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Motivation
‣ Intense experimental activity to explore meson structure at LHC, BABAR, Belle, CLEO, 

and soon at GlueX (JLab) and PANDA (GSI)

‣ Search for exotic mesons (hybrids, glueballs, … maybe      ?) 

‣ Need to understand also “conventional”     -mesons in more detail

‣ Study production mechanisms, transition form factors  

(also important for hadronic contributions to light-by-light scattering)

qq̄

qq̄

Theory: a huge amount of work has already been done on meson structure (LQCD, BS/DSE, 
constrained dynamics two-body Dirac equation, BLFQ, relativized Schrödinger equation, …)
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q
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Guiding principles of our approach (CST - Covariant Spectator Theory):

Find      interaction that can be used in all mesons  
(unified model)

Relativistic covariance (work in Minkowski space)

Confinement through a confining interaction kernel, which 
should reduce to linear+Coulomb in the nonrelativistic limit

Learn about the Lorentz structure of the confining interaction

Quark masses are dynamic: self-interaction should be 
consistent with      interaction

Chiral symmetry: massless pion in chiral limit, satisfy the  
axialvector Ward-Takahashi identity

qq̄ Huge mass variation:

from pions (~0.14 GeV)

to bottomonium (> 10 GeV)

q

qq̄
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CST equation for two-body bound states

3

Charge conjugation, denoted by the operator C, trans-
forms quarks into antiquarks and vice versa, accom-
plished by taking the transpose of the vertex function
and changing p1 $ �p2. The amplitude is invariant un-
der charge conjugation if it remains unchanged up to a
phase ⌘, with ⌘2 = 1. The required condition is therefore

C
�1 �T

BS(�p, P ) C = ⌘ �BS(p, P ) , (8)

where we have used that p1 = p+ 1
2P $ �p2 = �p+ 1

2P
implies p $ �p. Performing this operation on Eq. (1),
and using C

�1 �µT
C = ��µ and the charge conjugation

invariant conditions

C
�1

V
T (p, k;P )C = V(�p,�k;P )

C
�1ST (k)C = S(�k) (9)

gives

C
�1�T

BS(�p, P )C = i

Z
d4k

(2⇡)4
V(p,�k;P )S(�k2)

h
C
�1�T

BS(k, P )C
i
S(�k1)

= i

Z
d4k

(2⇡)4
V(p, k;P )S(k1)

h
C
�1�T

BS(�k, P )C
i
S(k2) , (10)

which shows that C
�1�T

BS(�p, P )C satisfies the same
equation as �BS(p, P ) (and hence the two are equal up
to a phase), provided conditions for the propagators and
kernel, Eqs. (7) and (9), are satisfied. We will always
choose kernels that satisfy condition (9).

Note that a crucial step in the derivation was our abil-
ity to change the four-dimensional integration variable
k ! �k. This condition must be preserved when we
specialize to the Covariant Spectator Theory (CST).

B. Charge conjugation invariant CST equations

Next we introduce a charge conjugation invariant form
of the bound-state CST equations. For cases when we
want the correct limit as P ! 0 these are the “four-
channel” equations previously discussed [3].

To motivate the structure of these equations, begin
with the BS equation (1) and consider the k0 integration.
The dressed propagator of quark i with dressed mass m
and renormalization constant Z0 can be written

S(ki) '
Z0(m+ /ki)

m2 � k2i � i✏
(11)

near its poles at ki0 = ±Eki , where Eki ⌘
p
m2 + k2

i .
Figure 2 shows the positions of the four propagator poles
in the complex k0 plane in the bound-state rest frame
(note that k0 is the zero component of the relative mo-
mentum k, not of the individual particle momenta ki).
In the rest frame, the total momentum is Pr = (µ,0),
the quark and antiquark three-momenta ki are equal to
the relative three-momentum k, and therefore Eki = Ek,
with Ek ⌘

p
m2 + k2. However, in the following we will

continue working in an arbitrary frame with total mo-
mentum P in order to emphasize the manifest covariance
of our framework.

To perform the k0 integration we can close the contour
in the lower or upper half plane. In the CST framework
only poles of propagators are included, whereas the poles
of the kernel are moved to higher order kernels, and ne-
glected. As one can see in Fig. 2, in either half plane the

�Ek �
µ
2 �Ek +

µ
2

Ek �
µ
2 Ek +

µ
2

Im k0

Re k0

FIG. 2. (color online) The positive-energy poles (colored crosses
with positive Ek) and negative-energy (white crosses with negative
Ek) poles of the propagators of quark 1 (red with �µ/2) and quark
2 (cyan with +µ/2) in the complex k0-plane in the bound-state rest
frame.

respective two poles are separated by the bound-state
mass µ. If µ is large, the pole closer to the origin dom-
inates the integral, and the more distant pole can be
neglected. However, in the limit P ! 0 the two poles
move close together and the contributions of both must
be taken into account.
First we close the k0 contour in the lower half plane.

Introducing the on-shell momenta k̂i = (Eki ,ki) and us-
ing the form (11) for the dressed propagators permits the
two propagator pole contributions to the right hand side
of (1) to be written

�(p, P ) = �Z0

Z

k1

V(p, k̂1 �
1
2P ;P )(m+ /̂k1)

⇥�(k̂1 �
1
2P, P )S(k̂1 � P )

�Z0

Z

k2

V(p, k̂2 +
1
2P ;P )S(k̂2+ + P )

⇥�(k̂2 +
1
2P, P )(m+ /̂k2) , (12)

Integration over relative energy k0:

‣ Keep only pole contributions from constituent particle 
propagators

‣ Poles from particle exchanges appear in higher-order 

kernels (usually neglected — tend to cancel)

‣ Reduction to 3D loop integrations, but covariant

‣ Correct one-body limit

Symmetrize pole contributions from both half planes: charge conjugation symmetry
CST verticesBS vertex (approx.)

If bound-state mass    is small:

both poles are close together (both important)

µ

= + + +1
2
—{ }

Once the four CST vertices (with one quark on-shell) are all known, one can use this equation 
to get the vertex function for other momenta (also Euclidean).

clidean space, the dynamics in ladder-rainbow approxima-
tions is driven by a pure Lorentz-vector kernel, essentially
a dressed gluon propagator.

The CST belongs to the approaches related to the BSE,
but is similar in spirit to the DS-BS framework in that it
aims to incorporate the dynamical origin of the constituent
quark masses by dressing the bare quark propagators with
the interquark kernel in a consistent fashion. However,
the CST is formulated and solved directly in Minkowski
momentum space. This is advantageous over Euclidean
formulations (although a number of singularities have to
be handled numerically) because no analytic continuations
are needed to calculate, e.g., form factors [15, 16], even in
the timelike region. The reason is that in CST one only
needs to determine the quark propagator pole positions,
which are all located on the real axis, both for fixed or
running dynamical quark masses. The chosen interaction
kernel is a manifestly covariant generalization of the Cor-
nell potential, and the full Dirac structure of the quarks is
taken into account.

The Covariant Spectator Equation (CSE) is obtained
from the BSE [Fig. 1(a)] by carrying out the loop energy
integration such that only quark-propagator pole contri-
butions are kept [Figs. 1(b) and 1(c)]. This prescription
is motivated by partial cancellations between higher-order
ladder and crossed-ladder kernels, implying that a CST
ladder series e↵ectively contains crossed-ladder contribu-
tions which are necessary for the two-body equation to
reach the correct one-body limit [3].

In this work we are focussing on systems where one
quark is typically much heavier than the other, so we are
close to the one-body limit. The BS ladder approxima-
tion does not possess this limit, and it would not be a
good choice to describe these mesons. On the other hand,
heavy-light systems are ideal to apply a simplified version
of the CSE, the so-called one-channel spectator equation
(1CSE): the positive-energy pole of the heavier quark dom-
inates, such that the other three CST vertex functions can
be neglected. The 1CSE is shown in Fig. 1(c), inside the
solid rectangle.

This equation retains most important properties of the
complete CSE, namely manifest covariance, cluster separa-
bility, and the correct one-body limit. It is also a good ap-
proximation for equal-mass particles, as long as the bound-
state mass is not too small (this excludes the pion from its
range of applicability). In fact, in a properly symmetrized
form to account for the Pauli principle, it has been ap-
plied very successfully to the description of the two- and
three-nucleon systems [17, 18, 19].

A property the 1CSE does not maintain is charge-
conjugation symmetry. Therefore, heavy quarkonium states
calculated with the 1CSE have no definite C-parity. In
principle, this problem is easily remedied by using instead
the two-channel extension inside the dashed rectangle of
Fig. 1(c). However, we decided that the considerable in-
crease in computational e↵ort would not be justified for
the purpose of this work: of the quarkonia with JP = 0±

(a)

(b)

(c)

Figure 1: Graphic representations of (a) the BSE for the qq̄ bound
state vertex function �, where V represents the kernel of two-body
irreducible Feynman diagrams; (b) the BS vertex function approxi-
mated as a sum of CST vertex functions (crosses on quark lines indi-
cate that a positive-energy pole of the propagator is calculated, light
crosses in a dark square refer to a negative-energy pole); (c) the com-
plete CST equation. The solid rectangle indicates the one-channel
equation used in this work, the dashed rectangle a two-channel ex-
tension with charge-conjugation symmetry.

and 1±, only the axial-vector mesons (JP = 1+) come in
both C-parities, and these pairs are separated by only a
few MeV (5 to 6 MeV in bottomonium, 14 MeV in char-
monium). Thus, as long as we do not seek an accuracy
better than about 10-20 MeV, the use of the 1CSE also
for heavy quarkonia is perfectly justified. Consistent with
this level of accuracy, we also set mu = md throughout
this work.

We use a kernel of the general form

V =
⇥
(1� y)

�
11 ⌦ 12 + �5

1
⌦ �5

2

�
� y �µ

1
⌦ �µ2

⇤
VL

� �µ
1
⌦ �µ2 [VOGE + VC] ⌘

X

K

VK⇥K(µ)
1

⌦⇥K
2(µ) , (1)

where VL, VOGE, and VC are relativistic generalizations
of a linear confining potential, a short-range one-gluon-
exchange (in Feynman gauge in this work), and a con-
stant interaction, respectively. The confining interaction
has a mixed Lorentz structure, namely equally weighted
scalar and pseudoscalar structures, and a vector struc-
ture. The parameter y dials continuously between the two
extremes, y = 1 being pure vector coupling, and y = 0
pure scalar+pseudoscalar coupling. The OGE and con-
stant potentials are Lorentz-vector interactions. The signs
are chosen such that—for any value of y—in the static
nonrelativistic limit always the same Cornell-type poten-
tial V (r) = �r � ↵s/r � C is recovered.

2

      bound-state with mass    µqq̄Bethe-Salpeter equation for

2PI diagrams
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CST equations
Closed set of equations when external legs are systematically placed on-shell

Solutions: bound state masses μ and corresponding vertex functions Γ 

All have smooth one-body limit (Dirac equation) and nonrelativistic limit (Schrödinger equation).
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and 1±, only the axial-vector mesons (JP = 1+) come in
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2

4CSE

1CSE

2CSE

One-channel spectator equation (1CSE): ‣Particularly appropriate for unequal masses


‣Numerical solutions easier (fewer singularities)


‣But not charge-conjugation symmetric

Two-channel spectator equation (2CSE): ‣Restores charge-conjugation symmetry


‣Additional singularities in the kernel

Four-channel spectator equation (4CSE): ‣Necessary for light bound states (pion!)
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The covariant kernel

⇥K(µ)
i = 1i, �

5
i , �

µ
i

Our kernel:

‣Confining interaction: Lorentz (scalar + pseudoscalar) mixed with vector 
Coupling strength σ, mixing parameter y

Fa =
1

2
�a

color SU(3) 
generators

qq̄ color singlets1 for Lorentz structuremomentum 
dependence

p

F a
1

F a
2

⇥K(µ)
1

⇥K
2(µ)

k
V(p, k;P ) =

3

4
F1 · F2

X

K

VK(p, k;P )⇥K(µ)
1 ⌦⇥K

2(µ)

VL(p, k;P ) =
⇥
(1� y)

�
11 ⌦ 12 + �5

1 ⌦ �5
2

�
� y �µ

1 ⌦ �µ2
⇤
VL(p, k;P )

y = 0

y = 1

pure S+PS

pure V

equal weight (constraint from chiral symmetry)
→ E.P. Biernat et al., PRD 90, 096008 (2014)

for correct nonrelativistic limit

‣One-gluon exchange with constant coupling strength  
+ Constant interaction (in r-space) with strength C

↵s Lorentz vector}
VOGE(p, k;P ) + VC(p, k;P ) = ��µ

1
⌦ �2µ[VOGE(p, k;P ) + VC(p, k;P )]
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Confining potential in momentum space

Linear confinement

confinement cannot be obtained from finite number of gluon exchanges ⇒
non-perturbative treatment of QCD necessary: e.g. lattice simulations of QCD

phenomenological ‘Cornell’ qq̄ potential
Eichten et al PRD 17, 1978,0 and 21, 1980; Richardson PLB 82, 1979

V (r) = −αs

r + σr + C

! good description of quarkonia (cc̄
and bb̄ mesons)

value σ = 0.85 GeV/fm at r ∼ 2 fm:
∃ enough energy to produce light qq̄
pair

light mesons require relativistic
treatment
e.g. “relativized” quark models
Godfrey, Isgur PRD 32, 1985

! good description of meson spectrum
not covariant
no off-shell propagation of quarks

Allton et al, UKQCD Collab., PRD 65, 2002

Elmar Biernat (CFTP/IST) Quarks and mesons in CST May 22, 2014 5 / 23

Allton et al, UKQCD Collab., PRD 65, 054502 (2002)

Static QCD potential from the latticePhenomenological      kernelqq̄

Inspired by Cornell potential:

NR linear potential in momentum space: 

Fourier transform of screened potential

�r = lim
✏!0

�
@2

@✏2
e�✏r

r
Usually:

But simpler: �r = lim
✏!0

��

✏

�
e�✏r � 1

�
⌘ ṼA(r)� ṼA(0)

VA(q) = �8⇡�

q4

Leitão, Stadler, Peña, Biernat, PRD 90, 096003 (2014)

Gross, Milana, PRD 43, 2401 (1991)

Savkli, Gross, PRC 63, 035208 (2001)

highly singular automatic subtraction

only a Cauchy principal value singularity remains

V (r) = �r � C � ↵s

r

hVL�i(p) =
Z

d3k

(2⇡)3
VL(p� k)�(k) = �8⇡�

Z
d3k

(2⇡)3
�(k)� �(p)

(p� k)4

VL(q) = VA(q)� (2⇡)3�(q)

Z
d3q0

(2⇡)3
VA(q

0)FT:

with

any regular function
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Schrödinger equation with linear potential in momentum space
Wave functions expanded in basis of B-splines

Great test case: exact solutions are known in r-space for S-waves (Airy functions) 

CHAPTER 5. RESULTS
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Figure 5.1: The solid lines are the S-wave momentum-space wave functions (in arbitrary units) for the 6 lowest
eigenstates, calculated in a basis of 64 splines. At p = 0, the order of the states is from n = 1 (lowest line) to n = 6
(highest line). The symbols on the lines represent the exact solutions of Eq. (5.3), numerically Fourier transformed
from coordinate space to momentum space.
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Figure 5.2: The lowest 10 energy eigenvalues En of the
unscreened linear potential with ¸ = 0 (S-wave). The
convergence of the eigenvalues with increasing number
of splines, N , in the B-spline basis is shown.
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Figure 5.3: The ten lowest energy eigenvalues for the
linear potential in all partial waves up to ¸ = 4, obtained
by solving Eq. (C.27) in a basis of 64 cubic B-splines. The
energies are in units of (‡2/2mR)1/3.

n N = 12 N = 16 N = 20 N = 24 N = 36 N = 48 N = 64 Exact
1 2.338121 2.338108 2.338108 2.338107 2.338107 2.338107 2.338108 2.338107
2 4.088498 4.087976 4.087953 4.087950 4.087947 4.087949 4.087949 4.087949
3 5.527017 5.520928 5.520601 5.520568 5.520559 5.520559 5.520560 5.520560
4 6.794183 6.788208 6.787047 6.786787 6.786710 6.786707 6.786708 6.786708
5 8.002342 7.956598 7.947220 7.944767 7.944146 7.944135 7.944134 7.944134
6 9.626868 9.156258 9.046241 9.026388 9.022727 9.022657 9.022651 9.022651
7 11.435079 10.273394 10.083415 10.048670 10.040511 10.040201 10.040177 10.040174
8 12.099834 11.147565 11.027556 11.028855 11.009868 11.008626 11.008534 11.008524
9 14.993451 12.941736 12.318324 12.105283 11.940068 11.936344 11.936044 11.936016
10 19.122419 15.309248 13.997541 13.138047 12.839002 12.829770 12.828860 12.828777

Table 5.1: The ten lowest energy eigenvalues En of the unscreened linear potential with ¸ = 0 (S-wave), obtained
by solving Eq. (C.27) with an increasing number of splines, N , in the B-spline basis. The last column shows the exact
solutions from Eq. (5.1). The energies are in units of (‡2/2mR)1/3.
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CHAPTER 5. RESULTS

5.1.1 Singularity-free equations

As we have seen previously in Chapter 4, the linear interaction in momentum space has a highly
singular form. However, it turns out that this singularity is of Cauchy principal value type, which is
integrable, although still quite cumbersome in practical applications (cf. Eq. (4.68)). One of the main
results of [92] is that the momentum-space equation for the linear potential can be rewritten in such
a way that all singularities are removed. The resulting equations can then be solved much more easily
using standard numerical methods. In Appendix C, the full derivation of these singularity-free equations
is given.

5.1.2 Results for the linear potential: exact solution

We solved the singularity-free form of the Schrödinger equation, Eq. (C.27), with a linear potential
in momentum space, using an expansion of the solution in a basis of N cubic B-splines (see section
B.4.1 for details). The initial Hamiltonian of this problem contains two parameters, the slope ‡ of the
linear potential and the reduced mass mR of the system. It is well known—and can also be derived quite
easily from Eq. (C.11), shown in Appendix C —that the energy eigenvalues scale with (‡2

/2mR)1/3. It is
therefore sufficient to solve Eq. (C.27) of the same appendix for ‡ = 2mR = 1.

As we mention before, the S-wave equation is of particular interest, because the exact solution in
coordinate space is known in terms of the Airy functions Ai:

E
¸=0

n = ≠zn

3
‡

2

2mR

41/3

, with Ai(zn) = 0 , (5.1)

i.e., zn is the n-th root of the Airy function Ai(z). Notice that zn is negative for all n. If the coordinate-
space eigenstate wave functions are written

�n¸m(r) = un¸(r)
r

Y¸m(r̂) , (5.2)

the exact S-wave solutions of the radial wave functions are

un0(r) = anAi[(2mR‡)1/3
r + zn] , (5.3)

where the coefficients an are determined through the normalization condition
ˆ

dr|un¸(r)|2 = 1 . (5.4)

The S-wave is therefore the ideal case to test our numerical methods.

5.1.3 Convergence studies

First we investigate the numerical convergence of the energy eigenvalues and the corresponding wave
functions as the number of basis splines N increases. Table 5.1 and Fig. 5.2 show that our numerical S-
wave energies converge quickly and smoothly to the exact solutions. For the first few excited states, a
small number of splines of the order of 20 is already sufficient to obtain very accurate results. For higher
radial excitations, or if more accuracy is required, the spline basis may be increased as needed.

The S-wave momentum-space wave functions of the six lowest energy eigenstates, calculated in a
basis of 64 splines, are shown in Fig. 5.1. They are compared to the exact r-space solutions given in
Eq. (5.3), after they have been numerically Fourier transformed to momentum space. The comparison

60

mR … reduced mass



JLab, Feb 16, 2018 Alfred Stadler

Schrödinger equation with linear potential in momentum space

CHAPTER 5. RESULTS
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Figure 5.1: The solid lines are the S-wave momentum-space wave functions (in arbitrary units) for the 6 lowest
eigenstates, calculated in a basis of 64 splines. At p = 0, the order of the states is from n = 1 (lowest line) to n = 6
(highest line). The symbols on the lines represent the exact solutions of Eq. (5.3), numerically Fourier transformed
from coordinate space to momentum space.
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Figure 5.2: The lowest 10 energy eigenvalues En of the
unscreened linear potential with ¸ = 0 (S-wave). The
convergence of the eigenvalues with increasing number
of splines, N , in the B-spline basis is shown.
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Figure 5.3: The ten lowest energy eigenvalues for the
linear potential in all partial waves up to ¸ = 4, obtained
by solving Eq. (C.27) in a basis of 64 cubic B-splines. The
energies are in units of (‡2/2mR)1/3.

n N = 12 N = 16 N = 20 N = 24 N = 36 N = 48 N = 64 Exact
1 2.338121 2.338108 2.338108 2.338107 2.338107 2.338107 2.338108 2.338107
2 4.088498 4.087976 4.087953 4.087950 4.087947 4.087949 4.087949 4.087949
3 5.527017 5.520928 5.520601 5.520568 5.520559 5.520559 5.520560 5.520560
4 6.794183 6.788208 6.787047 6.786787 6.786710 6.786707 6.786708 6.786708
5 8.002342 7.956598 7.947220 7.944767 7.944146 7.944135 7.944134 7.944134
6 9.626868 9.156258 9.046241 9.026388 9.022727 9.022657 9.022651 9.022651
7 11.435079 10.273394 10.083415 10.048670 10.040511 10.040201 10.040177 10.040174
8 12.099834 11.147565 11.027556 11.028855 11.009868 11.008626 11.008534 11.008524
9 14.993451 12.941736 12.318324 12.105283 11.940068 11.936344 11.936044 11.936016
10 19.122419 15.309248 13.997541 13.138047 12.839002 12.829770 12.828860 12.828777

Table 5.1: The ten lowest energy eigenvalues En of the unscreened linear potential with ¸ = 0 (S-wave), obtained
by solving Eq. (C.27) with an increasing number of splines, N , in the B-spline basis. The last column shows the exact
solutions from Eq. (5.1). The energies are in units of (‡2/2mR)1/3.
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Schrödinger equation with linear potential in momentum space
Works well also for higher partial waves

CHAPTER 5. RESULTS
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Figure 5.1: The solid lines are the S-wave momentum-space wave functions (in arbitrary units) for the 6 lowest
eigenstates, calculated in a basis of 64 splines. At p = 0, the order of the states is from n = 1 (lowest line) to n = 6
(highest line). The symbols on the lines represent the exact solutions of Eq. (5.3), numerically Fourier transformed
from coordinate space to momentum space.
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Figure 5.2: The lowest 10 energy eigenvalues En of the
unscreened linear potential with ¸ = 0 (S-wave). The
convergence of the eigenvalues with increasing number
of splines, N , in the B-spline basis is shown.
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Figure 5.3: The ten lowest energy eigenvalues for the
linear potential in all partial waves up to ¸ = 4, obtained
by solving Eq. (C.27) in a basis of 64 cubic B-splines. The
energies are in units of (‡2/2mR)1/3.

n N = 12 N = 16 N = 20 N = 24 N = 36 N = 48 N = 64 Exact
1 2.338121 2.338108 2.338108 2.338107 2.338107 2.338107 2.338108 2.338107
2 4.088498 4.087976 4.087953 4.087950 4.087947 4.087949 4.087949 4.087949
3 5.527017 5.520928 5.520601 5.520568 5.520559 5.520559 5.520560 5.520560
4 6.794183 6.788208 6.787047 6.786787 6.786710 6.786707 6.786708 6.786708
5 8.002342 7.956598 7.947220 7.944767 7.944146 7.944135 7.944134 7.944134
6 9.626868 9.156258 9.046241 9.026388 9.022727 9.022657 9.022651 9.022651
7 11.435079 10.273394 10.083415 10.048670 10.040511 10.040201 10.040177 10.040174
8 12.099834 11.147565 11.027556 11.028855 11.009868 11.008626 11.008534 11.008524
9 14.993451 12.941736 12.318324 12.105283 11.940068 11.936344 11.936044 11.936016
10 19.122419 15.309248 13.997541 13.138047 12.839002 12.829770 12.828860 12.828777

Table 5.1: The ten lowest energy eigenvalues En of the unscreened linear potential with ¸ = 0 (S-wave), obtained
by solving Eq. (C.27) with an increasing number of splines, N , in the B-spline basis. The last column shows the exact
solutions from Eq. (5.1). The energies are in units of (‡2/2mR)1/3.
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Covariant confining kernel in CST
‣Covariant generalization: q2 ! �q2

This leads to a kernel that acts like

k̂ = (Ek,k)

value of k at which kernel 
becomes singular

k̂p initial state:
either quark or 

antiquark onshell

Ṽ nr
L (r = 0) = 0corresponds to

‣But is there always a singularity?

‣Does it still confine?

Yes: the vertex function vanishes if both quarks are on-shell!
= 0

More details: Savkli, Gross, PRC 63, 035208 (2001)

Complication: Singularity not only when k = p

hVL�i(p) =
Z

d3k

(2⇡)3
m

Ek
VL(p, k̂)�(k̂) = �8⇡�

Z
d3k

(2⇡)3
m

Ek

�(k̂)� �(k̂R)

(p� k̂)4

k̂R = (EkR ,kR) kR = kR(p0,p)

on mass shell

hVLi =
Z

d3k

(2⇡)3
m

Ek
VL(p, k̂) = 0 important property
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The One-Channel Spectator Equation (1CSE)

�(p̂1, p2) = �
Z

d3k

(2⇡)3
m1

E1k

X

K

VK(p̂1, k̂1)⇥
K(µ)
1

m1 + /̂k1
2m1

�(k̂1, k2)
m2 + /k2

m2
2 � k22 � i✏

⇥K
2(µ)

VL(p̂1, k̂1) = �8�⇡

"
1

(p̂1 � k̂1)4
� Ep1

m1
(2⇡)3�3(p1 � k1)

Z
d3k01
(2⇡)3

m1

Ek0
1

1

(p̂1 � k̂01)
4

#

Eik =
q

m2
i + k2

VOGE(p̂1, k̂1) = � 4⇡↵s

(p̂1 � k̂1)2
VC(p̂1, k̂1) = (2⇡)3

Ek1

m1
C�3(p1 � k1)

= V ��

p̂1 k̂1p̂1

p2 k2

PP

p2

We solve the 1CSE for heavy and heavy-light systems

‣Should work well for bound states with at least one 
heavy quark

‣Much easier to solve numerically than 2CSE or 4CSE

‣C-parity splitting small in heavy quarkonia

‣For now with constant constituent quark masses  

(quark self-energies will be included later)

‣Momentum-dependence of kernels is also simpler

‣Linear and OGE kernels need to be regularized  
We chose Pauli-Villars regularizations with parameter ⇤ = 2m1
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CST vertex functions

Pseudoscalar mesons

Vector mesons

⇤(pi) =
mi + /pi
2mi

�P (p1, p2) = �P
1 (p1, p2)�

5 + �P
2 (p1, p2)⇤(�p1)�

5

+ �P
3 (p1, p2)�

5⇤(�p2) + �P
4 (p1, p2)⇤(�p1)�

5⇤(�p2)

�S(p1, p2) = �S
1 (p1, p2) + �S

2 (p1, p2)⇤(�p1) + �S
3 (p1, p2)⇤(�p2) + �S

4 (p1, p2)⇤(�p1)⇤(�p2)

Scalar mesons

�V Tµ(p1, p2) =�V
1 (p1, p2)�

Tµ + �V
2 (p1, p2)⇤(�p1)�

Tµ + �V
3 (p1, p2)�

Tµ⇤(�p2)

+ �V
4 (p1, p2)⇤(�p1)�

Tµ⇤(�p2) + �V
5 (p1, p2)⇢

Tµ + �V
6 (p1, p2)⇤(�p1)⇢

Tµ

+ �V
7 (p1, p2)⇢

Tµ⇤(�p2) + �V
8 (p1, p2)⇤(�p1)⇢

Tµ⇤(�p2)

Axialvector mesons

�ATµ(p1, p2) =�A
1 (p1, p2)�

Tµ�5 + �A
2 (p1, p2)⇤(�p1)�

Tµ�5 + �A
3 (p1, p2)�

Tµ�5⇤(�p2)

+ �A
4 (p1, p2)⇤(�p1)�

Tµ�5⇤(�p2) + �A
5 (p1, p2)⇢

Tµ�5 + �A
6 (p1, p2)⇤(�p1)⇢

Tµ�5

+ �A
7 (p1, p2)⇢

Tµ�5⇤(�p2) + �A
8 (p1, p2)⇤(�p1)⇢

Tµ�5⇤(�p2)

Pµ = p1 � p2 ⇢µ =
p1 + p2

2
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Solution of the 1CSE

Eik =
q

m2
i + k2

= V ��

p̂1 k̂1p̂1

p2 k2

PP

p2

‣Define relativistic wave functions

‣Use ρ-spin decomposition of the propagator

m2 + /k2
m2

2 � k22 � i✏
=

m2

E2k

X

⇢,�2

⇢
u⇢
2(k,�2)ū

⇢
2(k,�2)

E2k � ⇢k20 � i✏

‣Project 1CSE onto ρ-spin helicity channels

�+⇢0

��0 (p) ⌘ ū+
1 (p,�)�(p)u

⇢0

2 (p,�0)

‣Work in rest frame of the bound state P = (µ,0)

u+(k,�) ⌘ u(k,�)

u�(k,�) ⌘ v(�k,�)

ρ-spinors with 
helicity λ

The 1CSE becomes a generalized linear 
EV problem for the mass eigenvalues μ +⇢

��0(p) ⌘
r

m1m2

E1pE2p

⇢

E2p � ⇢(E1p � µ)
�+⇢
��0(p)

(E1p � ⇢2E2p) 
+⇢2

�1�2
(p)�

X

K�0
1�

0
2⇢

0
2

Z
d3k

(2⇡)3
N12(p, k)VK(p,k)⇥K,++

1,�1�0
1
(p,k) 

+⇢0
2

�0
1�

0
2
(k)⇥

K,⇢0
2⇢2

2,�0
2�2

(k,p)

= µ +⇢2

�1�2
(p)

⇥K,⇢⇢0

i,��0 (p,k) ⌘ ū⇢
i (p,�)⇥

K
i u⇢0

i (k,�0) spinor matrix elements of vertices
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Solution of the 1CSE

‣Switch to basis of eigenstates of total orbital angular momentum L and of total spin S 
(not necessary, but useful for spectroscopic identification of solutions)

‣Expand radial wave functions in a basis of B-splines (modified for correct asymptotic 
behavior) and solve eigenvalue problem → expansion coefficients and mass eigenvalues

‣Normalization

 +⇢2

�1�2
(p) =

X

j

 ⇢2
j (p)�†

�1
(p̂)K⇢2

j (p̂)��2(p̂)

(kernel independent of P)

4

Multiplying Eq. (8) from the left by ū+
1 (p,�) and from the right by u⇢0

2 (p,�0) yields
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Table 1 lists the K⇢
j (p̂) used in this work. The main advantage of using this basis for the wave

function is that it explicitly displays its orbital-angular-momentum content and thus enables us to
determine the spectroscopic identity of our solutions, which is indispensable when comparing to the
measured states. Our wave functions contain relativistic components not present in nonrelativistic
solutions. For instance, the S-waves of our pseudoscalar states couple to small P -waves (with opposite
intrinsic parity) that vanish in the nonrelativistic limit, whereas, for vector mesons, coupled S- and
D-waves are accompanied by relativistic spin-singlet and spin-triplet P -waves, denoted Ps and Pt,
respectively.

3 Results and Discussion

In this work we present two models: model P1 was fitted to the masses of pseudoscalar states only,
whereas model PSV1 was fitted to the masses of pseudoscalar, scalar, and vector mesons. The pa-
rameters of the models are listed in Table 2. The constituent quark masses were first determined in
preliminary calculations and then held fixed in the final fits of �, ↵s, and C.

Our results for bb̄, bc̄, bs̄, bq̄, cc̄, cs̄, cq̄ states (q stands for a u or a d quark) are given in Table 3.
The calculated masses are very close to the experimental data, with an rms di↵erence of roughly 30
MeV for both models P1 and PSV1. These di↵erences are comparable with those reported in Ref. [19]
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Data sets used in least-square fits of meson masses 9

Data set
State JP (C) Mass (MeV) S1 S2 S3
⌥(4S) 1�� 10579.4±1.2 •
�b1(3P ) 1++ 10512.1±2.3 •
⌥(3S) 1�� 10355.2±0.5 • •
⌘b(3S) 0�+ 10337
hb(2P ) 1+� 10259.8±1.2 •
�b1(2P ) 1++ 10255.46±0.22±0.50 •
�b0(2P ) 0++ 10232.5±0.4±0.5 • •
⌥(1D) 1�� 10155
⌥(2S) 1�� 10023.26±0.31 • •
⌘b(2S) 0�+ 9999±4 • • •
hb(1P ) 1+� 9899.3±0.8 •
�b1(1P ) 1++ 9892.78±0.26±0.31 •
�b0(1P ) 0++ 9859.44±0.42±0.31 • •
⌥(1S) 1�� 9460.30±0.26 • •
⌘b(1S) 0�+ 9399.0±2.3 • • •
Bc(2S)

± 0� 6842±6 •
B+

c 0� 6275.1±1.0 • • •
Bs1(5830) 1+ 5828.63±0.27 •
B1(5721)

+,0 1+ 5725.85±1.3 •
B⇤

s 1� 5415.8±1.5 • •
B0

s 0� 5366.82±0.22 • • •
B⇤ 1� 5324.65±0.25 • •
B±,0 0� 5279.45 • • •
X(3915) 0++ 3918.4±1.9 • •
 (3770) 1�� 3773.13±0.35 • •
 (2S) 1�� 3686.097±0.010 • •
⌘c(2S) 0�+ 3639.2±1.2 • • •
hc(1P ) 1+� 3525.38±0.11 •
�c1(1P ) 1++ 3510.66±0.07 •
�c0(1P ) 0++ 3414.75±0.31 • •
J/ (1S) 1�� 3096.900±0.006 • •
⌘c(1S) 0�+ 2983.4±0.5 • • •
Ds1(2536)

± 1+ 2535.10±0.06 •
Ds1(2460)

± 1+ 2459.5±0.6 •
D1(2420)

±,0 1+ 2421.4 •
D⇤

0(2400)
0 0+ 2318±29 • •

D⇤
s0(2317)

± 0+ 2317.7±0.6 • •
D⇤±

s 1� 2112.1±0.4 • •
D⇤(2007)0 1� 2008.62 •
D±

s 0� 1968.27±0.10 • • •
D±,0 0� 1867.23 • • •

TABLE I. List of the mesonic states and experimental mea-
sured masses used throughout this work. A bullet point in one
of the columns labeled S1, S2, and S3 indicates that the meson
state is included in the respective data set used in various fits.
The masses of B±,0, D±,0, B1(5721)

+,0, and D1(2420)
±,0 are

averages of the charged and uncharged states. The masses of
⌥(1D) and ⌘b(3S) are estimates taken from Ref. [61]. There
is weak evidence (at 1.8�) that ⌥(1D) has been seen [62, 63].

the corresponding open-flavor threshold. As exceptions,
a few states located slightly above threshold but with
very small widths are considered as well. We restrict
our analysis to mesons with JP = 0±, 1±, representing
already the vast majority of the experimental states.

There are two di↵erent ways how we quantify the rela-
tion between the masses µi({↵k(M)}), calculated from a
theoretical model M specified through a set of parame-
ters {↵k(M)}, and a certain set S of experimental masses

µexp

i (S) withNS elements. When S is the set of data used
in the least square fit of the model parameters, then the
rms di↵erence

�rms(S) ⌘
s

1

NS

X

i2S

[µi({↵k(M)})� µexp

i (S)]
2

(36)

is the quantity that is being minimized, and its value is
therefore a measure of the quality of the fit.
On the other hand, we also want to be able to evaluate

the ability of a given model to predict states it was not
fitted to. For this purpose we also calculate rms di↵er-
ences with respect to data sets S0 that are di↵erent from
the set S a model was fitted to. To distinguish these dif-
ferences more clearly from the minimized values we use
the notation �rms(S0) whenever S0 6= S. Note that it is
quite possible that, for particular choices of S and S0, one
model has a higher �rms but a smaller �rms than another.
We chose three di↵erent sets of data to fit our model

parameters to: the set called S1 consists of pseudoscalar
meson states only (it is identical to the one used in [57]
to fit the model named P1), the set S2 includes pseu-
doscalar, scalar, and vector states, and the largest set,
S3, adds a number of axial vector states to the states
contained in S2. A list of these states and their masses
is given in Table I.
We constructed several interaction models by fitting

to these three data sets while, in some cases, placing
constraints on certain parameters. The results of our
fits are summarized in Table II. In all cases, the rms
di↵erence �rms is given with respect to the data set S3,
containing a total of 39 states.
Models M0S1 and M0S2, previously denoted in ref.[57]

by P1 and PSV1 respectively, were fitted with fixed val-
ues for the constituent quark masses and mixing param-
eter y = 0 [57]. They should be compared to the new
models M1S1 and M1S2, in which the quark masses and
y were allowed to vary freely. We see that the addition
of 5 free parameters leads to a lower minimum in �rms,
but the overall rms di↵erence �rms changes by very lit-
tle (it even increases from M0S1 to M1S1). Based on the
data set S1, the fit finds no improvement in varying y,
such that the new minimum is located again at y = 0.
This is not the case for data set S2, which prefers a finite
value of y of approximately 0.25. At the same time, the
quark masses change quite considerably, decreasing by
around 200 MeV (more moderately for mb), which is in
part compensated by a similarly smaller constant C. To
see that this compensating e↵ect makes sense, remember
that qq spinor matrix elements of �µ

1
⌦ �µ2 are negative

in the dominant channel with ⇢0 = �. Because of the
overall minus sign in the definition of VC(p, k), lowering
C makes the kernel on the rhs of Eq. (34) smaller, and
lowering the quark masses reduces its lhs. The masses of
the light quarks tend to go as low as possible in these fits.
The final value of 100 MeV is actually the lower limit of
the range in which they were allowed to vary.
The bottomonium system is very rich in measured ex-

cited states. This poses a bit of a challenge for our cal-
culations, because describing higher excited states accu-

9

Data set
State JP (C) Mass (MeV) S1 S2 S3
⌥(4S) 1�� 10579.4±1.2 •
�b1(3P ) 1++ 10512.1±2.3 •
⌥(3S) 1�� 10355.2±0.5 • •
⌘b(3S) 0�+ 10337
hb(2P ) 1+� 10259.8±1.2 •
�b1(2P ) 1++ 10255.46±0.22±0.50 •
�b0(2P ) 0++ 10232.5±0.4±0.5 • •
⌥(1D) 1�� 10155
⌥(2S) 1�� 10023.26±0.31 • •
⌘b(2S) 0�+ 9999±4 • • •
hb(1P ) 1+� 9899.3±0.8 •
�b1(1P ) 1++ 9892.78±0.26±0.31 •
�b0(1P ) 0++ 9859.44±0.42±0.31 • •
⌥(1S) 1�� 9460.30±0.26 • •
⌘b(1S) 0�+ 9399.0±2.3 • • •
Bc(2S)

± 0� 6842±6 •
B+

c 0� 6275.1±1.0 • • •
Bs1(5830) 1+ 5828.63±0.27 •
B1(5721)

+,0 1+ 5725.85±1.3 •
B⇤

s 1� 5415.8±1.5 • •
B0

s 0� 5366.82±0.22 • • •
B⇤ 1� 5324.65±0.25 • •
B±,0 0� 5279.45 • • •
X(3915) 0++ 3918.4±1.9 • •
 (3770) 1�� 3773.13±0.35 • •
 (2S) 1�� 3686.097±0.010 • •
⌘c(2S) 0�+ 3639.2±1.2 • • •
hc(1P ) 1+� 3525.38±0.11 •
�c1(1P ) 1++ 3510.66±0.07 •
�c0(1P ) 0++ 3414.75±0.31 • •
J/ (1S) 1�� 3096.900±0.006 • •
⌘c(1S) 0�+ 2983.4±0.5 • • •
Ds1(2536)

± 1+ 2535.10±0.06 •
Ds1(2460)

± 1+ 2459.5±0.6 •
D1(2420)

±,0 1+ 2421.4 •
D⇤

0(2400)
0 0+ 2318±29 • •

D⇤
s0(2317)

± 0+ 2317.7±0.6 • •
D⇤±

s 1� 2112.1±0.4 • •
D⇤(2007)0 1� 2008.62 •
D±

s 0� 1968.27±0.10 • • •
D±,0 0� 1867.23 • • •

TABLE I. List of the mesonic states and experimental mea-
sured masses used throughout this work. A bullet point in one
of the columns labeled S1, S2, and S3 indicates that the meson
state is included in the respective data set used in various fits.
The masses of B±,0, D±,0, B1(5721)

+,0, and D1(2420)
±,0 are

averages of the charged and uncharged states. The masses of
⌥(1D) and ⌘b(3S) are estimates taken from Ref. [61]. There
is weak evidence (at 1.8�) that ⌥(1D) has been seen [62, 63].

the corresponding open-flavor threshold. As exceptions,
a few states located slightly above threshold but with
very small widths are considered as well. We restrict
our analysis to mesons with JP = 0±, 1±, representing
already the vast majority of the experimental states.

There are two di↵erent ways how we quantify the rela-
tion between the masses µi({↵k(M)}), calculated from a
theoretical model M specified through a set of parame-
ters {↵k(M)}, and a certain set S of experimental masses

µexp

i (S) withNS elements. When S is the set of data used
in the least square fit of the model parameters, then the
rms di↵erence

�rms(S) ⌘
s

1

NS

X

i2S

[µi({↵k(M)})� µexp

i (S)]
2

(36)

is the quantity that is being minimized, and its value is
therefore a measure of the quality of the fit.
On the other hand, we also want to be able to evaluate

the ability of a given model to predict states it was not
fitted to. For this purpose we also calculate rms di↵er-
ences with respect to data sets S0 that are di↵erent from
the set S a model was fitted to. To distinguish these dif-
ferences more clearly from the minimized values we use
the notation �rms(S0) whenever S0 6= S. Note that it is
quite possible that, for particular choices of S and S0, one
model has a higher �rms but a smaller �rms than another.
We chose three di↵erent sets of data to fit our model

parameters to: the set called S1 consists of pseudoscalar
meson states only (it is identical to the one used in [57]
to fit the model named P1), the set S2 includes pseu-
doscalar, scalar, and vector states, and the largest set,
S3, adds a number of axial vector states to the states
contained in S2. A list of these states and their masses
is given in Table I.
We constructed several interaction models by fitting

to these three data sets while, in some cases, placing
constraints on certain parameters. The results of our
fits are summarized in Table II. In all cases, the rms
di↵erence �rms is given with respect to the data set S3,
containing a total of 39 states.
Models M0S1 and M0S2, previously denoted in ref.[57]

by P1 and PSV1 respectively, were fitted with fixed val-
ues for the constituent quark masses and mixing param-
eter y = 0 [57]. They should be compared to the new
models M1S1 and M1S2, in which the quark masses and
y were allowed to vary freely. We see that the addition
of 5 free parameters leads to a lower minimum in �rms,
but the overall rms di↵erence �rms changes by very lit-
tle (it even increases from M0S1 to M1S1). Based on the
data set S1, the fit finds no improvement in varying y,
such that the new minimum is located again at y = 0.
This is not the case for data set S2, which prefers a finite
value of y of approximately 0.25. At the same time, the
quark masses change quite considerably, decreasing by
around 200 MeV (more moderately for mb), which is in
part compensated by a similarly smaller constant C. To
see that this compensating e↵ect makes sense, remember
that qq spinor matrix elements of �µ

1
⌦ �µ2 are negative

in the dominant channel with ⇢0 = �. Because of the
overall minus sign in the definition of VC(p, k), lowering
C makes the kernel on the rhs of Eq. (34) smaller, and
lowering the quark masses reduces its lhs. The masses of
the light quarks tend to go as low as possible in these fits.
The final value of 100 MeV is actually the lower limit of
the range in which they were allowed to vary.
The bottomonium system is very rich in measured ex-

cited states. This poses a bit of a challenge for our cal-
culations, because describing higher excited states accu-

9

Data set
State JP (C) Mass (MeV) S1 S2 S3
⌥(4S) 1�� 10579.4±1.2 •
�b1(3P ) 1++ 10512.1±2.3 •
⌥(3S) 1�� 10355.2±0.5 • •
⌘b(3S) 0�+ 10337
hb(2P ) 1+� 10259.8±1.2 •
�b1(2P ) 1++ 10255.46±0.22±0.50 •
�b0(2P ) 0++ 10232.5±0.4±0.5 • •
⌥(1D) 1�� 10155
⌥(2S) 1�� 10023.26±0.31 • •
⌘b(2S) 0�+ 9999±4 • • •
hb(1P ) 1+� 9899.3±0.8 •
�b1(1P ) 1++ 9892.78±0.26±0.31 •
�b0(1P ) 0++ 9859.44±0.42±0.31 • •
⌥(1S) 1�� 9460.30±0.26 • •
⌘b(1S) 0�+ 9399.0±2.3 • • •
Bc(2S)

± 0� 6842±6 •
B+

c 0� 6275.1±1.0 • • •
Bs1(5830) 1+ 5828.63±0.27 •
B1(5721)

+,0 1+ 5725.85±1.3 •
B⇤

s 1� 5415.8±1.5 • •
B0

s 0� 5366.82±0.22 • • •
B⇤ 1� 5324.65±0.25 • •
B±,0 0� 5279.45 • • •
X(3915) 0++ 3918.4±1.9 • •
 (3770) 1�� 3773.13±0.35 • •
 (2S) 1�� 3686.097±0.010 • •
⌘c(2S) 0�+ 3639.2±1.2 • • •
hc(1P ) 1+� 3525.38±0.11 •
�c1(1P ) 1++ 3510.66±0.07 •
�c0(1P ) 0++ 3414.75±0.31 • •
J/ (1S) 1�� 3096.900±0.006 • •
⌘c(1S) 0�+ 2983.4±0.5 • • •
Ds1(2536)

± 1+ 2535.10±0.06 •
Ds1(2460)

± 1+ 2459.5±0.6 •
D1(2420)

±,0 1+ 2421.4 •
D⇤

0(2400)
0 0+ 2318±29 • •

D⇤
s0(2317)

± 0+ 2317.7±0.6 • •
D⇤±

s 1� 2112.1±0.4 • •
D⇤(2007)0 1� 2008.62 •
D±

s 0� 1968.27±0.10 • • •
D±,0 0� 1867.23 • • •

TABLE I. List of the mesonic states and experimental mea-
sured masses used throughout this work. A bullet point in one
of the columns labeled S1, S2, and S3 indicates that the meson
state is included in the respective data set used in various fits.
The masses of B±,0, D±,0, B1(5721)

+,0, and D1(2420)
±,0 are

averages of the charged and uncharged states. The masses of
⌥(1D) and ⌘b(3S) are estimates taken from Ref. [61]. There
is weak evidence (at 1.8�) that ⌥(1D) has been seen [62, 63].

the corresponding open-flavor threshold. As exceptions,
a few states located slightly above threshold but with
very small widths are considered as well. We restrict
our analysis to mesons with JP = 0±, 1±, representing
already the vast majority of the experimental states.

There are two di↵erent ways how we quantify the rela-
tion between the masses µi({↵k(M)}), calculated from a
theoretical model M specified through a set of parame-
ters {↵k(M)}, and a certain set S of experimental masses

µexp

i (S) withNS elements. When S is the set of data used
in the least square fit of the model parameters, then the
rms di↵erence

�rms(S) ⌘
s

1

NS

X

i2S

[µi({↵k(M)})� µexp

i (S)]
2

(36)

is the quantity that is being minimized, and its value is
therefore a measure of the quality of the fit.
On the other hand, we also want to be able to evaluate

the ability of a given model to predict states it was not
fitted to. For this purpose we also calculate rms di↵er-
ences with respect to data sets S0 that are di↵erent from
the set S a model was fitted to. To distinguish these dif-
ferences more clearly from the minimized values we use
the notation �rms(S0) whenever S0 6= S. Note that it is
quite possible that, for particular choices of S and S0, one
model has a higher �rms but a smaller �rms than another.
We chose three di↵erent sets of data to fit our model

parameters to: the set called S1 consists of pseudoscalar
meson states only (it is identical to the one used in [57]
to fit the model named P1), the set S2 includes pseu-
doscalar, scalar, and vector states, and the largest set,
S3, adds a number of axial vector states to the states
contained in S2. A list of these states and their masses
is given in Table I.
We constructed several interaction models by fitting

to these three data sets while, in some cases, placing
constraints on certain parameters. The results of our
fits are summarized in Table II. In all cases, the rms
di↵erence �rms is given with respect to the data set S3,
containing a total of 39 states.
Models M0S1 and M0S2, previously denoted in ref.[57]

by P1 and PSV1 respectively, were fitted with fixed val-
ues for the constituent quark masses and mixing param-
eter y = 0 [57]. They should be compared to the new
models M1S1 and M1S2, in which the quark masses and
y were allowed to vary freely. We see that the addition
of 5 free parameters leads to a lower minimum in �rms,
but the overall rms di↵erence �rms changes by very lit-
tle (it even increases from M0S1 to M1S1). Based on the
data set S1, the fit finds no improvement in varying y,
such that the new minimum is located again at y = 0.
This is not the case for data set S2, which prefers a finite
value of y of approximately 0.25. At the same time, the
quark masses change quite considerably, decreasing by
around 200 MeV (more moderately for mb), which is in
part compensated by a similarly smaller constant C. To
see that this compensating e↵ect makes sense, remember
that qq spinor matrix elements of �µ

1
⌦ �µ2 are negative

in the dominant channel with ⇢0 = �. Because of the
overall minus sign in the definition of VC(p, k), lowering
C makes the kernel on the rhs of Eq. (34) smaller, and
lowering the quark masses reduces its lhs. The masses of
the light quarks tend to go as low as possible in these fits.
The final value of 100 MeV is actually the lower limit of
the range in which they were allowed to vary.
The bottomonium system is very rich in measured ex-

cited states. This poses a bit of a challenge for our cal-
culations, because describing higher excited states accu-
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Data set
State JP (C) Mass (MeV) S1 S2 S3
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⌘b(2S) 0�+ 9999±4 • • •
hb(1P ) 1+� 9899.3±0.8 •
�b1(1P ) 1++ 9892.78±0.26±0.31 •
�b0(1P ) 0++ 9859.44±0.42±0.31 • •
⌥(1S) 1�� 9460.30±0.26 • •
⌘b(1S) 0�+ 9399.0±2.3 • • •
Bc(2S)

± 0� 6842±6 •
B+

c 0� 6275.1±1.0 • • •
Bs1(5830) 1+ 5828.63±0.27 •
B1(5721)

+,0 1+ 5725.85±1.3 •
B⇤

s 1� 5415.8±1.5 • •
B0

s 0� 5366.82±0.22 • • •
B⇤ 1� 5324.65±0.25 • •
B±,0 0� 5279.45 • • •
X(3915) 0++ 3918.4±1.9 • •
 (3770) 1�� 3773.13±0.35 • •
 (2S) 1�� 3686.097±0.010 • •
⌘c(2S) 0�+ 3639.2±1.2 • • •
hc(1P ) 1+� 3525.38±0.11 •
�c1(1P ) 1++ 3510.66±0.07 •
�c0(1P ) 0++ 3414.75±0.31 • •
J/ (1S) 1�� 3096.900±0.006 • •
⌘c(1S) 0�+ 2983.4±0.5 • • •
Ds1(2536)

± 1+ 2535.10±0.06 •
Ds1(2460)

± 1+ 2459.5±0.6 •
D1(2420)

±,0 1+ 2421.4 •
D⇤

0(2400)
0 0+ 2318±29 • •

D⇤
s0(2317)

± 0+ 2317.7±0.6 • •
D⇤±

s 1� 2112.1±0.4 • •
D⇤(2007)0 1� 2008.62 •
D±

s 0� 1968.27±0.10 • • •
D±,0 0� 1867.23 • • •

TABLE I. List of the mesonic states and experimental mea-
sured masses used throughout this work. A bullet point in one
of the columns labeled S1, S2, and S3 indicates that the meson
state is included in the respective data set used in various fits.
The masses of B±,0, D±,0, B1(5721)

+,0, and D1(2420)
±,0 are

averages of the charged and uncharged states. The masses of
⌥(1D) and ⌘b(3S) are estimates taken from Ref. [61]. There
is weak evidence (at 1.8�) that ⌥(1D) has been seen [62, 63].

the corresponding open-flavor threshold. As exceptions,
a few states located slightly above threshold but with
very small widths are considered as well. We restrict
our analysis to mesons with JP = 0±, 1±, representing
already the vast majority of the experimental states.

There are two di↵erent ways how we quantify the rela-
tion between the masses µi({↵k(M)}), calculated from a
theoretical model M specified through a set of parame-
ters {↵k(M)}, and a certain set S of experimental masses

µexp

i (S) withNS elements. When S is the set of data used
in the least square fit of the model parameters, then the
rms di↵erence

�rms(S) ⌘
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[µi({↵k(M)})� µexp
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is the quantity that is being minimized, and its value is
therefore a measure of the quality of the fit.
On the other hand, we also want to be able to evaluate

the ability of a given model to predict states it was not
fitted to. For this purpose we also calculate rms di↵er-
ences with respect to data sets S0 that are di↵erent from
the set S a model was fitted to. To distinguish these dif-
ferences more clearly from the minimized values we use
the notation �rms(S0) whenever S0 6= S. Note that it is
quite possible that, for particular choices of S and S0, one
model has a higher �rms but a smaller �rms than another.
We chose three di↵erent sets of data to fit our model

parameters to: the set called S1 consists of pseudoscalar
meson states only (it is identical to the one used in [57]
to fit the model named P1), the set S2 includes pseu-
doscalar, scalar, and vector states, and the largest set,
S3, adds a number of axial vector states to the states
contained in S2. A list of these states and their masses
is given in Table I.
We constructed several interaction models by fitting

to these three data sets while, in some cases, placing
constraints on certain parameters. The results of our
fits are summarized in Table II. In all cases, the rms
di↵erence �rms is given with respect to the data set S3,
containing a total of 39 states.
Models M0S1 and M0S2, previously denoted in ref.[57]

by P1 and PSV1 respectively, were fitted with fixed val-
ues for the constituent quark masses and mixing param-
eter y = 0 [57]. They should be compared to the new
models M1S1 and M1S2, in which the quark masses and
y were allowed to vary freely. We see that the addition
of 5 free parameters leads to a lower minimum in �rms,
but the overall rms di↵erence �rms changes by very lit-
tle (it even increases from M0S1 to M1S1). Based on the
data set S1, the fit finds no improvement in varying y,
such that the new minimum is located again at y = 0.
This is not the case for data set S2, which prefers a finite
value of y of approximately 0.25. At the same time, the
quark masses change quite considerably, decreasing by
around 200 MeV (more moderately for mb), which is in
part compensated by a similarly smaller constant C. To
see that this compensating e↵ect makes sense, remember
that qq spinor matrix elements of �µ

1
⌦ �µ2 are negative

in the dominant channel with ⇢0 = �. Because of the
overall minus sign in the definition of VC(p, k), lowering
C makes the kernel on the rhs of Eq. (34) smaller, and
lowering the quark masses reduces its lhs. The masses of
the light quarks tend to go as low as possible in these fits.
The final value of 100 MeV is actually the lower limit of
the range in which they were allowed to vary.
The bottomonium system is very rich in measured ex-

cited states. This poses a bit of a challenge for our cal-
culations, because describing higher excited states accu-

S1:   9 PS mesons

S2: 25 PS+V+S mesons

S3: 39 PS+V+S+AV mesons

bb

bc

bs
bq

bs

bq

cc

cs

cq

cq

cq

cs

cs

{
{
{

{

{
{

q represents a light quark (u or d)
We use mu = md ⌘ mq
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Global fits with fixed quark masses and y=0

mb=4.892, mc=1.600, ms=0.448, mq=0.346 Constituent quark masses (in GeV)

First step: we perform global fits to the heavy + heavy-light meson spectrum

Model parameters not adjusted in the fits:

y = 0Scalar + pseudoscalar confinement

‣Model M0S1: fitted to 9 pseudoscalar meson masses only

‣Model M0S2: fitted to 25 pseudoscalar, vector, and scalar meson masses

Adjustable model parameters: � ↵s C

S. Leitão, A. S., M. T. Peña, E. Biernat, Phys. Lett. B 764 (2017) 38

(Previously called models P1 and PSV1)
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Global fits with fixed quark masses and scalar confinement (y=0)
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Global fits with fixed quark masses and y=0

rms differences to experimental masses (set S3): 
The results of the two fits are remarkably similar!

‣Kernel parameters are already well determined through pseudoscalar states (JP = 0-)

Almost 100% L=0, S=0

(S-wave, spin singlet)

h0�|S1 · S2|0�i = �3/4

h0�|L · S|0�i = 0

h0�|S12|0�i = 0 Tensor force vanishes

Spin-orbit force vanishes

Spin-spin force acts in singlet only

Pseudoscalar states do not constrain spin-orbit and tensor forces, and cannot separate 
spin-spin from central force.

‣Good test for a covariant kernel:

But they should be determined through covariance.

Model M0S1 indeed predicts spin-dependent forces correctly!

Leitão, AS, Peña, Biernat, Phys. Lett. B 764 (2017) 38

Model � [GeV2] ↵s C [GeV]
M0S1 0.2493 0.3643 0.3491
M0S2 0.2247 0.3614 0.3377

Model �rms [GeV]
M0S1 0.037
M0S2 0.036
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Importance of PS coupling in the confining kernel

S+PS

Confining interaction

(with y=0)
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Fits with variable quark masses and confinement (S+PS)-V mixing y

y held fixed, other parameters refitted

In a new series of fits we treat quark masses and mixing parameter y as adjustable parameters.

‣Quality of fits not much improved

‣Best model M1S3 has y=0.20, but 

minimum is very shallow

include AV states in fit

{

y and quark masses are not much 
constrained by the mass spectrum.

10

Model Symbol � [GeV2] ↵s C [GeV] y mb [GeV] mc [GeV] ms [GeV] mq [GeV] N �rms [GeV] �rms [GeV]
M0S1 0.2493 0.3643 0.3491 0.0000 4.892 1.600 0.4478 0.3455 9 0.017 0.037
M1S1 � 0.2235 0.3941 0.0591 0.0000 4.768 1.398 0.2547 0.1230 9 0.006 0.041
M0S2 0.2247 0.3614 0.3377 0.0000 4.892 1.600 0.4478 0.3455 25 0.028 0.036
M1S2 0.1893 0.4126 0.1085 0.2537 4.825 1.470 0.2349 0.1000 25 0.022 0.033
M1S20 4 0.2017 0.4013 0.1311 0.2677 4.822 1.464 0.2365 0.1000 24 0.018 0.033
M1S3 0.2022 0.4129 0.2145 0.2002 4.875 1.553 0.3679 0.2493 39 0.030 0.030
M0S3 0.2058 0.4172 0.2821 0.0000 4.917 1.624 0.4616 0.3514 39 0.031 0.031

TABLE II. (color online). Summary table of the kernel parameters of the di↵erent fitting models considered in this work. The
masses calculated from the models labeled with the symbols � , 4, and are shown in Fig. 4. N is the number of states in
the data set used in fitting the model. �rms indicates the minimized root mean square di↵erence with respect to the data set
used in the fit, and �rms is the root mean square di↵erence with respect to data set S3, including both fitted and predicted
states. The values in boldface were held fixed.

FIG. 4. (color online). Masses of heavy-light and heavy mesons with JP = 0± and 1±. The points depicted by the symbols
� , 4, and represent the 1CSE results calculated with the models with matching symbols of Table II. Solid horizontal
lines are the measured meson masses [64]. The two dashed levels are estimates taken from Ref. [61]. There is weak evidence
(at 1.8�) that the ⌥(1D) has been seen [62, 63]. Both models predict a so far unobserved ⌥(2D) between ⌥(3S) and ⌥(4S).
Dashed horizontal lines across the figure indicate open flavor thresholds.

rately requires a larger number of spline functions. In
particular, the ⌥(4S) appears in our calculations as the
5th excited state in the vector bb system, but increasing
the number of basis spline functions accordingly would
be too time-consuming to perform our 8-parameter fits.

To test whether the M1S2 fit might have been distorted
by trying to reproduce the ⌥(4S) mass with insu�cient
numerical accuracy, we performed another fit where this
state was omitted from the fitted data set. To distinguish
from the previous one we denote it by S20. However, the

Parameters in bold were not varied during the fit

rms difference to fitted masses

39 states

25 states

9 states

14

the relativistic components are already quite significant,
and a nonrelativistic description is no longer adequate.

Comparing Figs. 5 and 6 one can also see that the
momentum-space wave functions of bottomonium are
much more spread out, which means that in configura-
tion space they are more compact than the heavy-light
cq mesons.

Figure 5(d) contains another interesting detail: the 1+

ground state is dominated not by one, but by a mixture
of two P waves, a spin triplet and a spin singlet. The
role of these two P waves is interchanged in the first
excited state (not shown in the figure). As already dis-
cussed in the previous section, in a relativistic description
both spin triplets and singlets can contribute to either C-
parity eigenstate. However, the plot in Fig. 5(d) may give
an exaggerated impression of the weight of the singlet P -
wave: its contribution to the total norm is actually only
about 7 %. Nevertheless, the fact that in the almost non-
relativistic �b1(1P ) the singlet component is not smaller
is probably in part due to the lack of charge conjuga-
tion symmetry of the 1CSE. We can speculate that this
singlet wave function will be more suppressed when a
charge-conjugation symmetric two- or four-channel CST
equation is solved. In addition, the presence of a pseu-
doscalar confining kernel also enhances its weight. When
it is turned o↵, the norm integral of the singlet P -wave
is reduced by roughly one half.

The vector meson spectrum of bottomonium is partic-
ularly interesting because of the large number of excited
states below or slightly above threshold that have been
measured. In Fig. 7 we show the wave functions of the
first six vector states of bottomonium. According to the
figure, the first two states are mostly S waves, followed
by alternatingD and S states. The ⌥(1D) is listed in [64]
as a 2++ state, but there is some evidence that 1�� was
also possibly seen. There is, however, no experimental
evidence yet for the predicted ⌥(2D). The figure shows
that there is a small mixture of 2S in our ⌥(1D), and a
small 3S component is present in the ⌥(2D). Apart from
the increasing number of nodes, one can also clearly see
the wave functions are the more concentrated at lower
momenta the higher excited a state is, which means that
they are increasingly spread out in configuration space.

Whereas the structure of the ground state is deter-
mined mostly by the OGE interaction, the higher excited
states should be more sensitive to the confining interac-
tion. We have already seen in the previous section that
the masses of these states can be well described by our
models. To test the importance of the confining inter-
action for the description of the bottomonium excitation
spectrum, we performed fits using the OGE and con-
stant kernels only. The quality of these fits turned out
significantly worse, with rms di↵erences above 100 MeV,
compared to about 30 MeV when the complete kernel is
used. Moreover, the sequence of S- and D-wave domi-
nated states is altered in the bottomonium vector meson
spectrum: the ⌥(2D) and ⌥(4S) swap places. This find-
ing suggests that, once the ⌥(2D) is observed, finding
its mass below or above the mass of ⌥(4S) can tell us
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FIG. 8. (color online). Variation of �rms in a series of fits
where the parameter y has been held fixed while all other
parameters were fitted. The solid line shows the result of fits
to data set S1 of Tab. I, the dashed and dotted lines refer
to data sets S2 and S3, respectively. The symbols �, 4, ,
and indicate the results of models M1S1, M1S20 , M1S3, and
M0S3 of Tab. II.

whether a linear confining interaction is indeed needed
or not.

C. Constraints on fit parameters

Our model fits of Tab. II show some variation in the
values of the best-fit parameters, depending on which
data set the model is fitted to. In this section we want to
investigate this sensitivity in more detail and determine
how well some of the parameters are actually constrained.
We begin with the parameter y that determines the

mixing between the scalar+pseudoscalar and vector con-
fining interaction. We perform a series of fits, where in
each case y is held fixed at a di↵erent value while all
other parameters are allowed to vary. We restrict y to lie
in the interval between 0 and 0.45. For higher values, the
equation becomes unstable and no physical solutions can
be found—a well-known phenomenon that was observed
with many di↵erent relativistic equations [59, 65].
Figure 8 shows the obtained minima of �rms as a func-

tion of y, using three di↵erent data sets. As already dis-
cussed in Sec. III A, the data set with exclusively pseu-
doscalar mesons prefers y = 0, whereas optimum values
of y between 0.20 and 0.27 are obtained when more data
are included. However, Fig. 8 also shows that, except
for the smallest data set, the minima are very shallow.
In fact, when using data set S3, no particular value of
y seems to be clearly favored over any other. Instead
of accepting the value y = 0.20 of the fit M1S3, we
could choose arbitrarily another value without deterio-
rating the fit significantly.
Figure 9 shows how the constituent quark masses ad-

just when y is changed, and Fig. 10 displays the cor-
responding variations of the couplings strengths param-
eters �, ↵s, and C. For the larger data sets, a trend
is visible that connects smaller y with somewhat higher
masses, whereas the variations in the coupling strength
parameters are rather mild. Overall, the heavy quark
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Mass spectra of heavy and heavy-light mesons
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Numerical convergence (M1S3)
6

Table 2 Masses (in GeV) of the lowest four states (numbered by n) of selected pseudoscalar and vector mesons
(“q” is a u or d quark), calculated with model M1S3, and using di↵erent numbers of splines in the expansion
of the radial wave functions.

Number of splines
Meson JP n 12 24 36 48 64

bb̄ 0� 1 9.37765 9.37886 9.37917 9.37931 9.37940
2 9.96915 9.96932 9.96938 9.96939 9.96939
3 10.33061 10.32623 10.32623 10.32622 10.32621
4 10.61822 10.61660 10.61646 10.61643 10.61641

bb̄ 1� 1 9.47414 9.47411 9.47409 9.47407 9.47406
2 10.01186 10.01147 10.01141 10.01138 10.01135
3 10.14699 10.14692 10.14702 10.14714 10.14731
4 10.36325 10.35767 10.35758 10.35755 10.35751

cc̄ 0� 1 3.02240 3.02341 3.02380 3.02400 3.02414
2 3.63778 3.63814 3.63832 3.63843 3.63850
3 4.09893 4.09910 4.09925 4.09933 4.09938
4 4.49972 4.49926 4.49940 4.49947 4.49952

cc̄ 1� 1 3.13139 3.13154 3.13163 3.13169 3.13174
2 3.69834 3.69840 3.69847 3.69853 3.69857
3 3.75095 3.75366 3.75659 3.75966 3.76395
4 4.14245 4.14248 4.14257 4.14263 4.14267

cq̄ 0� 1 1.86997 1.87122 1.87182 1.87217 1.87247
2 2.51166 2.51196 2.51213 2.51227 2.51242
3 2.99045 2.99065 2.99071 2.99079 2.99090
4 3.40197 3.40221 3.40225 3.40232 3.40241

cq̄ 1� 1 2.05555 2.05597 2.05612 2.05620 2.05626
2 2.61323 2.61365 2.61383 2.61397 2.61411
3 2.65564 2.65763 2.66005 2.66273 2.66654
4 3.06017 3.06073 3.06096 3.06115 3.06135

it numerically by representing the radial wave functions in a basis of cubic B-splines, adjusted for a
correct asymptotic behavior.

Our global model parameters (Tab. 2) were determined through least square fits to various sets of
experimental masses for JP = 0± and 1± mesons. The set S1 consists of 9 pseudoscalar (PS) states,
S2 adds scalar (S) and vector (V) mesons to a total of 25 states (the set S20 leaves out the highly
excited ⌥ (4S)), and S3 includes axialvector (AV) mesons with a total of 39 states (a detailed list of
these data sets can be found in [19]). The mass spectra for some cases are shown in Fig. 2, the models
parameters and corresponding rms di↵erences between calculated masses and experimental data are
shown in Tab. 2. Also shown in Fig. 2 is that—as expected—the results remain almost unchanged
when the PS coupling in the confining kernel of model M0S1 is turned o↵ (the largest di↵erence is
about 40 MeV in PS cq̄).

The models M0S1 and M0S2 (identical to P1 and PSV1 of Ref. [21]) where fitted for y = 0 (no
Lorentz vector coupling in the confining kernel) and keeping the quark masses fixed. It is remarkable
that a fit to a few PS states alone is already su�cient to predict the spectrum of V, S, and AV
mesons with very good quality. In a subsequent work [19], we allowed y and the quark masses to
vary as well, the latter being a rather challenging task with respect to the required computing time.
It turned out that, depending on the data set used in the fit, y takes on values di↵erent from zero.
The fit M1S1 still prefers y = 0, whereas M1S3, the model with the best overall fit, yields y = 0.20.
However, more detailed studies showed that the minimum of the least-square-di↵erence at y = 0.20
is very shallow, and fixing y anywhere between 0 and 0.3 gives fits of essentially the same quality.
One can see this, for instance, by comparing M1S3 and M0S3 in Fig. 2 and Tab. 2: M0S3 is obtained
with a fixed y = 0, and its rms di↵erence to the data is only marginally worse than M1S3’s. We can
conclude that the mass spectrum alone does not provide very tight constraints on the Lorentz mixing
parameter y, and we have to look for other observables in order to obtain more detailed information
on the Lorentz structure of the confining interaction. Similarly, we found that a relatively broad
range of constituent quark masses is compatible with a good description of the mass spectrum.
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Bottomonium ground-state wave functions
Calculated with model M1S3
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Radial excitations in vector bottomonium
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Importance of relativistic components

Mesons in a Covariant Quark Model Sofia LeitãoISU, February 1, 2017 31

SL et al., (in preparation)Using model PSVA we calculated several ground state wave functions

pseudoscalar

scalar

Ground-state wave functions of model M1S3.
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Importance of relativistic components
Ground-state wave functions of model M1S3.

Mesons in a Covariant Quark Model Sofia LeitãoISU, February 1, 2017 32

SL et al., (in preparation)Using model PSVA we calculated several ground state wave functions
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CST light-front wave functions

Comparison of CST and BLFQ wave functions

Calculated CST-LFWF, mapped with the Brodsky-Huang-Lepage prescription (map.)
5

where Ek is the on-shell energy (14). In the rest-frame the x

variable should in principle be identified as [35]

x =
k+1
P+

=
Ek + k3

M
=

√

m2 + kkk2
⊥+(k3)2 + k3

M
. (24)

Consequently,

kkk2 =
1
2
(kkk2

⊥+m2)+

(

xM

2

)2

+

(

kkk2
⊥+m2

2xM

)2

. (25)

From Eq. (24) one verifies that,

minx = lim
k3→−∞

x = 0, maxx = lim
k3→+∞

x =+∞. (26)

The last limit poses a difficulty because x can be outside the
region 0 ≤ x ≤ 1. How to properly deal with this issue cer-
tainly requires further investigation and it is beyond of the
scope of this article. Recent work has been done in that di-
rection, investigating the formal relation between the light-
cone and CST box diagrams for a scalar theory [35]. In any
case, we expect that the contribution to the wave function for
values of x > 1 should be small, and that it vanishes exactly
in the non-relativistic limit [10].

We circumvent this difficulty by adopting the Brodsky-
Huang-Lepage (BHL) prescription [20], where x is automat-
ically limited between 0 and 1, and investigate to what extent
such a prescription gives reasonable results.

For the equal mass case of quarkonium mq = mq̄ = m,
the BHL prescription provides

x =
k+

P+
≡

Ek + k3

2Ek
=

1
2
+

k3

2
√

k2
⊥+(k3)2 +m2

. (27)

From Eq. (27) it is straightforward to derive

kkk2 =
kkk2
⊥+m2

4x(1− x)
−m2. (28)

We thus identify the “CST LFWFs" as:

ψ+ρ
s1s2

(kkk⊥,x)≡Ψ+ρ
s1s2

(

kkk⊥,k
3(k⊥,x)

)

, (29)

up to some normalization factors.
In Fig. (1) we compare the CST amplitudes for one of the

dominant wave function components of J/ψ after using the
change of variables expressed in (24) (left panel) vs. the one
in (27) (right panel). The visualization scheme is explained
in detail in Sec. 3.3.

The CST amplitude on the left panel spreads beyond the
physical region 0 ≤ x ≤ 1, but for x > 1 it is fairly small
for the illustrative case of charmonium, where relativity is
no longer negligible. On the right panel, the wave function
mapped using the BHL prescription is symmetric with re-
spect to x = 0.5 and is restricted to 0 ≤ x ≤ 1, consistent
with longitudinal light-front momentum conservation.

(a) (b)

Fig. 1 CST amplitudes for the triplet component of J/ψ(1S) state with
λ = 0 using two different changes of coordinates: (a) using the defini-
tion of x given in Eq. (24) and (b) using the BHL prescription.

2.6 Definition of physical observables and distribution
functions

Both the LFWFs and the CST amplitudes allow us to calcu-
late a variety of observables. But with the LFWFs obtained
from the BHL mapping, one also gains direct access to quan-
tities such as light-cone distributions, whose extraction is
not as straightforward in approaches relying on Euclidean
formulations. In this section we apply the LFWFs to the cal-
culation of decay constants and leading-twist parton distri-
bution amplitudes and parton distribution functions.

2.6.1 Decay constants

Decay constants are very important quantities to probe short-
range physics. In practice they will be sensitive to the effec-
tive short-range potential. This implies that for any realistic
model of quarkonia, having a correct implementation of the
one-gluon exchange interaction is essential for a good de-
scription of the decay constants.

In the absence of a proper renormalization procedure,
decay constants could develop dependence on the regular-
ization scheme adopted. By construction, any UV regulator
estimate within BLFQ is tied to the basis truncation Nmax. In
fact, previous studies indicate that the cut-off scale is very
well approximated by ΛUV ≡ κ

√
Nmax. On the other hand,

in CST there is no dependence on any basis, but αs has been
kept fixed in the CST calculations. Furthermore, in CST the
regularization of the integral over kkk in Eq. (13) is governed
by the Pauli-Villars cut-off parameter Λ and for that reason
it will be taken as the CST estimate for the UV regulator.
Later we will come back to this point when analysing the
results obtained for the parton distribution functions. The
choice of ΛUV ≈ 1.7m in BLFQ and ΛUV ≈ 2m in CST, per-
mits a good description of the decay constants, with models
just fixed by spectroscopy. For the remainder of the work
in BLFQ results this scale cut-off is ensured by choosing
Nmax = 32 for bottomonium and Nmax = 8 for charmonium,

BHL prescription
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culation of decay constants and leading-twist parton distri-
bution amplitudes and parton distribution functions.

2.6.1 Decay constants

Decay constants are very important quantities to probe short-
range physics. In practice they will be sensitive to the effec-
tive short-range potential. This implies that for any realistic
model of quarkonia, having a correct implementation of the
one-gluon exchange interaction is essential for a good de-
scription of the decay constants.

In the absence of a proper renormalization procedure,
decay constants could develop dependence on the regular-
ization scheme adopted. By construction, any UV regulator
estimate within BLFQ is tied to the basis truncation Nmax. In
fact, previous studies indicate that the cut-off scale is very
well approximated by ΛUV ≡ κ

√
Nmax. On the other hand,

in CST there is no dependence on any basis, but αs has been
kept fixed in the CST calculations. Furthermore, in CST the
regularization of the integral over kkk in Eq. (13) is governed
by the Pauli-Villars cut-off parameter Λ and for that reason
it will be taken as the CST estimate for the UV regulator.
Later we will come back to this point when analysing the
results obtained for the parton distribution functions. The
choice of ΛUV ≈ 1.7m in BLFQ and ΛUV ≈ 2m in CST, per-
mits a good description of the decay constants, with models
just fixed by spectroscopy. For the remainder of the work
in BLFQ results this scale cut-off is ensured by choosing
Nmax = 32 for bottomonium and Nmax = 8 for charmonium,

Example: wave function of J/ψ (1S) with λ=0

Leitão, Li, Maris, Peña, AS, Vary, Biernat, EPJC 77, 696 (2017); arXiv:1705.06178
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Quarkonium spectrum with BLFQ and CST
Charmonium Bottomonium

Rms differences (in MeV) between the calculated and experimental masses shown in blue
Charmonium Bottomonium

BLFQ 33 39
CST 42 11
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Comparison between BLFQ and CST light front wave functions
BLFQ: Basis Light Front Quantization


‣Effective Hamiltonian from light-front holography
‣Contains confining interaction
‣Minkowski space 


Y. Li, P. Maris, J. Vary, PRD 96, 016022 (2017)


Leitão, Li, Maris, Peña, AS, Vary, Biernat, EPJC 77, 696 (2017); 
arXiv:1705.06178

Vector bottomonium wave functions,

dominant components (S=1)

9

We investigated LFWFs of all states below open fla-
vor thresholds and with J < 2 (cf. Fig. 2) and for all non-
vanishing spin configurations. The obtained wave functions
exhibit close correspondence between CST and BLFQ in
their dominant structures for all states and spin alignments.

To visualize the rich structures of the wave functions, we
adopt the scheme of Ref. [43]. We note that for a particular
polarization λ and spin alignment ss̄, the LFWFs can be ex-
pressed as

ψss̄ (kkk⊥,x) = Φss̄ (k⊥,x)exp(imℓφ), (46)

where k⊥ = |kkk⊥| and φ = argkkk⊥. This is valid because the
orbital angular momentum projection mℓ = λ − s− s̄ is def-
inite (λ ≡ mJ). In order to visualize these wave functions,
we drop the phase exp(imℓφ), while retaining the relative
sign exp(imℓπ) = (−1)mℓ for negative values of k⊥. More
precisely we plot

Ψ (k⊥,x)≡
{

Ψ (k⊥,x) , k⊥ ≥ 0,
Ψ (−k⊥,x)(−1)mℓ , k⊥ < 0.

(47)

This scheme essentially takes a slice of the 3D wave function
ψss̄(kkk⊥,x) at ky = 0.

Let us begin the discussion of the LFWFs with the inter-
esting case of the vector bb̄ because from all the systems this
is the one with the largest number of states below its open
flavor threshold, the BB threshold. These systems admit a
mixture of S- and D-wave components (as long as there is a
tensor force). In Fig. 4 we show the dominant triplet compo-
nent of the ground state and several radial excitations. The
states ϒ (1S), ϒ (2S), and ϒ (3S) are clearly S-wave domi-
nated and in both cases an increasing number of nodes in
both transverse (k⊥) and longitudinal (x) directions is ob-
served. As a consequence, and for our particular choice of
the coordinate range, a nesting ring pattern emerges. This
is consistent with the non-relativistic interpretation, where
the radial excitation is homogeneous in all three directions.
Prior to the map described in Eq. (27), CST amplitudes ex-
pressed as functions of kkk show precisely this behavior (see
Fig. 3 of Ref. [34]). The 13D1 wave function resembles the
shape of the the spherical harmonic Y 0

2 (k̂kk). The same hap-
pens for 23D1, where the complicated inner structure is also
compatible with a Y 0

2 (k̂kk) but now with an extra node in both
k⊥ and x.

In Fig. 5, in addition to the dominant triplet component,
other sub-dominant components of purely relativistic origin
are shown. Here, significant differences appear between the
CST and the BLFQ LFWFs. While in BLFQ there is only
one ψ↓↓ component, in CST two extra components compat-
ible with a quantum number ℓ= 1 and with spin alignments
ψ↓↓ and spin singlet ψ(↑↓−↓↑) appear and are presented in the
last row of Fig. 5. These components emerge from the CST
amplitude’s ψ++ component [cf. Eq. (20)] and are absent

Fig. 4 Dominant triplet component of the BLFQ-LFWFs and CST-
LFWFs for several bottomonium vector meson states. Both plots have
the same scale and the region outside x= 0.2 and x= 0.8 is not depicted
because it is structureless.

Wave functions are remarkably similar
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BLFQ and CST distribution amplitudes

Charmonium Bottomonium

Leading twist distribution amplitudes from BLFQ and CST (map.) wave functions
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Fig. 7 Distribution amplitudes for pesudoscalar and vector states.

hb states. In BLFQ, preliminary studies show that the pseu-
doscalar PDAs also approach the pQCD asymptotics as the
cut-off scale increases, although larger LUV calculations are
needed to confirm this point (cf. Fig. 9).

Also, connected to the scale dependence, it is interesting
to note that approaches with a smaller cut-off, typically of
the order of the constituent quark mass or even smaller (DSE

results), lead naturally to distributions with lower moments,
as shown in Table 4. CST and BLFQ, both have a larger cut-
off, roughly of 2m (cf. section 2.6), resulting in larger and
comparable moments.

We also show the parton distribution functions (PDFs)
in Fig. 10. Once again the results of the two approaches are
consistent. In particular the first moments (displayed in Ta-
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hb states. In BLFQ, preliminary studies show that the pseu-
doscalar PDAs also approach the pQCD asymptotics as the
cut-off scale increases, although larger LUV calculations are
needed to confirm this point (cf. Fig. 9).

Also, connected to the scale dependence, it is interesting
to note that approaches with a smaller cut-off, typically of
the order of the constituent quark mass or even smaller (DSE

results), lead naturally to distributions with lower moments,
as shown in Table 4. CST and BLFQ, both have a larger cut-
off, roughly of 2m (cf. section 2.6), resulting in larger and
comparable moments.

We also show the parton distribution functions (PDFs)
in Fig. 10. Once again the results of the two approaches are
consistent. In particular the first moments (displayed in Ta-
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Heavy quarkonium decay constants
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G,ji given in (??) and (180). A(m1,m2) and C(m1,m2) are defined, for instance, in (??) and (??).
It is not absolutely necessary that C(m1,m2) depends on the masses m1 and m2, but in our case some of the splines
contain mass-dependent factors. For each combination of parameters �, ↵s, m1 and m2, the solution of Eq. (205)
yields a number of meson masses µn (�,↵s,m1,m2).

We want to find the values of �, ↵s, and the constituent quark masses mb, mc, ms, and mq = mu = md that
produce eigenvalues closest to the observed meson masses. For a least-squares fit this means to minimize the function
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where the label s characterizes the meson states, indicating the quark flavors as well as other quantum numbers (such
as JPC etc.) and n is the energy level. For instance, for bottomonium states, different s correspond to m1 = m2 = mb

and n = 1, 2, . . . (as many levels as one wants to include in the fit), whereas for Bc states m1 = mb, m2 = mc, and
n = 1, . . . .

The minimization of �2 requires that Eq. (205) has to be solved many times for different values of the parameters.
The calculation of the matrices Vlin(m1,m2) and VOGE(m1,m2) is very time consuming, therefore we have to use a
method that does not need too many recalculations.
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CHAPTER 5. RESULTS

5.5 Decay constants

In this section we present some preliminary results on the calculation of decay constants. These
quantities describe the simplest electroweak transitions, where a meson couples directly to a photon or
to a W boson. In order to compute them, it is necessary to calculate Feynman diagrams such as the one
shown in panel (a) of Fig. 5.22.

Figure 5.22: Diagrammatic representation of: (a) a loop integral, involved in the calculation of a decay constant;
(b) dilepton decay of a vector meson through a virtual photon “ú. Jµ corresponds to the electromagnetic current.
This process can be parameterized by the vector decay constant.

The complete derivation of the expressions for the decay constants within our approach, using the
solutions from the 1CSE, is given in section D.2 of Appendix D. Here, and for completeness, we just list
the obtained results:

• Pseudoscalar mesons:
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• Vector mesons:
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• Scalar mesons:
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• Axialvector mesons:
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where k̃i = k/(Eik + mi), and Âs, Âd, Âps and Âpt are the wave function components introduced before.
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Nonrelativistic: depend on  (r = 0) (only S-waves contribute)

Relativistic: all partial waves can contribute

Very precise measurements

for some charmonium and 

bottomonium PS and V states

(no data for S and AV)
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Quarkonium decay constants (preliminary results)

CHAPTER 5. RESULTS

5.5.2 Decay constants of heavy-quarkonia

In Table 5.16, we show some results for the CST decay constants of pseudoscalar and vector states
of heavy-quarkonia, in comparison with experimental values, and predictions from other theoretical ap-
proaches. Unfortunately, there is no data available for �P æ““ widths for bottomonium and, for that
reason, no experimental values for the corresponding pseudoscalar decay constants are available. Also,
for higher radially excited states, the experimental uncertainties tend to increase.

Quark content n Meson JP (C) PDG Lattice DSE I DSE II BLFQ MQQ̄�OGE (this work)
1 ÷b(1S) 0≠+ ≠ 667+6

≠6 773 756 589 795

2 ÷b(2S) 0≠+ ≠ ≠ 419(8) 285 427 596

3 ÷b(3S) 0≠+ ≠ ≠ 534(57) 333 331 536

4 ÷b(4S) 0≠+ ≠ ≠ ≠ 40(15) ≠ 503

1 �(1S) 1≠≠ 689+5
≠5 649+31

≠31 768 707 689 703

bb̄ 2 �(2S) 1≠≠ 479+4
≠4 481+39

≠39 467(17) 393 484 573

3 13D1 1≠≠ ≠ ≠ 41(7) 371(2) 4.2 26

4 �(3S) 1≠≠ 414+4
≠4 ≠ ≠ 9(5) 366 536

5 23D1 1≠≠ ≠ ≠ ≠ 165(50) ≠ 38

6 �(4S) 1≠≠ 328+17
≠18 ≠ ≠ 20(15) ≠ 518

1 ÷c(1S) 0≠+ 330+13
≠13 393+9

≠9 401 378 368 547

2 ÷c(2S) 0≠+ 211+35
≠42 ≠ 244(12) 82 280 461

3 ÷c(3S) 0≠+ ≠ ≠ 145(145) 206 ≠ 417

cc̄ 4 ÷c(4S) 0≠+ ≠ ≠ ≠ 87 ≠ 387
1 J/Â 1≠≠ 407+5

≠5 405+6
≠6 450 411 404 525

2 Â(2S) 1≠≠ 290+2
≠2 ≠ 30(3) 155 290 531

3 Â(3770) 1≠≠ 97.7+3
≠3 ≠ 118(91) 45 0.9 98

Table 5.16: Decay constants for pseudoscalar and vector heavy quarkonia states. The experimental values are
obtained from the decay widths listed in PDG [18], and as described in the text. Lattice results are taken from
[102–105], DSE I and DSE II are Dyson-Schwinger calculations given in [106], and BLFQ results are reported in [70].
MQQ̄�OGE denotes the model we used to calculate the CST decay constants for quarkonia, and whose parameters are
specified in Table 5.17. All values are in units of MeV.

The CST results are obtained with a model that we label as “MQQ̄�OGE"8, and that fits bb̄ and cc̄ states
exclusively. It takes into account the experimental masses of theses states (22 in total), and also uses the
available experimental values for the decay constants (9 values). The fit is done with a fixed Pauli-Villars
cut-off parameter of � = 1.5 m1 and with 24 splines. The parameters of this fit are specified in Table 5.17.

8where the subscript QQ̄ indicates the set of states used in the fit, in this case only QQ̄ states, and the label �OGE that the
calculations were done using the new Pauli-Villars term for the OGE kernel (see Eq. (4.75))
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Refit with stronger cut-off in OGE kernel (spectrum almost unchanged)
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Summary

Next steps:

‣ Include dynamical quark mass (mass function) from quark self-interaction

‣ Inclusion of running quark-gluon coupling 

‣ Calculation of tensor mesons (spin ≥ 2)

‣ Extension of current model to the light-quark sector (requires 4-channel eq.)

‣ Calculation of parton distribution functions

‣ Calculate relativistic quark-antiquark states with exotic JPC

‣With the simplest, one-channel CST equation and a few global parameters, we get 
a very nice description of the heavy and heavy-light meson spectrum

‣ (S+PS) confining kernel with ~ 0%—30% admixture of V coupling is compatible 

with the data 

‣ In heavy quarkonia, we find remarkable similarities between CST LFWF (with BHL 

prescription) and BLFQ LFWF by Li, Vary, Maris, even in excited states

‣ Decay constants are very sensitive to details — stronger constraints on kernel


