the kernel has finite P →∞ limit

R(η; 0)|η>1 =
1 + η2

η − 1
ln

(
η − 1

η

)
+

3

2(η − 1)
+ 1

Even when powers of Λ2/P 2 may be neglected,
quasi-PDFs differ from PDFs

Shape of Q(y, P ) for y > 1 is calculable (if PDF is known)

One should see that lattice gives it, and subtract

Only then one gets PDF with |x| ≤ 1 support
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Gauge link complications 18/28

Terms outside |y| ≤ 1 are generated by ln z2
3 term

In QCD, there is one more source of the z2-dependence of pseudo-ITD:
gauge link Ê(0, z;A)

It has specific ultraviolet divergences

Use Polyakov regularization 1/z2 → 1/(z2 − a2) for gluon propagator in
coordinate space

Effect of the UV cut-off a is similar to that of the lattice spacing

At one loop, link-related UV singular terms have the structure

ΓUV(z3, a) ∼ −
αs

2π
CF

[
2
|z3|
a

tan−1

(
|z3|
a

)
− 2 ln

(
1 +

z2
3

a2

)]
For fixed a, these terms vanish when z3 → 0

No violation of quark number conservation
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Link contribution to quasi-PDFs 19/28

Addition due to UV singular terms

QUV(y, P ) =

∫ 1

−1
dxRUV(y − x; a) f(x) ,

Kernel RUV(y − x; a) is given by

RUV(y − x; a) =
P

2π

∫ ∞
−∞

dz3 e
−i(y−x)Pz3 ΓUV(z3, a)

Take ln(1 + z2
3/a

2) “vertex” term. Its Fourier transform gives

RV (y, x;Pa) ∼ −
1

|y − x|
e−|y−x|Pa − δ(y − x)

∫ ∞
−∞

dζ

|y − ζ|
e−|y−ζ|Pa

Taking a = 0 gives ∼ 1/|y − x| term similar to that appearing in the
evolution-related kernel
However, for a = 0 the ζ-integral accompanying the δ(y − x) term diverges
when ζ → ±∞
Need to keep nonzero a to have the exponential suppression factor that
guarantees that RV (y, x;Pa) is given by a mathematically well-defined
expression
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Renormalize or exterminate? 20/28

Structure of factorization for DIS in
Feynman gauge

Gluon insertions generate gauge link
Ê(0, z;A)

Quark self-energy diagram is not
factorized as Sc(z)× 〈AA〉
Operator ψ̄(0)Ê(0, z;A)ψ(z) should be
accompanied by “no AA contractions”

Link self-energy diagrams and
UV-singular parts of vertex diagrams
should be excluded together with
associated z2

3 -dependence

It is not sufficient just to subtract UV
divergences

Easy way out: consider reduced pseudo-ITD

M(ν, z2
3) ≡

M(ν, z2
3)

M(0, z2
3)

M(ν, z2
3) has finite a→ 0 limit
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Reduced Ioffe-time pseudo-distribution 21/28

Reduced pseudo-ITD M(ν, z2
3) is a physical observable

(like, say, DIS structure functions)
No need to specify renormalization scheme, scale, etc.
M(ν, z2

3) is singular in z3 → 0 limit, ln z2
3 terms reflect perturbative evolution

At one loop (with mass-type IR regularization)

M(ν, z2
3) = Msoft(ν, 0)−

αs

2π
CF

∫ 1

0
dw

{
1 + w2

1− w

[
ln

(
z2
3m

2 e
2γE

4

)
+ 1

]
+4

ln(1− w)

1− w

}[
Msoft(wν, 0)−Msoft(ν, 0)

]
For light-cone PDF, one should take z2 = 0 and use some scheme for
resulting UV divergence, say, MS
Ioffe-time distribution I(ν, µ2) is UV scheme and scale dependent

I(ν, µ2) =

∫ 1

−1
dx eixν f(x, µ2)

At one loop (with the same mass-type IR regularization)

I(ν, µ2) =Msoft(ν, 0)−
αs

2π
CF

∫ 1

0
dw

[
Msoft(wν, 0)−Msoft(ν, 0)

]
×
{

1 + w2

1− w
ln(m2/µ2) + 2(1− w)

}
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Reduced Ioffe-time pseudo-distribution 22/28

Writing MS ITD in terms of reduced pseudo-ITD

I(ν, µ2) =M(ν, z2
3) +

αs

2π
CF

∫ 1

0
dwM(wν, z2

3)

×
{
B(w)

[
ln

(
z2
3µ

2 e
2γE

4

)
+ 1

]
+

[
4

ln(1− w)

1− w
− 2(1− w)

]
+

}

Altarelli-Parisi kernel B(w) =
[
(1 + w2)/(1− w)

]
+

Multiplicative scale difference between z2 and MS cut-offs µ2 = 4e−2γE/z2
3

Simple rescaling relation is modified when all terms are taken into account

tz3 tz3z3 z30 0 Term with [ln(1− w)]/(1− w) produces
large negative contribution

In Feynman gauge, it comes from vertex
diagrams

Gluon is attached to running tz3 position
on the link

z3-dependence is generated then by
effective scale smaller than z3
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Evolution in lattice data 23/28

Exploratory lattice study of reduced pseudo-ITD M(ν, z2
3) for the valence

uv − dv parton distribution in the nucleon [Orginos et al. 2017]
When plotted as function of ν, data both for real and imaginary parts lie
close to respective universal curves
Data show no polynomial z3-dependence for large z3
though z2

3/a
2 changes from 1 to ∼ 200

Apparently no higher-twist terms in the reduced pseudo-ITD
Real part corresponds to the cosine Fourier transform of
qv(x) = uv(x)− dv(x)

R(ν) ≡ ReM(ν) =

∫ 1

0
dx cos(νx) qv(x)

� � � � � �� �� ��
-���
���
���
���
���
���
���

Re M(⌫, z2
3)

⌫

Overall curve corresponds to the function

f(x) =
315

32

√
x(1− x)3

Obtained by forming cosine Fourier
transforms of xa(1− x)b-type functions
and fitting a, b

Shape is dominated by points with smaller
values of Re M(ν, z2

3)
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Evolution in lattice data, cont. 24/28

� � � � � �� �� ��-���

���

���

���

���

���

⌫

Re M(⌫, z2
3) Points corresponding to 7a ≤ z3 ≤ 13a

values

Some scatter for points with ν & 10

Otherwise, practically all the points lie on
the universal curve based on f(x).

No z3-evolution visible in large-z3 data

� � � � � � � �
�	�

�	�

�	�

�	�

�	


�	�

⌫

Re M(⌫, z2
3)

Points in a ≤ z3 ≤ 6a region

All points lie higher than universal curve

Perturbative evolution increases real part
of the pseudo-ITD when z3 decreases

Conjecture that the observed higher
values of R for smaller-z3 points may be a
consequence of evolution

� � � � � �� �� ������

����

����

����

����

����

z3/a

Re M(⌫, z2
3) z3-dependence of the lattice points for

“magic” Ioffe-time value ν = 3π/4

Shape of eye-ball fit line is Γ(0, z2
3/30a2)

“Perturbative” ln(1/z2
3) behavior for small

z3, rapidly vanishes for z3 > 6a

R(ν, z2
3) decreases when z3 increases
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Building MS ITD 25/28

Data show a logarithmic evolution behavior in small z3 region
Starts to visibly deviate from a pure logarithmic ln z2

3 pattern for z3 & 5a

This sets the boundary z3 ≤ 4a on the “logarithmic region”
“Evolution” part of 1-loop correction

Iev
R (ν, µ2) =R(ν, z2

3) +
αs

2π
CF

∫ 1

0
dwR(wν, z2

3)B(w) ln

(
z2
3µ

2 e
2γE

4

)
For z3 = 2e−γE/µ, the logarithm vanishes, and we have

Iev
R (ν, µ2) =R(ν, (2e−γE/µ)2) = R(ν, (1.12/µ)2)

This happens only if, for some αs, the ln z2
3 -dependence of the1-loop term

cancels actual z2
3 -dependence of the data, visible as scatter in the data

Fitted value: αs/π ≈ 0.1

Remaining part of I(ν, µ2) is due to corrections beyond the leading log
approximation

INL
R (ν) =

αs

2π
CF

∫ 1

0
dwRf (wν)

{
B(w) +

[
4

ln(1− w)

1− w
− 2(1− w)

]
+

}
≡
αs

2π
CF

[
B ⊗Rf + L⊗Rf

]
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Numerical results 26/28

L ⌦ Rf

B ⌦ Rf

⌫
� � � � � �� �� ��

-�
-�
-�
-�
�
�

L⊗Rf is negative and rather large

In ν < 5 region, L⊗Rf ≈ −3.5B ⊗Rv

Combined effect is close to LLA evolution
with modified rescaling factor

IR(ν, µ2) ≈ R(ν, (4/µ)2)

⌫

IR(⌫)

� � � � �
���

���

���

���

���

��� Actual calculations should be done using
“exact” formula

We choose µ = 1/a which, at lattice
spacing of 0.093 fm is ≈ 2.15 GeV

Using αs/π = 0.1 and z3 ≤ 4a data, we
generate the points for IR(ν, (1/a)2)

Upper curve corresponds to the ITD of the
CJ15 global fit PDF for µ =2.15 GeV

Evolved points are close to some universal curve with a rather small scatter

The curve itself corresponds to the cosine transform of a normalized
∼ xa(1− x)b distribution with a = 0.35 and b = 3



Pseudo-
&Quasi-PDFs

Parton
Densities
Transverse
Momentum Cut-off

Pseudo-PDF

Rate of approach

Target mass
corrections

Hard tail

P → ∞ limit

Gauge link

Renormalization

Reduced
pseudo-ITD

Evolution in
lattice data
Data

Building MS ITD

Results

Summary

� � � � � �� �� ������

����

����

����

����

����

z3/a

Re M(⌫, z2
3)

Numerical results, cont. 27/28

uv(x) � dv(x)

x

CJ15

MMHT

��� ��� ��� ��� ��� ���
�

�

�

�

�

	

∼ x0.35(1− x)3 PDF compared to CJ15 and MMHT global fits
for µ = 2.15 GeV

Unable to reproduce ∼ x−0.5 Regge behavior

Possible reasons: quenched approximation, large pion mass
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Summary 28/28

Analyzed nonperturbative structure of quasi-PDFs Q(y, P ) using their
relation to pseudo-ITDs and TMDs

Shown that (Λ2/P 2)n expansion for Q(y, P ) involves generalized functions

Using factorized models for TMDs, studied rate of approach of quasi-PDFs
Q(y, P ) to PDFs f(y) when P →∞
Demonstrated that target-mass corrections are a small part of k2

⊥
corrections artificially singled out from them

Analyzed perturbative structure of quasi-PDFs using their relation to
pseudo-ITDs and TMDs

Shown that evolution log ln z2
3 gives ∼ 1/y2 behavior of qPDFs for large y

∼ 1/y terms come from UV singular link-related terms

Argued that link-related terms should be “exterminated”

Proposed to use reduced pseudo-ITD

Studied evolution of exploratory lattice data for reduced pseudo-ITD
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