$\eta' \rightarrow \eta \pi \pi$ in unitarized Resonance Chiral Theory

Sergi Gonzàlez-Solís¹ Emilie Passemar²

¹Institute of Theoretical Physics (Beijing) Chinese Academy of Sciences

²Indiana University

JLab (USA), 7 may 2018

Outline

Introduction: framework and motivation

Structure of the decay amplitude

Fits to experimental data

- ChPT at one loop with resonances
- Unitarization of the ChPT amplitude

The Dawn of the Standard Model

 By early 30's, after the discovery of electron, proton, neutron and positron, we had a reasonable description of particle physics

- The discovery of the muon ^η_κ f α⁻
 was unexpected: this new particle, did not fit in!
- To make things worse, a plethora of new strongly interacting particles (pion, kaons, etc), was soon discovered
- How to make sense of this "chaos"?

The Standard Model: a history of success

- The Standard Model of particle physics explains a wide variety of phenomena in a unified framework: Quantum Field Theory
- Matter content composed by six quarks and six leptons organised in three families
- Interactions among matter particles are driven by gauge bosons: γ (electromagnetism), W and Z (weak force) and gluons (strong interactions)
- The last ingredient is the Higgs boson, provides a mechanism by which particles acquire mass

Quantum Electrodynamics

- Describes how charged particles and photons interact
- Based on simple rules (Feynman diagrams), compute terms at any order as a perturbative expansion in the small QED

 Some of the most precise calculations ever done have been obtained in QED

Quantum Chromodynamics

- Hadrons interact strongly: could perturbation theory be applied to describe strong interactions?
- Quantum Chromodynamics is a renormalizable QFT but
 - with asymptotic freedom: it looks like QED, but only at very high energies
 - with **confinement**: at low energies the gluons bind the guarks together

Chiral Perturbation Theory

- Low-energy EFT of QCD for light mesons i.e. $\pi^{\pm,0}$, K^{\pm} , K^{0} , \bar{K}^{0} , η_{8} associated to $SU(3)_L \otimes SU(3)_R \xrightarrow{\text{SCSB}} SU(3)_V$ exhibited by QCD
- Perturbative expansion in terms of p^2 and m_a : $\mathcal{L} = \mathcal{L}_2 + \mathcal{L}_4 + \dots$

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^{2}}{4} \langle \chi_{+} \rangle, \quad \phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi_{3} + \frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}} \pi_{3} + \frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8} \end{pmatrix},$$

$$u^2 = e^{i\frac{\sqrt{2}\phi}{F}}, \quad \chi = 2B\mathcal{M}, \quad \chi_{\pm} = u^{\dagger}\chi u^{\dagger} \pm u\chi^{\dagger}u, \quad u_{\mu} = iu^{\dagger}D_{\mu}Uu^{\dagger},$$

$$\mathcal{L}_4 = L_1 \langle u_\mu u^\mu \rangle^2 + L_2 \langle u_\mu u^\nu \rangle \langle u^\mu u_\nu \rangle + L_3 \langle u_\mu u^\mu u_\nu u^\nu \rangle + \dots$$

 n_1 not included due to the axial anomaly \bigwedge Valid $\frac{p^2}{M_p^2} < 1$: polynomial cannot reproduce resonance poles $\frac{\mathsf{G}_{\mathsf{V}}^2}{d_{\mathsf{V}}^2} \propto L_{1,2,3}$ Sergi Gonzàlez-Solís (ITP) JLab

Gasser and Leutwyler, Nucl. Phys. B 250, 465 (1985)

Large- $N_C U(3)$ ChPT

S=+1

- Axial Anomaly is absent; η_1 as the ninth Goldstone boson
- Degrees of freedom: $\pi^{\pm,0}$, K^{\pm} , K^{0} , \bar{K}^{0} and the η and η' •

• Simultaneous triple expansion in terms of $p^2 \sim m_a \sim 1/N_C$

$$\begin{aligned} \mathcal{L}_{\chi} &= \frac{F^2}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^2}{4} \langle \chi_+ \rangle + \frac{F^2}{3} m_1^2 \ln^2 \det u \,, \\ \Phi &= \begin{pmatrix} \frac{1}{\sqrt{2}} \pi_3 + \frac{1}{\sqrt{6}} \eta_8 + \frac{1}{\sqrt{3}} \eta_1 & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}} \pi_3 + \frac{1}{\sqrt{6}} \eta_8 + \frac{1}{\sqrt{3}} \eta_1 & K^0 \\ K^- & -\frac{1}{\sqrt{2}} \pi_3 + \frac{1}{\sqrt{6}} \eta_8 + \frac{1}{\sqrt{3}} \eta_1 & K^0 \\ \end{pmatrix}. \end{aligned}$$

 η' heavier than some resonances $\frac{M_{\eta'}^2}{M^2} > 1$

Resonance Chiral Theory

Ecker, Gasser, Pich and de Rafael, Nucl. Phys. B 321, 311 (1989)

Resonance as explicit degrees of freedom

$$\mathcal{L}_{\mathrm{R}\chi\mathrm{T}} = \mathcal{L}^{p^2} + \mathcal{L}_S + \mathcal{L}^S_{\mathrm{kin}}$$

 $\mathcal{L}_{S} = c_{d} \langle S_{8} u_{\mu} u^{\mu} \rangle + c_{m} \langle S_{8} \chi_{+} \rangle + \tilde{c_{d}} S_{1} \langle u_{\mu} u^{\mu} \rangle + \tilde{c_{m}} S_{1} \langle \chi_{+} \rangle,$

$$S_8 = \begin{pmatrix} \frac{1}{\sqrt{2}}a_0^0 + \frac{1}{\sqrt{6}}\sigma_8 & a_0^+ & \kappa^+ \\ a_0^- & -\frac{1}{\sqrt{2}}a_0^0 + \frac{1}{\sqrt{6}}\sigma_8 & \kappa^0 \\ \kappa^- & \bar{\kappa}^0 & -\frac{2}{\sqrt{6}}\sigma_8 \end{pmatrix}, \quad S_1 = \sigma_1$$

$$\mathcal{L}_{S} = \frac{2c_{d}}{f^{2}} \langle S_{8}(\partial_{\mu}\Phi)(\partial^{\mu}\Phi) \rangle + 4B_{0}c_{m}[\langle S_{8}\mathcal{M} \rangle - \frac{1}{4f^{2}} \langle S_{8}(\Phi^{2}\mathcal{M} + \mathcal{M}\Phi^{2} + 2\Phi\mathcal{M}\Phi) \rangle] \\ + \frac{2\tilde{c_{d}}}{f^{2}} S_{1} \langle (\partial_{\mu}\Phi)(\partial^{\mu}\Phi) \rangle + 4B_{0}\tilde{c_{m}}S_{1}[\langle \mathcal{M} \rangle - \frac{1}{4f^{2}} \langle (\phi^{2}\mathcal{M} + \mathcal{M}\Phi^{2} + 2\Phi\mathcal{M}\Phi) \rangle]$$

Resonances spoils power counting, no systematic EFT but a model based on the Large- N_C limit as a guideline

Recent experimental activity on η and η' physics

• Phenomenology of η and η' among their main objectives

- Experimental precision for η-η' observables is increasing
- Better theoretical predictions are demanded
- To have a better and more complete knowledge of QCD at low-energies

[1] Adlarson et.al. Phys.Rev. C 94 6 065206 (2016); [2] Nefknes et.al. Phys.Rev. C 90 2 025206 (2014)
[3] Adlarson et.al. ArXiv: 1709.04230
[4] Adlarson et.al. Phys.Rev. C 94 6 065206 (2016); [5] Ablikim et.al. Phys.Rev. D 92 1 012001 (2015)
[6] Ablikim et.al. Phys.Rev. D96 (2017); [7] Ablikim et.al. Phys.Rev. D 92 5 051101 (2015)
[8] Ablikim et.al. Phys.Rev.Lett. 112 251801 (2014); [9] Ablikim et.al. Phys.Rev.Lett. 118 1 012001 (2017)
[10] Ablikim et.al. Phys.Rev. D 87 9 092011 (2013); [11] Ablikim et.al. ArXiv: 1709.04627
[12] Aaji et.al. Phys.Lett. B 764 233 (2017)

Motivation for $\eta' \rightarrow \eta \pi \pi$

- Main decay channel of the η' : BR $(\eta' \to \eta \pi^0 \pi^0) = 22.3(8)\%$, BR $(\eta' \to \eta \pi^+ \pi^-) = 42.9(7)\%$ PDG [2017]
- Cannot be described within SU(3) ChPT
- Advantageous laboratory to test any of its extensions Large- N_C U(3) ChPT and Resonance Chiral Theory
- *G*-parity conservation prevents vectors to contribute: analysis of the properties of scalar resonances i.e. σ , $f_0(980)$, $a_0(980)$
- Study of the η - η' mixing
- Access $\pi\eta$ scattering and phase-shift
- New data very recently released the A2 and BESIII collaborations

Kinematics and Dalitz plot variables

• $s = (p_{\eta'} - p_{\eta})^2$ • $t = (p_{\eta'} - p_{\pi^+})^2$ • $u = (p_{\eta'} - p_{\pi^-})^2$ • $s + t + u = m_{\eta'}^2 + m_{\eta}^2 + 2m_{\pi}^2$ \Rightarrow only two independent variables, e.g. s and $t - u \propto \cos \theta_s$

•
$$X = \frac{\sqrt{3}}{Q} (T_{\pi_1} - T_{\pi_2}) = \frac{\sqrt{3}}{Q} (u - t)$$

• $Y = \frac{m_{\eta} + 2m_{\pi}}{m_{\pi}} \frac{T_{\eta}}{Q} - 1$
 $= \frac{m_{\eta} + 2m_{\pi}}{m_{\pi}} \frac{(m_{\eta'} - m_{\eta})^2 - s}{2m_{\eta'Q}} - 1$
• $Q = m_{\eta'} - m_{\eta} - 2m_{\pi}$

Sergi Gonzàlez-Solís (ITP)

JLab

Dalitz plot to compare experiment and theory

$$|M(X,Y)|^2 = |N|^2 (1 + aY + bY^2 + cX + dX^2 + ...)$$

• *a*, *b*, *c*, *d* are the Dalitz plot parameters

$\eta' \to \eta \pi^0 \pi^0$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
GAMS-4 (2009)	-0.067(16)(4)	-0.064(29)(5)	= 0	-0.067(20)(3)
GAMS-4 (2009)	-0.066(16)(4)	-0.063(28)(4)	-0.107(96)(3)	0.018(78)(6)
A2 (2017)	-0.074(8)(6)	-0.063(14)(5)	_	-0.050(9)(5)
BESIII (2017)	-0.087(9)(6)	-0.073(14)(5)	0	-0.074(9)(4)
Borasoy et.al.'05	-0.127(9)	-0.049(36)	0	0.011(21)
Fariborz et.al.'14	-0.024	0.0001	0	-0.029
$\eta' \to \eta \pi^+ \pi^-$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
VES (2007)	-0.127(16)(8)	-0.106(28)(14)	0.015(11)(14)	-0.082(17)(8)
BESIII (2011)	-0.047(11)(3)	-0.069(19)(9)	0.019(11)(3)	-0.073(12)(3)
BESIII (2017)	-0.056(4)(3)	-0.049(6)(6)	$2.7(2.4)(1.8) \cdot 10^{-3}$	-0.063(4)(4)
Borasoy et.al.'05	-0.116(11)	-0.042(34)	0	0.010(19)
Escribano et.al.'10	-0.098(48)	-0.050(1)	0	-0.092(8)
Escribano et.al.'10	-0.098(48)	-0.033(1)	0	-0.072(1)
Kubis et.al.'17	-0.148(18)	-0.082(7)	0	-0.068(11)
Kubis et.al.'17	-0.041(9)	-0.088(7)	0	-0.086(22)

Dalitz plot to compare experiment and theory

$$|M(X,Y)|^2 = |N|^2 (1 + aY + bY^2 + cX + dX^2 + ...)$$

• *a*, *b*, *c*, *d* are the Dalitz plot parameters

$\eta' \to \eta \pi^0 \pi^0$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
GAMS-4 (2009)	-0.067(16)(4)	-0.064(29)(5)	= 0	-0.067(20)(3)
GAMS-4 (2009)	-0.066(16)(4)	-0.063(28)(4)	-0.107(96)(3)	0.018(78)(6)
A2 (2017)	-0.074(8)(6)	-0.063(14)(5)	—	-0.050(9)(5)
BESIII (2017)	-0.087(9)(6)	-0.073(14)(5)	0	-0.074(9)(4)
Borasoy et.al.'05	-0.127(9)	-0.049(36)	0	0.011(21)
Fariborz et.al.'14	-0.024	0.0001	0	-0.029
$\eta' \to \eta \pi^+ \pi^-$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
VES (2007)	-0.127(16)(8)	-0.106(28)(14)	0.015(11)(14)	-0.082(17)(8)
BESIII (2011)	-0.047(11)(3)	-0.069(19)(9)	0.019(11)(3)	-0.073(12)(3)
BESIII (2017)	-0.056(4)(3)	-0.049(6)(6)	$2.7(2.4)(1.8) \cdot 10^{-3}$	-0.063(4)(4)
Borasoy et.al.'05	-0.116(11)	-0.042(34)	0	0.010(19)
Escribano et.al.'10	-0.098(48)	-0.050(1)	0	-0.092(8)
Escribano et.al.'10	-0.098(48)	-0.033(1)	0	-0.072(1)
Kubis et.al.'17	-0.148(18)	-0.082(7)	0	-0.068(11)
Kubis et.al.'17	-0.041(9)	-0.088(7)	0	-0.086(22)

Dalitz plot to compare experiment and theory

$$|M(X,Y)|^2 = |N|^2 (1 + aY + bY^2 + cX + dX^2 + ...)$$

• *a*, *b*, *c*, *d* are the Dalitz plot parameters

$\eta' \to \eta \pi^0 \pi^0$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
GAMS-4 (2009)	-0.067(16)(4)	-0.064(29)(5)	= 0	-0.067(20)(3)
GAMS-4 (2009)	-0.066(16)(4)	-0.063(28)(4)	-0.107(96)(3)	0.018(78)(6)
A2 (2017)	-0.074(8)(6)	-0.063(14)(5)	_	-0.050(9)(5)
BESIII (2017)	-0.087(9)(6)	-0.073(14)(5)	0	-0.074(9)(4)
Borasoy et.al.'05	0.127(9)	-0.049(36)	0	0.011(21)
Fariborz et.al.'14	0.024	0.0001	0	-0.029
$\eta' \to \eta \pi^+ \pi^-$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
VES (2007)	-0.127(16)(8)	-0.106(28)(14)	0.015(11)(14)	-0.082(17)(8)
BESIII (2011)	-0.047(11)(3)	-0.069(19)(9)	0.019(11)(3)	-0.073(12)(3)
BESIII (2017)	-0.056(4)(3)	-0.049(6)(6)	$2.7(2.4)(1.8) \cdot 10^{-3}$	-0.063(4)(4)
Borasoy et.al.'05	0.116(11)	-0.042(34)	0	0.010(19)
Escribano et.al.'10	-0.098(48)	-0.050(1)	0	-0.092(8)
Escribano et.al.'10	-0.098(48)	-0.033(1)	0	-0.072(1)
Kubis et.al.'17	-0.148(18)	-0.082(7)	0	-0.068(11)
Kubis et.al.'17	-0.041(9)	-0.088(7)	0	-0.086(22)

Dalitz plot to compare experiment and theory

$$|M(X,Y)|^2 = |N|^2 (1 + aY + bY^2 + cX + dX^2 + ...)$$

• *a*, *b*, *c*, *d* are the Dalitz plot parameters

$\eta' \to \eta \pi^0 \pi^0$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
GAMS-4 (2009)	-0.067(16)(4)	-0.064(29)(5)	= 0	-0.067(20)(3)
GAMS-4 (2009)	-0.066(16)(4)	-0.063(28)(4)	-0.107(96)(3)	0.018(78)(6)
A2 (2017)	-0.074(8)(6)	-0.063(14)(5)	_	-0.050(9)(5)
BESIII (2017)	-0.087(9)(6)	0.073(14)(5)	0	-0.074(9)(4)
Borasoy et.al.'05	0.127(9)	-0.049(36)	0	0.011(21)
Fariborz et.al.'14	0.024	0.0001	0	-0.029
$\eta' \to \eta \pi^+ \pi^-$	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$
VES (2007)	-0.127(16)(8)	-0.106(28)(14)	0.015(11)(14)	-0.082(17)(8)
BESIII (2011)	-0.047(11)(3)	-0.069(19)(9)	0.019(11)(3)	-0.073(12)(3)
BESIII (2017)	-0.056(4)(3)	-0.049(6)(6)	$2.7(2.4)(1.8) \cdot 10^{-3}$	-0.063(4)(4)
Borasoy et.al.'05	0.116(11)	-0.042(34)	0	0.010(19)
Escribano et.al.'10	-0.098(48)	-0.050(1)	0	-0.092(8)
Escribano et.al.'10	-0.098(48)	-0.033(1)	0	-0.072(1)
Kubis et.al.'17	-0.148(18)	-0.082(7)	0	-0.068(11)
Kubis et.al.'17	-0.041(9)	-0.088(7)	0	-0.086(22)

$\eta' \rightarrow \eta \pi \pi$: Leading order

• ChPT Lagrangian at $\mathcal{O}(p^2)$

$$\mathcal{L}^{p^2} = \frac{F_{\pi}^2}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F_{\pi}^2}{4} \langle \chi_+ \rangle + \frac{F_{\pi}^2}{3} m_1^2 \ln^2 \det u$$

• Expanding in powers of Φ

• Reason for this difference: amplitude is chirally suppressed (vanishes when $M_{\pi}^2 \rightarrow 0$)

• Higher order effects? • Resonances exchanges $(a_0, f_0, \sigma) \bullet \pi\pi, \pi\eta$ final state interactions

$\eta' \rightarrow \eta \pi \pi$: Scalar Resonance contributions

Structure of the decay amplitude

$\eta' \rightarrow \eta \pi \pi$: Scalar Resonance and loop contributions

7 may 2018 16/41

Fits to experimental data

A2 Coll. 1709.04230

 We relate the experimental Dalitz plot data with the differential decay distribution from theory through

$$\frac{\mathrm{d}^2 N_{\text{events}}}{\mathrm{d}X \mathrm{d}Y} = \frac{\mathrm{d}\Gamma(\eta' \to \eta \pi^0 \pi^0)}{\mathrm{d}X \mathrm{d}Y} \frac{N_{\text{events}}}{\Gamma_{\eta'} \bar{B}(\eta' \to \eta \pi^0 \pi^0)} \Delta X \Delta Y,$$

• $N_{\text{events}} = 463066$ (analysis I) and 473044 (analysis II)
• $\Delta X = \Delta Y = 0.10$

Fits to experimental data: ChPT at one loop with resonances

Fits to experimental data: ChPT at one loop with resonances

Dalitz plot slope parameters

A2 Coll. 1709.04230

Fits to experimental data: ChPT at one loop with resonances

• Fit 2: $M_S = M_{S_8} = M_{S_1} = M_{a_0}$ and $\tilde{c}_{d,m} = c_{d,m}/\sqrt{3}$ with $c_d \neq c_m$

Fit parameters : $M_S = 954(47) \text{ MeV}$, $c_d = 28.0(4.6) \text{ MeV}$, $c_m = 53.4(52.0) \text{ MeV}$, $\chi^2_{dof} = 1.23$

Dalitz parameters: a = -0.093(45), b = 0.004(3), d = -0.039(18)

• Fit 3: $M_S = M_{S_8} = M_{S_1} = M_{a_0}$ and $c_m = 41.1(1) \tilde{c}_m = 18.9(9)$ (Pich'14)

 $\label{eq:Fitparameters:} \text{Fit parameters:} \quad M_S = 968(11)\,\text{MeV}\,, \quad c_d = 29.8(9)\,\text{MeV}\,, \quad \tilde{c}_d = 21.2(1.2)\,\text{MeV}\,, \\ \chi^2_{\rm dof} = 1.24$

Dalitz parameters: a = -0.092(5), b = 0.004(2), d = -0.041(11)

• Fit 4: $M_S = M_{S_8} = M_{S_1} = M_{a_0}$ with $c_m = 80(20)$ and $\tilde{c}_{d,m} = c_{d,m}/\sqrt{3}$ (Guo'09)

Fit parameters : $M_S = 926(5)(25) \text{ MeV}$, $c_d = 25.7(4)(1.9) \text{ MeV}$, $\chi^2_{dof} = 1.22$

Dalitz parameters: a = -0.090(7)(3), b = 0.004(1)(0), d = -0.041(7)(1)

- The Dalitz plot parameters remain stable independently of the allowed parameters to fit
- We also have tried a fit letting all couplings to float i.e. cm, cm, cd, and cd, but in this case the fit becomes unstable since there are too many parameters to fit

Unitarity

Unitarity relation

Restrict to 2-particle rescattering

$$\mathrm{Im}\mathcal{M}^{I}_{\eta'\to\eta\pi\pi}(s,t,u) = \frac{1}{2!2(2\pi)^2} \int \frac{dq_{\pi}^3}{2q_{\pi}^0} \frac{dq_{\pi}^3}{2q_{\pi}^0} \delta^4(q_{\pi}+q_{\pi}-p_1-p_2)\mathcal{T}^{I}_{\pi\pi\to\pi\pi}(s,\theta'_s)^* \mathcal{M}^{I}_{\eta'\to\eta\pi\pi}(s,\theta''_s,\phi''_s) + \frac{1}{2!2(2\pi)^2} \int \frac{dq_{\pi}^3}{2q_{\pi}^0} \frac{dq_{\pi}^3}{2q_{\pi}^0} \delta^4(q_{\pi}+q_{\pi}-p_1-p_2)\mathcal{T}^{I}_{\pi\pi\to\pi\pi}(s,\theta'_s)^* \mathcal{M}^{I}_{\eta'\to\eta\pi\pi}(s,\theta''_s,\phi''_s)$$

$$+\frac{1}{2(2\pi)^2} \int \frac{dq_{\pi}^3}{2q_{\eta}^0} \frac{dq_{\eta}^3}{2q_{\eta}^0} \delta^4(q_{\pi}+q_{\eta}-p_1-p_{\eta}) \mathcal{T}^{I}_{\pi\eta\to\pi\eta}(t,\theta_t')^* \mathcal{M}^{I}_{\eta'\to\eta\pi\pi}(s,\theta_t'',\phi_t'')$$

$$+\frac{1}{2(2\pi)^2} \int \frac{dq_{\eta}^3}{2q_{\eta}^0} \frac{dq_{\pi}^3}{2q_{\eta}^0} \delta^4(q_{\eta}+q_{\pi}-p_2-p_{\eta}) \mathcal{T}^{I}_{\eta\pi\to\eta\pi}(u,\theta'_{u})^* \mathcal{M}^{I}_{\eta'\to\eta\pi\pi}(u,\theta''_{u},\phi''_{u})$$

Unitarity

• Partial waves decompostion $(\mathcal{A} = \mathcal{T}, \mathcal{M})$

$$\mathcal{A}^{I}(s,\cos\theta) = \sum_{J} 32\pi (2J+1) P_{J}(\cos\theta) a^{IJ}(s) ,$$

Integrating over the momentum and then using the relation

$$\int d\Omega' P_J(\cos\theta') P_{J'}(\cos\theta'') = \frac{4\pi}{2J+1} \delta_{JJ'} P_J(\cos\theta)$$

• Two-particle unitarity relation for the partial-wave decay amplitude

$$\begin{aligned} \operatorname{Im}\left(m_{\eta' \to \eta \pi \pi}^{IJ}(s,t,u)\right) &= \sigma_{\pi}(s)t_{\pi\pi \to \pi\pi}^{IJ}(s)^{*}m_{\eta' \to \eta\pi\pi}^{IJ}(s)\theta(s-4m_{\pi}^{2}) \\ &+ \frac{\lambda^{1/2}(t,m_{\pi}^{2},m_{\eta}^{2})}{t}t_{\pi\eta \to \pi\eta}^{IJ}(t)^{*}m_{\eta' \to \eta\pi\pi}^{IJ}(t)\theta(t-(m_{\pi}+m_{\eta})^{2}) \\ &+ \frac{\lambda^{1/2}(u,m_{\pi}^{2},m_{\eta}^{2})}{u}t_{\pi\eta \to \pi\eta}^{IJ}(u)^{*}m_{\eta' \to \eta\pi\pi}^{IJ}(u)\theta(u-(m_{\pi}+m_{\eta})^{2}) \end{aligned}$$

N/D unitarisation method applied to $\eta' \rightarrow \eta \pi \pi$

• Amplitude at one-loop in Large- $N_C U(3)$ ChPT with resonances

N/D applied to $\eta' \rightarrow \eta \pi \pi$

• Amplitude at one-loop in Large- $N_C U(3)$ ChPT with resonances

$$\mathcal{M}^{\eta' \to \eta \pi \pi}(s) = \mathcal{M}(s)^{(2)} + \mathcal{M}(s)^{\operatorname{Res}(s,t,u)} + \mathcal{M}(s)^{\operatorname{Loop}(s,t,u)}$$
(2)

• N/D representation of Eq. (2)

$$m_{\eta' \to \eta\pi\pi}^{IJ}(s) = \left[1 + N_{\pi\pi}^{IJ}(s)g_{\pi\pi}(s)\right]^{-1}R_{\eta' \to \eta\pi\pi}^{IJ}(s)$$
(3)

where

$$N_{\pi\pi}^{IJ}(s) = t_{\pi\pi}^{IJ}(s)^{(2)+\text{Res+Loop}},$$

$$R_{\eta'\to\eta\pi\pi}^{IJ}(s) = m_{\eta'\to\eta\pi\pi}^{IJ}(s)^{(2)+\text{Res+Loop}},$$

• Chiral expansion of Eq. (3) leads

N/D applied to $\eta' \rightarrow \eta \pi \pi$

• Amplitude at one-loop in Large- $N_C U(3)$ ChPT with resonances

$$\mathcal{M}^{\eta' \to \eta \pi \pi}(s) = \mathcal{M}(s)^{(2)} + \mathcal{M}(s)^{\operatorname{Res}(s,t,u)} + \mathcal{M}(s)^{\operatorname{Loop}(s,t,u)}$$
(4)

• N/D representation of Eq. (2)

$$m_{\eta' \to \eta\pi\pi}^{IJ}(s) = \left[1 + N_{\pi\pi}^{IJ}(s)g_{\pi\pi}(s)\right]^{-1}R_{\eta' \to \eta\pi\pi}^{IJ}(s)$$
(5)

where

$$N_{\pi\pi}^{IJ}(s) = t_{\pi\pi}^{IJ}(s)^{(2)+\text{Res+Loop}},$$

$$R_{\eta'\to\eta\pi\pi}^{IJ}(s) = m_{\eta'\to\eta\pi\pi}^{IJ}(s)^{(2)+\text{Res+Loop}},$$

• Chiral expansion of Eq. (3) leads

Partial waves

• Unitarized amplitude in terms of the S-and-D-waves

$$\mathcal{M}_{\eta' \to \eta \pi \pi}^{I=0}(s, \cos \theta_s) = \sum_J 32\pi (2J+1) P_J(\cos \theta_s) m^{IJ}(s)$$
$$= 32\pi P_0(\cos \theta_s) \frac{m^{00}(s)}{1 + g_{\pi\pi}(s) t_{\pi\pi}^{00}(s)} + 160\pi P_2(\cos \theta_s) \frac{m^{02}(s)}{1 + g_{\pi\pi}(s) t_{\pi\pi}^{02}(s)}$$

$$m^{IJ}(s) = \frac{1}{32\pi} \frac{s}{\lambda(s, m_{\eta'}^2, m_{\eta}^2)^{1/2} \lambda(s, m_{\pi}^2, m_{\pi}^2)^{1/2}} \int_{t_{\min}}^{t_{\max}} dt P_J(\cos\theta_s) \mathcal{M}^I(s, t, u)$$

$$\cos \theta_s = -\frac{s \left(m_{\eta'}^2 + m_{\eta}^2 + 2m_{\pi}^2 - s - 2t\right)}{\lambda (s, m_{\eta'}^2, m_{\eta}^2)^{1/2} \lambda (s, m_{\pi}^2, m_{\pi}^2)^{1/2}},$$

$$P_0(\cos\theta_s) = 1, \quad P_2(\cos\theta_s) = \frac{1}{2} \Big[-1 + 3(\cos\theta_s)^2 \Big] \propto X^2$$

Fits to experimental data: $\pi\pi$ final-state interactions effects

Parameter	Fit A	Fit B	Fit C	A2 Collaboration
M_S	1001(24)	988(10)	930(7)(39)	
c_d	29.5(1.8)	28.6(7)	23.5(6)(2.4)	
c_m	$= c_d$	= 41.1(1)	= 80(20)	
\tilde{c}_d	17.0(1.0)	16.5(4)	13.6(4)(1.4)	
\tilde{c}_m	$= \tilde{c}_d$	= 18.9(9)	46.2(11.5)	
$a_{\pi\pi}(\mu)$	0.73(25)	0.24(12)	0.41(11)(19)	
$\chi^2_{ m dof}$	$220.4/197 \sim 1.12$	$220.1/197 \sim 1.12$	$220.1/197 \sim 1.12$	
a[Y]	-0.075(9)	-0.075(7)	-0.074(7)(1)	-0.074(8)(6)
$b[Y^2]$	-0.051(1)	-0.056(1)	-0.053(1)(1)	-0.063(14)(5)
c[X]	0	0	0	0
$d[X^2]$	-0.049(14)	-0.050(4)	-0.049(4)(1)	-0.050(9)(5)
Parameter	Fit A (ChPT)	Fit B (ChPT)	Fit C (ChPT)	A2 Collaboration
M_S	973(5)	992(7)	926(5)(25)	
c_d	30.1(4)	32.9(5)	25.7(4)(1.9)	
c_m	$= c_d$	= 41.1(1)	= 80(20)	
\tilde{c}_d	17.4(2)	18.4(3)	14.8(2)(1.1)	
\tilde{c}_m	$= \tilde{c}_d$	= 18.9(9)	46.2(11.5)	
$\chi^2_{ m dof}$	$242.2/198 \sim 1.22$	$246.4/198 \sim 1.24$	$242.3/198 \sim 1.22$	
a[Y]	-0.095(6)	-0.083(6)	-0.090(7)(2)	-0.074(8)(6)
$b[Y^2]$	0.005(1)	-0.001(1)	0.004(1)(0)	-0.063(14)(5)
c[X]	0	0	0	0
-	-			
$d[X^2]$	-0.037(5)	-0.057(5)	-0.041(7)(1)	-0.050(9)(5)

Fits to experimental data: $\pi\pi$ final-state interactions effects

$\pi\eta$ final state interactions effects

• N/D representation accounting for $\pi\eta$ FSI

$$\begin{split} m_{\eta' \to \eta \pi \pi}^{IJ}(t,u) &= \left[1 + N_{\pi\eta}^{IJ}(t)g_{\pi\eta}(t)\right]^{-1} R_{\eta' \to \eta \pi \pi}^{IJ}(t) + \left[1 + N_{\pi\eta}^{IJ}(u)g_{\pi\eta}(u)\right]^{-1} R_{\eta' \to \eta \pi \pi}^{IJ}(u) \,, \\ N_{\pi\eta}^{IJ}(t) &= t_{\pi\eta}^{IJ}(t)^{(2)+\text{Res+Loop}} \,, \\ R_{\eta' \to \eta \pi \pi}^{IJ}(t) &= m_{\eta' \to \eta \pi \pi}^{IJ}(t)^{(2)+\text{Res+Loop}} \,, \end{split}$$

• Perturbative expansion supplemented by S-wave $\pi\eta$ FSI

$$\mathcal{M}_{\eta' \to \eta \pi \pi}^{I=1}(s, t, u, \cos \theta_{t}, \cos \theta_{u}) = \mathcal{M}(s, t, u)^{(2)+\text{Res+Loop}} + 32\pi P_{0}(\cos \theta_{t}) \frac{m_{\eta' \to \eta \pi \pi}^{10}(t)^{(2)+\text{Res+Loop}}}{1 + g_{\pi \eta}(t) t_{\pi \eta}^{10}(t)^{(2)+\text{Res+Loop}}} + 32\pi P_{0}(\cos \theta_{u}) \frac{m_{\eta' \to \eta \pi \pi}^{10}(u)^{(2)+\text{Res+Loop}}}{1 + g_{\pi \eta}(u) t_{\pi \eta}^{10}(u)^{(2)+\text{Res+Loop}}} - 32\pi P_{0}(\cos \theta_{t}) m_{\eta' \to \eta \pi \pi}^{10}(t)^{(2)+\text{Res+Loop}} - 32\pi P_{0}(\cos \theta_{u}) m_{\eta' \to \eta \pi \pi}^{10}(t)^{(2)+\text{Res+Loop}} - 32\pi P_{0}(\cos \theta_{u}) m_{\eta' \to \eta \pi \pi}^{10}(u)^{(2)+\text{Res+Loop}}$$

Fits to experimental data: $\pi\eta$ final-state interactions effects

• Fit restrictions: $M_S = M_{S_8} = M_{S_1} = M_{a_0}$ and $a_{\pi\eta} = 2.0^{+3.1}_{-3.4}$ (Guo'11)

Parameter	Fit A	Fit B	Fit C	Fit D
M_S	979(7)(11)	950(18)(22)	996(8)(8)	933(7)(39)
c_d	30.3(3)(3)	27.3(1.5)(4.1)	32.1(6)(4)	25.9(5)(2.3)
c_m	$= c_d$	65.3(11.4)(28.5)	= 41.1(1)	= 80(20)
\tilde{c}_d	17.5(2)(2)	15.8(9)(2.4)	18.5(4)(2)	15.0(3)(1.3)
\tilde{c}_m	$= \tilde{c}_d$	37.7(6.6)(16.5)	= 18.9(9)	46.2(11.5)
$\chi^2_{ m dof}$	$242.9/198 \sim 1.23$	$242.6/197 \sim 1.23$	$245.9/198 \sim 1.24$	$242.7/197 \sim 1.23$
a[Y]	-0.095(6)(5)	-0.091(8)(6)	-0.083(7)(3)	-0.089(7)(8)
$b[Y^2]$	0.005(1)(1)	0.004(1)(0)	-0.001(1)(1)	0.004(1)(0)
c[X]	0	0	0	0
$d[X^2]$	-0.034(5)(3)	-0.037(6)(5)	-0.053(5)(7)	-0.038(6)(6)
Parameter	Fit A (ChPT)	Fit B (ChPT)	Fit C (ChPT)	Fit D (ChPT)
M_S	973(5)	954(47)	992(7)	926(5)(25)
c_d	30.1(4)	28.0(4.6)	32.9(5)	25.7(4)(1.9)
c_m	$= c_d$	53.4(52.0)	= 41.1(1)	= 80(20)
\tilde{c}_d	17.4(2)	16.1	18.4(3)	14.8(2)(1.1)
\tilde{c}_m	$= \tilde{c}_d$	30.8	= 18.9(9)	46.2(11.5)
$\chi^2_{ m dof}$	$242.2/198 \sim 1.22$	$242.0/197 \sim 1.23$	$246.4/198 \sim 1.24$	$242.3/198 \sim 1.22$
a[Y]	-0.095(6)	-0.093(45)	-0.083(6)	-0.090(7)(2)
$b[Y^2]$	0.005(1)	0.004(3)	-0.001(1)	0.004(1)(0)
c[X]	0	0	0	0
$d[X^2]$	-0.037(5)	-0.039(18)	-0.057(5)	-0.041(7)(1)
Sergi Gonzàle	z-Solís (ITP)	JLab		7 may 2018 28 / 41

Fits to experimental data: $\pi\eta$ final-state interactions

Inclusion of $\pi\pi$ and $\pi\eta$ final-state interactions

• Perturbative expansion + S-and D-wave $\pi\pi$ and S-wave $\pi\eta$ FSI

 $\mathcal{M}(s,t,u,\cos\theta_{s,t,u}) = \mathcal{M}(s,t,u)^{(2)+\mathrm{Res+Loop}}$

$$+32\pi P_{0}(\cos\theta_{s})\frac{m_{\eta'\to\eta\pi\pi}^{00}(s)^{(2)+\text{Res+Loop}}}{1+g_{\pi\pi}(s)t_{\pi\pi}^{00}(s)^{(2)+\text{Res+Loop}}}$$
$$+160\pi P_{2}(\cos\theta_{s})\frac{m_{\eta'\to\eta\pi\pi}^{02}(s)^{(2)+\text{Res+Loop}}}{1+g_{\pi\pi}(s)t_{\pi\pi}^{02}(s)^{(2)+\text{Res+Loop}}}$$

$$-32\pi P_0(\cos\theta_s)m_{\eta'\to\eta\pi\pi}^{00}(t)^{(2)+\operatorname{Res+Loop}} - 160\pi P_2(\cos\theta_s)m_{\eta'\to\eta\pi\pi}^{02}(u)^{(2)+\operatorname{Res+Loop}}$$

$$+32\pi P_{0}(\cos\theta_{t})\frac{m_{\eta'\to\eta\pi\pi}^{10}(t)^{(2)+\text{Res+Loop}}}{1+g_{\pi\eta}(t)t_{\pi\eta}^{10}(t)^{(2)+\text{Res+Loop}}}$$
$$+32\pi P_{0}(\cos\theta_{u})\frac{m_{\eta'\to\eta\pi\pi}^{10}(u)^{(2)+\text{Res+Loop}}}{1+g_{\pi\eta}(u)t_{\pi\eta}^{10}(u)^{(2)+\text{Res+Loop}}}$$

 $-32\pi P_0(\cos\theta_t)m_{\eta'\to\eta\pi\pi}^{10}(t)^{(2)+\text{Res+Loop}} - 32\pi P_0(\cos\theta_u)m_{\eta'\to\eta\pi\pi}^{10}(u)^{(2)+\text{Res+Loop}}.$

Fits to experimental data: $\pi\pi$ and $\pi\eta$ final-state interactions

• Fit restrictions: $M_S = M_{S_8} = M_{S_1} = M_{a_0}$ and $a_{\pi\eta} = 2.0^{+3.1}_{-3.4}$ (Guo'11)

Parameter	Analysis I	Analysis II		
rarameter	Fit 1	Fit 2	Fit 1	Fit 2
M_S	1009(54)(14)	996(6)(12)	1030(71)(17)	1014(15)(16)
c_d	29.9(3.8)(6)	29.1(4)(9)	31.5(4.8)(7)	30.5(1.0)(1.0)
c_m	$= c_d$	=41.1(1)	$= c_d$	= 41.1(1)
$ ilde{c}_d$	17.3(2.2)(4)	16.8(2)(2)	18.2(2.8)(4)	17.6(6)(6)
\tilde{c}_m	$= \tilde{c}_d$	= 18.9(9)	$= \tilde{c}_d$	= 18.9(9)
$a_{\pi\pi}$	0.73(49)(4)	0.32(8)(9)	0.97(56)(5)	0.52(14)(12)
$\chi^2_{ m dof}$	1.12	1.12	1.23	1.23
a[Y]	-0.075(7)(4)	-0.074(6)(4)	-0.071(6)(5)	-0.071(6)(5)
$b[Y^2]$	-0.050(1)(1)	-0.055(1)(1)	-0.050(2)(1)	-0.054(1)(1)
c[X]	0	0	0	0
$d[X^2]$	-0.047(8)(2)	-0.049(2)(2)	-0.056(6)(1)	-0.056(6)(2)
$\kappa_{03}[Y^3]$	0.001	0.003	0.001	0.002
$\kappa_{21}[YX^2]$	-0.004	-0.005	-0.005	-0.005
$\kappa_{22}[Y^2X^2]$	0.001	0.002	0.002	0.002

Sergi Gonzàlez-Solís (ITP)

7 may 2018 31 / 41

Fits to experimental data: $\pi\pi$ and $\pi\eta$ final-state interactions

Fits to experimental data

A2 Coll. 1709.04230

Dalitz Parameters (A2) a[Y] = -0.074(8)(6) $b[Y^2] = -0.063(14)(5)$ $d[X^2] = -0.050(9)(5)$

Dalitz Parameters a[Y] = -0.095(6) $b[Y^2] = 0.005(1)$ $d[X^2] = -0.037(5)$ \downarrow a[Y] = -0.073(7)(5) $b[Y^2] = -0.052(1)(2)$ $d[X^2] = -0.052(8)(5)$

Sergi Gonzàlez-Solís (ITP)

JLab

7 may 2018 33 / 41

Comparison with BESIII 2017 experimental data

- Data is not publicly available
- Less events than A2 $(351016 \text{ vs } 1.2 \cdot 10^5)$
- No cusp structure seen
- Contrarty to A2 both $\eta' \rightarrow \eta \pi^0 \pi^0$ and $\eta' \rightarrow \eta \pi^+ \pi^-$ are measured

Summary

- $\eta' \rightarrow \eta \pi \pi$ analyzed within U(3) ChPT at one-loop with resonances
- We have illustrated a method (N/D) to resumme two-particle FSI
- Dalitz plot parameters:
 - Y-variable is linear in s: Importance of $\pi\pi$ FSI
 - X-variable appear in the form $\cos \theta_s = X f(Y)$: Importance of the D-wave

/					
Experiment	a[Y]	$b[Y^2]$	c[X]	$d[X^2]$	_
GAMS4 <i>π</i> (c=0) '09	-0.067(16)(4)	-0.064(29)(5)	0	-0.067(20)(3)	_
VES '07	-0.127(16)(8)	-0.106(28)(14)	0.015(11)(14)	-0.082(17)(8)	
BESIII '11	-0.047(11)(3)	-0.069(19)(9)	0.019(11)(3)	-0.073(12)(3)	
A2'17	-0.074(8)(6)	-0.063(14)(5)	_	-0.050(9)(5)	
BESIII'17	-0.087(9)(6)	-0.073(14)(5)	0	-0.074(9)(4)	
BESIII'17	-0.056(4)(3)	-0.049(6)(6)	$2.7(2.4)(1.8) \cdot 10^{-3}$	-0.063(4)(4)	
Previous Estimates					_
Borasoy et.al.'05	-0.127(9)	-0.049(36)	0	0.011(21)	-
Borasoy et.al.'05	-0.116(11)	-0.042(34)	0	0.010(19)	
Escribano et.al.'10	-0.098(48)	-0.050(1)	0	-0.092(8)	
Escribano et.al.'10	-0.098(48)	-0.033(1)	0	-0.072(1)	
Fariborz et.al.'14	-0.024	0.0001	0	-0.029	
Kubis et.al.'17	-0.148(18)	-0.082(7)	0	-0.068(11)	
Kubis et.al.'17	-0.041(9)	-0.088(7)	0	-0.086(22)	
This talk					-
Resonances	-0.096(9)	0.002(1)	0	-0.036(6)	-
Resonances+loops	-0.095(6)	0.005(1)	0	-0.037(5)	
$\pi\pi$ FSI	-0.075(9)	-0.051(1)	0	-0.049(14)	
$\pi\eta$ FSI	-0.095(6)(5)	0.005(1)(1)	0	-0.034(5)(3)	
$\pi\pi + \pi\eta$	-0.073(7)(5)	-0.052(1)(2)	0	-0.052(8)(5)	
Sergi Gonzàlez-Solís (IT	P)	JLab		7 may 2018	35/41

• $\pi\eta$ FSI effects are small

Summary

Summary

Summary

Summary

- $\eta' \rightarrow \eta \pi \pi$ analyzed within U(3) ChPT at one-loop with resonances
- We have illustrated a method (N/D) to resumme two-particle FSI
- Dalitz plot parameters:
 - Y-variable is linear in s: Importance of $\pi\pi$ FSI
 - X-variable appear in the form $\cos \theta_s = Xf(Y)$: Importance of the D-wave
 - $\pi\eta$ FSI effects are small
- We are in position to provide our parameterization to experimental groups
- Same method can be applied for $\eta^{(\prime)} \rightarrow 3\pi$ decays

Hierarchy of the contributions

Unitarity Violations

Tensor Resonance contributions

Ecker and Zauner, EPJC 52, 315 (2007)

$$\mathcal{L}_T = -\frac{1}{2} \langle T_{\mu\nu} D_T^{\mu\nu,\rho\sigma} T_{\rho\sigma} \rangle + g_T \langle T_{\mu\nu} \{ u^{\mu}, u^{\nu} \} \rangle + \beta \langle T_{\mu}^{\mu} u_{\nu} u^{\nu} \rangle$$

 $g_T = 28 \,\mathrm{MeV}\,, \quad \beta = -g_T\,, \quad M_T = 1300 \,\mathrm{MeV}$

Masses and couplings

Source	M_{S_8}	Ms.	M	<i>a</i> .	
		111.51	a0	c_d	c_m
$a_0 ightarrow \eta \pi$ (Guo et.al. '09)	980	$= M_{S_8}$	$= M_{S_8}$	26	80
res. saturation (Ecker et.al. '88)	983	$= M_{S_8}$	$= M_{S_8}$	32	42
$K\pi$ scattering (Jamin et.al. '00)					
	1400	$= M_{S_8}$	$= M_{S_8}$	30	43
	1190	$= M_{S_8}$	$= M_{S_8}$	45.4	$= c_d$
	1260	$= M_{S_8}$	$= M_{S_8}$	24.8	76.7
	1360	$= M_{S_8}$	$= M_{S_8}$	13	85
$PP \rightarrow PP \ (P = \pi, K, \eta)$					
Guo et.al '11	1370_{-57}^{+132}	1063^{+53}_{-31}	$= M_{S_8}$	$15.6^{+4.2}_{-3.4}$	$31.5^{+19.5}_{-22.5}$
Guo et.al '12	1397^{+73}_{-61}	1100_{-63}^{+30}	$= M_{S_8}$	$19.8^{+2.0}_{-5.2}$	$41.9^{+3.9}_{-9.2}$
Ledwig et.al. '14	1279(9)	808.9(4)	$= M_{S_8}$	39.8(1)	41.1(1)
This work					
Resonances+loops	972(6)	$= M_{S_8}$	$= M_{S_8}$	29.9(4)	$= c_d$
Resonances+loops	953	$= M_{S_8}$	$= M_{S_8}$	27.8	53.2
$\pi\pi$ final state interactions	998(19)	$= M_{S_8}$	$= M_{S_8}$	29.3(1.2)	$= c_d$
	1021	$= M_{S_8}$	$= M_{S_8}$	32.5	$4c_mc_d = f$
$\pi\eta$ final state interactions	978(7)	$= M_{S_8}$	$= M_{S_8}$	29.8(7)	$= c_d$
$\pi\pi + \pi\eta$ final state interactions	990(95)	$= M_{S_8}$	$= M_{S_8}$	32.0(6.8)	$= c_d$