

Heavy and heavy-light mesons with the Covariant Spectator Theory

Alfred Stadler
University of Évora and CFTP-IST Lisbon
Collaborators:
Sofia Leitão
Teresa Peña
Elmar Biernat
Franz Gross
CFTP-IST Lisbon

Jefferson Lab

Motivation

- Intense experimental activity to explore meson structure at LHC, BABAR, Belle, CLEO, and soon at GlueX (JLab) and PANDA (GSI)
- Search for exotic mesons (hybrids, glueballs, ... maybe $q \bar{q}$?)
- Need to understand also "conventional" $q \bar{q}$-mesons in more detail
- Study production mechanisms, transition form factors (also important for hadronic contributions to light-by-light scattering)

Theory: a huge amount of work has already been done on meson structure (LQCD, BS/DSE, constrained dynamics two-body Dirac equation, BLFQ, relativized Schrödinger equation, ...)

Motivation

- Intense experimental activity to explore meson structure at LHC, BABAR, Belle, CLEO, and soon at GlueX (JLab) and PANDA (GSI)
- Search for exotic mesons (hybrids, glueballs, ... maybe $q \bar{q}$?)
- Need to understand also "conventional" $q \bar{q}$-mesons in more detail
- Study production mechanisms, transition form factors (also important for hadronic contributions to light-by-light scattering)

Theory: a huge amount of work has already been done on meson structure (LQCD, BS/DSE, constrained dynamics two-body Dirac equation, BLFQ, relativized Schrödinger equation, ...)

Guiding principles of our approach (CST - Covariant Spectator Theory):

- Find $q \bar{q}$ interaction that can be used in all mesons

Huge mass variation: (unified model)

- Relativistic covariance (work in Minkowski space)
from pions ($\sim 0.14 \mathrm{GeV}$) to bottomonium (> 10 GeV)
- Confinement through a confining interaction kernel, which should reduce to linear+Coulomb in the nonrelativistic limit
- Learn about the Lorentz structure of the confining interaction
- Quark masses are dynamic: self-interaction should be consistent with $q \bar{q}$ interaction
- Chiral symmetry: massless pion in chiral limit, satisfy the axialvector Ward-Takahashi identity

CST equation for two-body bound states

Bethe-Salpeter equation for $q \bar{q}$ bound-state with mass μ

Integration over relative energy k_{0} :

- Keep only pole contributions from constituent particle propagators
- Poles from particle exchanges appear in higher-order kernels (usually neglected - tend to cancel)
- Reduction to 3D loop integrations, but covariant
- Correct one-body limit

If bound-state mass μ is small:
both poles are close together (both important)
Symmetrize pole contributions from both half planes: charge conjugation symmetry BS vertex (approx.)

CST vertices

Once the four CST vertices (with one quark on-shell) are all known, one can use this equation to get the vertex function for other momenta (also Euclidean).

CST equations

Closed set of equations when external legs are systematically placed on-shell

4CSE

Solutions: bound state masses μ and corresponding vertex functions Γ

One-channel spectator equation (1CSE):

Two-channel spectator equation (2CSE):

Four-channel spectator equation (4CSE):

- Particularly appropriate for unequal masses
- Numerical solutions easier (fewer singularities)
- But not charge-conjugation symmetric
- Restores charge-conjugation symmetry
- Additional singularities in the kernel
- Necessary for light bound states (pion!)

All have smooth one-body limit (Dirac equation) and nonrelativistic limit (Schrödinger equation).

The covariant kernel

Our kernel $F_{a}=\frac{1}{2} \lambda_{a}$ color SU(3) generators

$$
\begin{array}{ll}
\mathcal{V}(p, k ; P)=\underbrace{\frac{3}{4} \mathbf{F}_{1} \cdot \mathbf{F}_{2}}_{\text {or } q \bar{q} \text { color singlets }} \sum_{K} \underbrace{\Theta_{1}^{K(\mu)} \otimes \Theta_{2(\mu)}^{K}}_{\begin{array}{c}
V_{K}(p, k ; P) \\
\text { momentum } \\
\text { dependence }
\end{array}} \\
& \Theta_{i}^{K(\mu)}=\mathbf{1}_{i}, \gamma_{i}^{5}, \gamma_{i}^{\mu}
\end{array}
$$

- Confining interaction: Lorentz (scalar + pseudoscalar) mixed with vector Coupling strength σ, mixing parameter $y \quad y=0$ pure S+PS $y=1$ pure V for correct nonrelativistic limit

$$
\mathcal{V}_{\mathrm{L}}(p, k ; P)=\left[(1-y)\left(\mathbf{1}_{1} \otimes \mathbf{1}_{2}+\gamma_{1}^{5} \otimes \gamma_{2}^{5}\right)-y \gamma_{1}^{\mu} \otimes \gamma_{\mu 2}\right] V_{\mathrm{L}}(p, k ; P)
$$

equal weight (constraint from chiral symmetry)
\rightarrow E.P. Biernat et al., PRD 90, 096008 (2014)

- One-gluon exchange with constant coupling strength α_{s} + Constant interaction (in r -space) with strength C

Lorentz vector

$$
\mathcal{V}_{\mathrm{OGE}}(p, k ; P)+\mathcal{V}_{\mathrm{C}}(p, k ; P)=-\gamma_{1}^{\mu} \otimes \gamma_{2 \mu}\left[V_{\mathrm{OGE}}(p, k ; P)+V_{\mathrm{C}}(p, k ; P)\right]
$$

Confining potential in momentum space

Phenomenological $q \bar{q}$ kernel

 Inspired by Cornell potential: $\quad V(r)=\sigma r-C-\frac{\alpha_{s}}{r}$NR linear potential in momentum space:
Fourier transform of screened potential
Usually: $\quad \sigma r=\lim _{\epsilon \rightarrow 0} \sigma \frac{\partial^{2}}{\partial \epsilon^{2}} \frac{e^{-\epsilon r}}{r}$
But simpler: $\sigma r=\lim _{\epsilon \rightarrow 0}-\frac{\sigma}{\epsilon}\left(e^{-\epsilon r}-1\right) \equiv \tilde{V}_{A}(r)-\tilde{V}_{A}(0)$

FT: $\quad V_{L}(\mathbf{q})=V_{A}(\mathbf{q})-(2 \pi)^{3} \delta(\mathbf{q}) \int \frac{d^{3} q^{\prime}}{(2 \pi)^{3}} V_{A}\left(\mathbf{q}^{\prime}\right)$

$$
\text { with } V_{A}(\mathbf{q})=-\frac{8 \pi \sigma}{\mathbf{q}^{4}}
$$

Allton et al, UKQCD Collab., PRD 65, 054502 (2002)
Leitão, Stadler, Peña, Biernat, PRD 90, 096003 (2014) Gross, Milana, PRD 43, 2401 (1991)
Savkli, Gross, PRC 63, 035208 (2001)
$\left\langle V_{L} \phi\right\rangle(\mathbf{p})=\int \frac{d^{3} k}{(2 \pi)^{3}} V_{L}(\mathbf{p}-\mathbf{k}) \phi(\mathbf{k})=-8 \pi \sigma \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\phi(\mathbf{k})-\phi(\mathbf{p})}{(\mathbf{p}-\mathbf{k})^{4}}$
any regular function
highly singular

automatic subtraction only a Cauchy principal value singularity remains

Schrödinger equation with linear potential in momentum space

Wave functions expanded in basis of B-splines
Great test case: exact solutions are known in r-space for S-waves (Airy functions)

Binding energies in units of $\left(\sigma^{2} / 2 m_{R}\right)^{1 / 3} \quad m_{R} \ldots$ reduced mass

radial	Number of splines in basis \rightarrow								
excitations	n	$N=12$	$N=16$	$N=20$	$N=24$	$N=36$	$N=48$	$N=64$	Exact
\downarrow	1	2.338121	2.338108	2.338108	2.338107	2.338107	2.338107	2.338108	2.338107
	2	4.088498	4.087976	4.087953	4.087950	4.087947	4.087949	4.087949	4.087949
	3	5.527017	5.520928	5.520601	5.520568	5.520559	5.520559	5.520560	5.520560
	4	6.794183	6.788208	6.787047	6.786787	6.786710	6.786707	6.786708	6.786708
	5	8.002342	7.956598	7.947220	7.944767	7.944146	7.944135	7.944134	7.944134
	6	9.626868	9.156258	9.046241	9.026388	9.022727	9.022657	9.022651	9.022651
	7	11.435079	10.273394	10.083415	10.048670	10.040511	10.040201	10.040177	10.040174
	8	12.099834	11.147565	11.027556	11.028855	11.009868	11.008626	11.008534	11.008524
	9	14.993451	12.941736	12.318324	12.105283	11.940068	11.936344	11.936044	11.936016
	10	19.122419	15.309248	13.997541	13.138047	12.839002	12.829770	12.828860	12.828777

Schrödinger equation with linear potential in momentum space

Radial wave functions in momentum space (with $\mathrm{N}=64$)
Lines are our numerical solutions
Symbols are Fourier transforms of exact r-space solutions

Schrödinger equation with linear potential in momentum space

Works well also for higher partial waves
Higher partial waves

Covariant confining kernel in CST

-Covariant generalization: $\mathbf{q}^{2} \rightarrow-q^{2}$
This leads to a kernel that acts like

initial state: either quark or antiquark onshell

$$
\left\langle V_{L} \phi\right\rangle(p)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{m}{E_{k}} V_{L}(p, \hat{k}) \phi(\hat{k})=-8 \pi \sigma \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{m}{E_{k}} \frac{\phi(\hat{k})-\phi\left(\hat{k}_{R}\right)}{(p-\hat{k})^{4}}
$$

Complication: Singularity not only when $\mathbf{k}=\mathbf{p}$ $\hat{k}_{R}=\left(E_{k_{R}}, \mathbf{k}_{R}\right) \quad \mathbf{k}_{R}=\mathbf{k}_{R}\left(p_{0}, \mathbf{p}\right)$ becomes singular
-Does it still confine?
Yes: the vertex function vanishes if both quarks are on-shell!

More details: Savkli, Gross, PRC 63, 035208 (2001)

$$
\left\langle V_{L}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{m}{E_{k}} V_{L}(p, \hat{k})=0
$$

important property

$$
\text { corresponds to } \tilde{V}_{L}^{\mathrm{nr}}(r=0)=0
$$

-But is there always a singularity?

Engineering Flowchart

Relativistic kernel flowchart

Relativistic kernel flowchart

The One-Channel Spectator Equation (1CSE)

We solve the 1CSE for heavy and heavy-light systems
-Should work well for bound states with at least one heavy quark

- Much easier to solve numerically than 2CSE or 4CSE

- C-parity splitting small in heavy quarkonia
- For now with constant constituent quark masses (quark self-energies will be included later)

$$
\Gamma\left(\hat{p}_{1}, p_{2}\right)=-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{m_{1}}{E_{1 k}} \sum_{K} V_{K}\left(\hat{p}_{1}, \hat{k}_{1}\right) \Theta_{1}^{K(\mu)} \frac{m_{1}+\hat{k}_{1}}{2 m_{1}} \Gamma\left(\hat{k}_{1}, k_{2}\right) \frac{m_{2}+\not k_{2}}{m_{2}^{2}-k_{2}^{2}-i \epsilon} \Theta_{2(\mu)}^{K}
$$

$$
E_{i k}=\sqrt{m_{i}^{2}+\mathbf{k}^{2}}
$$

- Momentum-dependence of kernels is also simpler

$$
\begin{aligned}
& V_{\mathrm{L}}\left(\hat{p}_{1}, \hat{k}_{1}\right)=-8 \sigma \pi\left[\frac{1}{\left(\hat{p}_{1}-\hat{k}_{1}\right)^{4}}-\frac{E_{p_{1}}}{m_{1}}(2 \pi)^{3} \delta^{3}\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right) \int \frac{d^{3} k_{1}^{\prime}}{(2 \pi)^{3}} \frac{m_{1}}{E_{k_{1}^{\prime}}} \frac{1}{\left(\hat{p}_{1}-\hat{k}_{1}^{\prime}\right)^{4}}\right] \\
& V_{\mathrm{OGE}}\left(\hat{p}_{1}, \hat{k}_{1}\right)=-\frac{4 \pi \alpha_{s}}{\left(\hat{p}_{1}-\hat{k}_{1}\right)^{2}} \quad V_{\mathrm{C}}\left(\hat{p}_{1}, \hat{k}_{1}\right)=(2 \pi)^{3} \frac{E_{k_{1}}}{m_{1}} C \delta^{3}\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right)
\end{aligned}
$$

- Linear and OGE kernels need to be regularized We chose Pauli-Villars regularizations with parameter $\quad \Lambda=2 m_{1}$

CST vertex functions

$$
P^{\mu}=p_{1}-p_{2} \quad \rho^{\mu}=\frac{p_{1}+p_{2}}{2} \quad \Lambda\left(p_{i}\right)=\frac{m_{i}+\not p_{i}}{2 m_{i}}
$$

Pseudoscalar mesons

$$
\begin{aligned}
\Gamma^{P}\left(p_{1}, p_{2}\right)= & \Gamma_{1}^{P}\left(p_{1}, p_{2}\right) \gamma^{5}+\Gamma_{2}^{P}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \gamma^{5} \\
& +\Gamma_{3}^{P}\left(p_{1}, p_{2}\right) \gamma^{5} \Lambda\left(-p_{2}\right)+\Gamma_{4}^{P}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \gamma^{5} \Lambda\left(-p_{2}\right)
\end{aligned}
$$

Scalar mesons

$$
\Gamma^{S}\left(p_{1}, p_{2}\right)=\Gamma_{1}^{S}\left(p_{1}, p_{2}\right)+\Gamma_{2}^{S}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right)+\Gamma_{3}^{S}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{2}\right)+\Gamma_{4}^{S}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \Lambda\left(-p_{2}\right)
$$

Vector mesons

$$
\begin{aligned}
\Gamma^{V T \mu}\left(p_{1}, p_{2}\right)= & \Gamma_{1}^{V}\left(p_{1}, p_{2}\right) \gamma^{T \mu}+\Gamma_{2}^{V}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \gamma^{T \mu}+\Gamma_{3}^{V}\left(p_{1}, p_{2}\right) \gamma^{T \mu} \Lambda\left(-p_{2}\right) \\
& +\Gamma_{4}^{V}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \gamma^{T \mu} \Lambda\left(-p_{2}\right)+\Gamma_{5}^{V}\left(p_{1}, p_{2}\right) \rho^{T \mu}+\Gamma_{6}^{V}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \rho^{T \mu} \\
& +\Gamma_{7}^{V}\left(p_{1}, p_{2}\right) \rho^{T \mu} \Lambda\left(-p_{2}\right)+\Gamma_{8}^{V}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \rho^{T \mu} \Lambda\left(-p_{2}\right)
\end{aligned}
$$

Axialvector mesons

$$
\begin{aligned}
\Gamma^{A T \mu}\left(p_{1}, p_{2}\right)= & \Gamma_{1}^{A}\left(p_{1}, p_{2}\right) \gamma^{T \mu} \gamma^{5}+\Gamma_{2}^{A}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \gamma^{T \mu} \gamma^{5}+\Gamma_{3}^{A}\left(p_{1}, p_{2}\right) \gamma^{T \mu} \gamma^{5} \Lambda\left(-p_{2}\right) \\
& +\Gamma_{4}^{A}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \gamma^{T \mu} \gamma^{5} \Lambda\left(-p_{2}\right)+\Gamma_{5}^{A}\left(p_{1}, p_{2}\right) \rho^{T \mu} \gamma^{5}+\Gamma_{6}^{A}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \rho^{T \mu} \gamma^{5} \\
& +\Gamma_{7}^{A}\left(p_{1}, p_{2}\right) \rho^{T \mu} \gamma^{5} \Lambda\left(-p_{2}\right)+\Gamma_{8}^{A}\left(p_{1}, p_{2}\right) \Lambda\left(-p_{1}\right) \rho^{T \mu} \gamma^{5} \Lambda\left(-p_{2}\right)
\end{aligned}
$$

Solution of the 1CSE

- Work in rest frame of the bound state $P=(\mu, \mathbf{0})$
- Use ρ-spin decomposition of the propagator

$$
\frac{m_{2}+\not k_{2}}{m_{2}^{2}-k_{2}^{2}-i \epsilon}=\frac{m_{2}}{E_{2 k}} \sum_{\rho, \lambda_{2}} \rho \frac{u_{2}^{\rho}\left(\mathbf{k}, \lambda_{2}\right) \bar{u}_{2}^{\rho}\left(\mathbf{k}, \lambda_{2}\right)}{E_{2 k}-\rho k_{20}-i \epsilon}
$$

- Project 1CSE onto ρ-spin helicity channels

$$
\Gamma_{\lambda \lambda^{\prime}}^{+\rho^{\prime}}(p) \equiv \bar{u}_{1}^{+}(\mathbf{p}, \lambda) \Gamma(p) u_{2}^{\rho^{\prime}}\left(\mathbf{p}, \lambda^{\prime}\right)
$$

$$
\Theta_{i, \lambda \lambda^{\prime}}^{K, \rho \rho^{\prime}}(\mathbf{p}, \mathbf{k}) \equiv \bar{u}_{i}^{\rho}(\mathbf{p}, \lambda) \Theta_{i}^{K} u_{i}^{\rho^{\prime}}\left(\mathbf{k}, \lambda^{\prime}\right) \quad \text { spinor matrix elements of vertices }
$$

- Define relativistic wave functions

$$
\Psi_{\lambda \lambda^{\prime}}^{+\rho}(p) \equiv \sqrt{\frac{m_{1} m_{2}}{E_{1 p} E_{2 p}}} \frac{\rho}{E_{2 p}-\rho\left(E_{1 p}-\mu\right)} \Gamma_{\lambda \lambda^{\prime}}^{+\rho}(p)
$$

The 1CSE becomes a generalized linear EV problem for the mass eigenvalues μ

$$
\begin{array}{r}
\left(E_{1 p}-\rho_{2} E_{2 p}\right) \Psi_{\lambda_{1} \lambda_{2}}^{+\rho_{2}}(\mathbf{p})-\sum_{K \lambda_{1}^{\prime} \lambda_{2}^{\prime} \rho_{2}^{\prime}} \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} N_{12}(p, k) V_{K}(\mathbf{p}, \mathbf{k}) \Theta_{1, \lambda_{1} \lambda_{1}^{\prime}}^{K,++}(\mathbf{p}, \mathbf{k}) \Psi_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}}^{+\rho_{2}^{\prime}}(\mathbf{k}) \Theta_{2, \lambda_{2}^{\prime} \lambda_{2}}^{K, \rho_{2}^{\prime} \rho_{2}}(\mathbf{k}, \mathbf{p}) \\
\\
=\mu \Psi_{\lambda_{1} \lambda_{2}}^{+\rho_{2}}(\mathbf{p})
\end{array}
$$

Solution of the 1CSE

- Normalization

$$
2 \mu=N_{c} \sum_{\lambda_{1} \lambda_{2} \rho_{2}} \int \frac{d^{3} p}{(2 \pi)^{3}}\left[\Psi_{\lambda_{1} \lambda_{2}}^{+\rho_{2}}(\mathbf{p})\right]^{\dagger} \Psi_{\lambda_{1} \lambda_{2}}^{+\rho_{2}}(\mathbf{p})
$$

(kernel independent of P)

- Switch to basis of eigenstates of total orbital angular momentum L and of total spin S (not necessary, but useful for spectroscopic identification of solutions)

$$
\Psi_{\lambda_{1} \lambda_{2}}^{+\rho_{2}}(\mathbf{p})=\sum_{j} \psi_{j}^{\rho_{2}}(p) \chi_{\lambda_{1}}^{\dagger}(\hat{\mathbf{p}}) K_{j}^{\rho_{2}}(\hat{\mathbf{p}}) \chi_{\lambda_{2}}(\hat{\mathbf{p}})
$$

J^{P}	$K_{1}^{-}(\hat{\mathbf{p}})$	Wave	$K_{2}^{-}(\hat{\mathbf{p}})$	Wave	$K_{1}^{+}(\hat{\mathbf{p}})$	Wave	$K_{2}^{+}(\hat{\mathbf{p}})$	Wave
0^{-}	$\mathbf{1}$	S	-	-	$\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}$	P	-	
0^{+}	$\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}$	P	-	-	$\mathbf{1}$	S	-	
1^{-}	$\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}}$	S	$\frac{1}{\sqrt{2}}(3 \boldsymbol{\xi} \cdot \hat{\mathbf{p}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}}-\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}})$	D	$\sqrt{3} \boldsymbol{\xi} \cdot \hat{\mathbf{p}}$	P_{s}	$\sqrt{\frac{3}{2}}(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}}-\boldsymbol{\xi} \cdot \hat{\mathbf{p}})$	P_{t}
1^{+}	$\sqrt{3} \boldsymbol{\xi} \cdot \hat{\mathbf{p}}$	P_{s}	$\sqrt{\frac{3}{2}}(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}}-\boldsymbol{\xi} \cdot \hat{\mathbf{p}})$	P_{t}	$\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}}$	S	$\frac{1}{\sqrt{2}}(3 \boldsymbol{\xi} \cdot \hat{\mathbf{p}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}}-\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}})$	D

$$
\begin{array}{lll}
J^{P}=0^{ \pm} & \int_{0}^{\infty} d p p^{2}\left[\psi_{S}^{2}(p)+\psi_{D}^{2}(p)\right]=1 & \begin{array}{l}
\text { Normalization of radial wave functions }
\end{array} \\
J^{P}=1^{ \pm} & \int_{0}^{\infty} d p p^{2}\left[\psi_{S}^{2}(p)+\psi_{D}^{2}(p)+\psi_{P_{s}}^{2}(p)+\psi_{P_{t}}^{2}(p)\right]=1
\end{array}
$$

- Expand radial wave functions in a basis of B-splines (modified for correct asymptotic behavior) and solve eigenvalue problem \rightarrow expansion coefficients and mass eigenvalues

Solution of the 1CSE

- Normalization

$$
2 \mu=N_{c} \sum_{\lambda_{1} \lambda_{2} \rho_{2}} \int \frac{d^{3} p}{(2 \pi)^{3}}\left[\Psi_{\lambda_{1} \lambda_{2}}^{+\rho_{2}}(\mathbf{p})\right]^{\dagger} \Psi_{\lambda_{1} \lambda_{2}}^{+\rho_{2}}(\mathbf{p})
$$

(kernel independent of P)

- Switch to basis of eigenstates of total orbital angular momentum L and of total spin S (not necessary, but useful for spectroscopic identification of solutions)

$$
\Psi_{\lambda_{1} \lambda_{2}}^{+\rho_{2}}(\mathbf{p})=\sum_{j} \psi_{j}^{\rho_{2}}(p) \chi_{\lambda_{1}}^{\dagger}(\hat{\mathbf{p}}) K_{j}^{\rho_{2}}(\hat{\mathbf{p}}) \chi_{\lambda_{2}}(\hat{\mathbf{p}})
$$

| J^{P} | $K_{1}^{-}(\hat{\mathbf{p}})$ | Wave | $K_{2}^{-}(\hat{\mathbf{p}})$ | Wave | $K_{1}^{+}(\hat{\mathbf{p}})$ | Wave | $K_{2}^{+}(\hat{\mathbf{p}})$ | Wave |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0^{-} | $\mathbf{1}$ | S | - | - | $\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}$ | P | - | - |
| 0^{+} | $\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}$ | P | - | - | $\mathbf{1}$ | S | - | - |
| 1^{-} | $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}}$ | S | $\frac{1}{\sqrt{2}}(3 \boldsymbol{\xi} \cdot \hat{\mathbf{p}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}}-\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}})$ | D | $\sqrt{3} \boldsymbol{\xi} \cdot \hat{\mathbf{p}}$ | P_{s} | $\sqrt{\frac{3}{2}}(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}}-\boldsymbol{\xi} \cdot \hat{\mathbf{p}})$ | P_{t} |
| 1^{+} | $\sqrt{3} \boldsymbol{\xi} \cdot \hat{\mathbf{p}}$ | P_{s} | $\sqrt{\frac{3}{2}}(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}}-\boldsymbol{\xi} \cdot \hat{\mathbf{p}})$ | P_{t} | $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}}$ | S | $\frac{1}{\sqrt{2}}(3 \boldsymbol{\xi} \cdot \hat{\mathbf{p}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}}-\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}})$ | D |

relativistic components

$$
\begin{array}{lll}
J^{P}=0^{ \pm} & \int_{0}^{\infty} d p p^{2}\left[\psi_{S}^{2}(p)+\psi_{D}^{2}(p)\right]=1 & \begin{array}{l}
\text { Normalization of radial wave functions }
\end{array} \\
J^{P}=1^{ \pm} & \int_{0}^{\infty} d p p^{2}\left[\psi_{S}^{2}(p)+\psi_{D}^{2}(p)+\psi_{P_{s}}^{2}(p)+\psi_{P_{t}}^{2}(p)\right]=1
\end{array}
$$

- Expand radial wave functions in a basis of B-splines (modified for correct asymptotic behavior) and solve eigenvalue problem \rightarrow expansion coefficients and mass eigenvalues

Data sets used in least-square fits of meson masses

q represents a light quark (u or d)

S1: 9 PS mesons

S2: 25 PS+V+S mesons
S3: 39 PS+V+S+AV mesons

We use $m_{u}=m_{d} \equiv m_{q}$

Global fits with fixed quark masses and $y=0$

S. Leitão, A. S., M. T. Peña, E. Biernat, Phys. Lett. B 764 (2017) 38

First step: we perform global fits to the heavy + heavy-light meson spectrum

Adjustable model parameters:	σ	α_{s}	C

Model parameters not adjusted in the fits:

Constituent quark masses (in GeV)
Scalar + pseudoscalar confinement
$\mathrm{mb}=4.892, \mathrm{~m}_{\mathrm{c}}=1.600, \mathrm{~m}_{\mathrm{s}}=0.448, \mathrm{mq}_{\mathrm{q}}=0.346$
$y=0$

- Model MOsı: fitted to 9 pseudoscalar meson masses only
- Model MOsz: fitted to 25 pseudoscalar, vector, and scalar meson masses
(Previously called models P1 and PSV1)

Global fits with fixed quark masses and scalar confinement $(y=0)$

Global fits with fixed quark masses and $y=0$

The results of the two fits are remarkably similar! rms differences to experimental masses (set S3):

Model	$\sigma\left[\mathrm{GeV}^{2}\right]$	α_{s}	$C[\mathrm{GeV}]$			
M0	0.2493	0.3643	0.3491			
M0 $0_{S 2}$	0.2247	0.3614	0.3377	$\longrightarrow \quad$	Model	$\Delta_{\text {rms }}[\mathrm{GeV}]$
:---	:---					
M0 $0_{S 1}$	0.037					
M0						
0.036						

- Kernel parameters are already well determined through pseudoscalar states ($\mathrm{J}^{\mathrm{P}}=0^{-}$)

Almost 100\% L=0, S=0
(S-wave, spin singlet)

$$
\begin{aligned}
\left\langle 0^{-}\right| \mathbf{L} \cdot \mathbf{S}\left|0^{-}\right\rangle & =0 \\
\left\langle 0^{-}\right| S_{12}\left|0^{-}\right\rangle & =0 \\
\left\langle 0^{-}\right| \mathbf{S}_{1} \cdot \mathbf{S}_{2}\left|0^{-}\right\rangle & =-3 / 4
\end{aligned}
$$

Spin-orbit force vanishes
Tensor force vanishes
Spin-spin force acts in singlet only

- Good test for a covariant kernel:

Pseudoscalar states do not constrain spin-orbit and tensor forces, and cannot separate spin-spin from central force.
But they should be determined through covariance.
Model $\mathrm{MO}_{\mathrm{s} 1}$ indeed predicts spin-dependent forces correctly!

Leitão, AS, Peña, Biernat, Phys. Lett. B 764 (2017) 38

Importance of PS coupling in the confining kernel

Confining interaction (with $\mathrm{y}=0$)
$\left(\mathbf{1}_{1} \otimes \mathbf{1}_{2}+\gamma_{1}^{5} \otimes \gamma_{2}^{5}\right) V_{L}$
$S \quad P S$

Model $\mathrm{MO}_{\mathrm{s} 1}$

- S+PS
\diamond S only (no refitting)

PS effect very small:

- a few MeV in bottomonium
- max: ~40 MeV
in D mesons

Fits with variable quark masses and confinement (S+PS)-V mixing y

In a new series of fits we treat quark masses and mixing parameter y as adjustable parameters.

| Model Symbol | | $\sigma\left[\mathrm{GeV}^{2}\right]$ | α_{s} | $C[\mathrm{GeV}]$ | y | $m_{b}[\mathrm{GeV}]$ | $m_{c}[\mathrm{GeV}]$ | $m_{s}[\mathrm{GeV}]$ | $m_{q}[\mathrm{GeV}]$ | N | $\delta_{\mathrm{rms}}[\mathrm{GeV}] \Delta_{\mathrm{rms}}[\mathrm{GeV}]$ | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M} 0_{\mathrm{S} 1}$ | | 0.2493 | 0.3643 | 0.3491 | $\mathbf{0 . 0 0 0 0}$ | $\mathbf{4 . 8 9 2}$ | $\mathbf{1 . 6 0 0}$ | $\mathbf{0 . 4 4 7 8}$ | $\mathbf{0 . 3 4 5 5}$ | 9 | 0.017 | 0.037 |
| $\mathrm{M} 1_{\mathrm{S} 1}$ | \bigcirc | 0.2235 | 0.3941 | 0.0591 | 0.0000 | 4.768 | 1.398 | 0.2547 | 0.1230 | 9 | 0.006 | |
| $\mathrm{M} 0_{\mathrm{S} 2}$ | | 0.2247 | 0.3614 | 0.3377 | $\mathbf{0 . 0 0 0 0}$ | $\mathbf{4 . 8 9 2}$ | $\mathbf{1 . 6 0 0}$ | $\mathbf{0 . 4 4 7 8}$ | $\mathbf{0 . 3 4 5 5}$ | 25 | 0.028 | |
| $\mathrm{M} 1_{\mathrm{S} 2}$ | | 0.1893 | 0.4126 | 0.1085 | 0.2537 | 4.825 | 1.470 | 0.2349 | 0.1000 | 25 | 0.022 | |
| $\mathrm{M} 1_{\mathrm{S} 2^{\prime}}$ | \triangle | 0.2017 | 0.4013 | 0.1311 | 0.2677 | 4.822 | 1.464 | 0.2365 | 0.1000 | 24 | 0.018 | |
| $\mathrm{M} 1_{\mathrm{S} 3}$ | \square | 0.2022 | 0.4129 | 0.2145 | 0.2002 | 4.875 | 1.553 | 0.3679 | 0.2493 | 39 | 0.030 | |
| $\mathrm{M} 0_{\mathrm{S} 3}$ | \square | 0.2058 | 0.4172 | 0.2821 | $\mathbf{0 . 0 0 0 0}$ | 4.917 | 1.624 | 0.4616 | 0.3514 | 39 | 0.031 | |

include AV states in fit Parameters in bold were not varied during the fit
y held fixed, other parameters refitted
rms difference to fitted masses

- Quality of fits not much improved
- Best model M 1 s3 has $\mathrm{y}=0.20$, but minimum is very shallow
y and quark masses are not much constrained by the mass spectrum.

Mass spectra of heavy and heavy-light mesons

Numerical convergence (M1s3)

		Number of splines					
Meson	J^{P}	n	12	24	36	48	64
$b \bar{b}$	0^{-}	1	9.37765	9.37886	9.37917	9.37931	9.37940
		2	9.96915	9.96932	9.99338	9.96939	9.96939
		3	10.33061	10.32623	10.32623	10.32622	10.32621
		4	10.61822	10.61660	10.61646	10.61643	10.61641
$b \bar{b}$	1^{-}	1	9.47414	9.47411	9.47409	9.47407	9.47406
		2	10.01186	10.01147	10.01411	10.01138	10.01135
		3	10.14699	10.14692	10.1402	10.14714	10.14731
		4	10.36325	10.35767	10.35758	10.35755	10.35751
$c \bar{c}$	0^{-}	1	3.02240	3.02341	3.02380	3.02400	3.02414
		2	3.63778	3.63814	3.63832	3.63843	3.63850
		3	4.09893	4.09910	4.09925	4.09933	4.09938
		4	4.49972	4.49926	4.49940	4.49947	4.49952
$c \bar{c}$	1^{-}	1	3.13139	3.13154	3.13163	3.13169	3.13174
		2	3.69834	3.69840	3.69847	3.69853	3.69857
		3	3.75095	3.75366	3.75659	3.75966	3.76395
		4.14245	4.14248	4.14257	4.14263	4.14267	
$c \bar{q}$	0^{-}	1	1.86997	1.87122	1.87182	1.87217	1.87247
		2	2.51166	2.51196	2.51213	2.51227	2.51242
		3	2.99045	2.99065	2.99071	2.99079	2.99090
		4	3.40197	3.40221	3.40225	3.40232	3.40241
$c \bar{q}$	1^{-}	1	2.05555	2.05597	2.05612	2.05620	2.05626
		2	2.61323	2.61365	2.61383	2.61397	2.61411
		3	2.65564	2.65763	2.66005	2.66273	2.66654
		4	3.06017	3.06073	3.06096	3.06115	3.06135

Bottomonium ground-state wave functions

Calculated with model M1s3

Partial waves
$-S$

Partial waves

- S
- D
— P_{t} (spin triplet)
- P_{s} (spin singlet)

Relativistic wave function components are very small

Radial excitations in vector bottomonium

Wave functions of excited states look reasonable

Partial waves

- S
- D
- P_{t} (spin triplet)
- P_{s} (spin singlet)

Importance of relativistic components

Ground-state wave functions of model M1s3.

Lowest positive energy $q \bar{q}-$ state with $J^{P}=0^{-}$

- S-wave

Lowest positive energy $q \bar{q}-$ state with $J^{P}=0^{+}$
- P-wave

Importance of relativistic components

Ground-state wave functions of model M1s3.

Lowest positive energy

$$
q \bar{q}-\text { state with } J^{P}=1^{-}
$$

- S-wave
- D-wave
- Ps-wave
- Pt-wave

Lowest positive energy
$q \bar{q}-$ state with $J^{P}=I^{+}$
- S-wave
- D-wave
- $P S$-wave
- $P t$-wave

CST light-front wave functions

Leitão, Li, Maris, Peña, AS, Vary, Biernat, EPJC 77, 696 (2017); arXiv:1705.06178

Comparison of CST and BLFQ wave functions

Calculated CST-LFWF, mapped with the Brodsky-Huang-Lepage prescription (map.)

Example: wave function of $J / \psi(1 S)$ with $\lambda=0$

Quarkonium spectrum with BLFQ and CST

Rms differences (in MeV) between the calculated and experimental masses shown in blue

	Charmonium	Bottomonium
BLFQ	33	39
CST	42	11

Comparison between BLFQ and CST light front wave functions

BLFQ: Basis Light Front Quantization

- Effective Hamiltonian from light-front holography
- Contains confining interaction
- Minkowski space
Y. Li, P. Maris, J. Vary, PRD 96, 016022 (2017)

Leitão, Li, Maris, Peña, AS, Vary, Biernat, EPJC 77, 696 (2017); arXiv:1705.06178

Vector bottomonium wave functions, dominant components ($\mathrm{S}=1$)

Wave functions are remarkably similar

BLFQ and CST distribution amplitudes

Leading twist distribution amplitudes from BLFQ and CST (map.) wave functions

$$
\frac{f_{P, V}}{2 \sqrt{2 N c}} \phi_{P, V \|}(x ; \mu)=\frac{1}{\sqrt{x(1-x)}} \int_{0}^{k_{\perp} \leq \mu} \frac{d^{2} \mathbf{k}_{\perp}}{2(2 \pi)^{3}} \psi_{\uparrow \downarrow \mp \downarrow \uparrow}^{\lambda=0}\left(\mathbf{k}_{\perp}, x\right) \quad \begin{aligned}
& -\mathrm{PS} \\
& +\mathrm{V}
\end{aligned}
$$

Heavy quarkonium decay constants

Nonrelativistic: depend on $\Psi(r=0) \quad$ (only S-waves contribute)
Relativistic: all partial waves can contribute

Pseudoscalar mesons

$$
f_{P}=\frac{1}{\pi} \sqrt{\frac{N_{c}}{2 \mu_{P}}} \int_{0}^{\infty} d k k^{2} \sqrt{\left(1+\frac{m_{1}}{E_{1 k}}\right)\left(1+\frac{m_{2}}{E_{2 k}}\right)}\left[\left(1-\tilde{k}_{1} \tilde{k}_{2}\right) \psi_{s}(k)+\left(\tilde{k}_{1}+\tilde{k}_{2}\right) \psi_{p}(k)\right]
$$

Vector mesons

$$
\begin{aligned}
& f_{V}=\frac{1}{\pi} \sqrt{\frac{N_{c}}{2 \mu_{V}}} \int_{0}^{\infty} d k k^{2} \sqrt{\left(1+\frac{m_{1}}{E_{1 k}}\right)\left(1+\frac{m_{2}}{E_{2 k}}\right)}\left[\left(1+\frac{1}{3} \tilde{k}_{1} \tilde{k}_{2}\right) \psi_{s}(k)-\frac{2 \sqrt{2}}{3} \tilde{k}_{1} \tilde{k}_{2} \psi_{d}(k)+\right. \\
& \tilde{k}_{i} \equiv \frac{1}{\sqrt{3}}\left(\tilde{k}_{1}+\tilde{k}_{2}\right) \psi_{p_{s}}(k)+\sqrt{\frac{2}{3}}\left(\tilde{k}_{2}-\right. \\
& E_{i k}+m_{i}
\end{aligned}
$$

Quarkonium decay constants (preliminary results)

Refit with stronger cut-off in OGE kernel (spectrum almost unchanged)

Summary

- With the simplest, one-channel CST equation and a few global parameters, we get a very nice description of the heavy and heavy-light meson spectrum
- (S+PS) confining kernel with $\sim 0 \%-30 \%$ admixture of V coupling is compatible with the data
- In heavy quarkonia, we find remarkable similarities between CST LFWF (with BHL prescription) and BLFQ LFWF by Li, Vary, Maris, even in excited states
- Decay constants are very sensitive to details - stronger constraints on kernel

Next steps:

- Include dynamical quark mass (mass function) from quark self-interaction
- Inclusion of running quark-gluon coupling
- Calculation of tensor mesons (spin ≥ 2)
- Extension of current model to the light-quark sector (requires 4-channel eq.)
- Calculation of parton distribution functions
- Calculate relativistic quark-antiquark states with exotic JPC

