

Heavy and heavy-light mesons with the Covariant Spectator Theory

Alfred Stadler University of Évora and CFTP—IST Lisbon

Collaborators:

Sofia Leitão Teresa Peña Elmar Biernat

CFTP—IST Lisbon

Franz Gross

Jefferson Lab

JLab, Feb 16, 2018

Motivation

- Intense experimental activity to explore meson structure at LHC, BABAR, Belle, CLEO, and soon at GlueX (JLab) and PANDA (GSI)
- Search for exotic mesons (hybrids, glueballs, ... maybe $q\bar{q}$?)
- \blacktriangleright Need to understand also "conventional" $q\bar{q}$ -mesons in more detail
- Study production mechanisms, transition form factors (also important for hadronic contributions to light-by-light scattering)

Theory: a huge amount of work has already been done on meson structure (LQCD, BS/DSE, constrained dynamics two-body Dirac equation, BLFQ, relativized Schrödinger equation, ...)

Motivation

- Intense experimental activity to explore meson structure at LHC, BABAR, Belle, CLEO, and soon at GlueX (JLab) and PANDA (GSI)
- Search for exotic mesons (hybrids, glueballs, ... maybe $q\bar{q}$?)
- \blacktriangleright Need to understand also "conventional" $q\bar{q}$ -mesons in more detail
- Study production mechanisms, transition form factors (also important for hadronic contributions to light-by-light scattering)

Theory: a huge amount of work has already been done on meson structure (LQCD, BS/DSE, constrained dynamics two-body Dirac equation, BLFQ, relativized Schrödinger equation, ...)

Guiding principles of our approach (CST - Covariant Spectator Theory):

CST equation for two-body bound states

Once the four CST vertices (with one quark on-shell) are all known, one can use this equation to get the vertex function for other momenta (also Euclidean).

JLab, Feb 16, 2018

CST equations

Closed set of equations when external legs are systematically placed on-shell

Solutions: bound state masses μ and corresponding vertex functions Γ

One-channel spectator equation (1CSE):

Two-channel spectator equation (2CSE):

Four-channel spectator equation (4CSE):

- Particularly appropriate for unequal masses
- Numerical solutions easier (fewer singularities)
- But not charge-conjugation symmetric
- Restores charge-conjugation symmetry
- Additional singularities in the kernel
- Necessary for light bound states (pion!)

All have smooth one-body limit (Dirac equation) and nonrelativistic limit (Schrödinger equation).

JLab, Feb 16, 2018

The covariant kernel

Confining potential in momentum space

only a Cauchy principal value singularity remains

Binding energies in units of $(\sigma^2/2m_R)^{1/3}$ m_R ... reduced mass

Number of splines in basis \rightarrow

radial excitations

n	N = 12	N = 16	N = 20	N = 24	N = 36	N = 48	N = 64	Exact
1	2.338121	2.338108	2.338108	2.338107	2.338107	2.338107	2.338108	2.338107
2	4.088498	4.087976	4.087953	4.087950	4.087947	4.087949	4.087949	4.087949
3	5.527017	5.520928	5.520601	5.520568	5.520559	5.520559	5.520560	5.520560
4	6.794183	6.788208	6.787047	6.786787	6.786710	6.786707	6.786708	6.786708
5	8.002342	7.956598	7.947220	7.944767	7.944146	7.944135	7.944134	7.944134
6	9.626868	9.156258	9.046241	9.026388	9.022727	9.022657	9.022651	9.022651
7	11.435079	10.273394	10.083415	10.048670	10.040511	10.040201	10.040177	10.040174
8	12.099834	11.147565	11.027556	11.028855	11.009868	11.008626	11.008534	11.008524
9	14.993451	12.941736	12.318324	12.105283	11.940068	11.936344	11.936044	11.936016
10	19.122419	15.309248	13.997541	13.138047	12.839002	12.829770	12.828860	12.828777

Schrödinger equation with linear potential in momentum space

Radial wave functions in momentum space (with N=64)

Lines are our numerical solutions

Symbols are Fourier transforms of exact r-space solutions

Schrödinger equation with linear potential in momentum space

Works well also for higher partial waves

Covariant confining kernel in CST

• Covariant generalization:
$$\mathbf{q}^2 \rightarrow -q^2$$

This leads to a kernel that acts like

$$\langle V_L \phi \rangle(p) = \int \frac{d^3k}{(2\pi)^3} \frac{m}{E_k} V_L(p,\hat{k})\phi(\hat{k}) = -8\pi\sigma \int \frac{d^3k}{(2\pi)^3} \frac{m}{E_k} \frac{\phi(\hat{k}) - \phi(\hat{k}_R)}{(p-\hat{k})^4}$$

$$\hat{k} = (E_k, \mathbf{k})$$

on mass shell

Complication: Singularity not only when $\mathbf{k} = \mathbf{p}$ value of \mathbf{k} at which kernel $\hat{k}_R = (E_{k_R}, \mathbf{k}_R)$ $\mathbf{k}_R = \mathbf{k}_R(p_0, \mathbf{p})$ becomes singular

Does it still confine?

Yes: the vertex function vanishes if both quarks are on-shell! More details: Savkli, Gross, PRC **63**, 035208 (2001)

initial state:

either quark or

antiquark onshell

$$\langle V_L \rangle = \int \frac{d^3k}{(2\pi)^3} \frac{m}{E_k} V_L(p, \hat{k}) = 0$$

 \checkmark important property corresponds to $\tilde{V}_L^{nr}(r=0) = 0$

► But is there always a singularity?

 $\langle I$

Relativistic kernel flowchart

Relativistic kernel flowchart

The One-Channel Spectator Equation (1CSE)

We solve the 1CSE for heavy and heavy-light systems

- Should work well for bound states with at least one heavy quark
- Much easier to solve numerically than 2CSE or 4CSE
- C-parity splitting small in heavy quarkonia
- For now with constant constituent quark masses (quark self-energies will be included later)

$$\begin{split} \Gamma(\hat{p}_1, p_2) &= -\int \frac{d^3k}{(2\pi)^3} \frac{m_1}{E_{1k}} \sum_K V_K(\hat{p}_1, \hat{k}_1) \Theta_1^{K(\mu)} \frac{m_1 + \hat{k}_1}{2m_1} \Gamma(\hat{k}_1, k_2) \frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K \\ & E_{ik} = \sqrt{m_i^2 + \mathbf{k}^2} \end{split}$$

Momentum-dependence of kernels is also simpler

$$V_{\rm L}(\hat{p}_1, \hat{k}_1) = -8\sigma\pi \left[\frac{1}{(\hat{p}_1 - \hat{k}_1)^4} - \frac{E_{p_1}}{m_1} (2\pi)^3 \delta^3(\mathbf{p}_1 - \mathbf{k}_1) \int \frac{d^3k'_1}{(2\pi)^3} \frac{m_1}{E_{k'_1}} \frac{1}{(\hat{p}_1 - \hat{k}'_1)^4} \right]$$
$$V_{\rm OGE}(\hat{p}_1, \hat{k}_1) = -\frac{4\pi\alpha_s}{(\hat{p}_1 - \hat{k}_1)^2} \qquad V_{\rm C}(\hat{p}_1, \hat{k}_1) = (2\pi)^3 \frac{E_{k_1}}{m_1} C\delta^3(\mathbf{p}_1 - \mathbf{k}_1)$$

Linear and OGE kernels need to be regularized We chose Pauli-Villars regularizations with parameter $\Lambda = 2m_1$

CST vertex functions

$$P^{\mu} = p_1 - p_2$$
 $\rho^{\mu} = \frac{p_1 + p_2}{2}$ $\Lambda(p_i) = \frac{m_i + p_i}{2m_i}$

Pseudoscalar mesons

$$\Gamma^{P}(p_{1}, p_{2}) = \Gamma^{P}_{1}(p_{1}, p_{2})\gamma^{5} + \Gamma^{P}_{2}(p_{1}, p_{2})\Lambda(-p_{1})\gamma^{5} + \Gamma^{P}_{3}(p_{1}, p_{2})\gamma^{5}\Lambda(-p_{2}) + \Gamma^{P}_{4}(p_{1}, p_{2})\Lambda(-p_{1})\gamma^{5}\Lambda(-p_{2})$$

Scalar mesons

$$\Gamma^{S}(p_{1}, p_{2}) = \Gamma^{S}_{1}(p_{1}, p_{2}) + \Gamma^{S}_{2}(p_{1}, p_{2})\Lambda(-p_{1}) + \Gamma^{S}_{3}(p_{1}, p_{2})\Lambda(-p_{2}) + \Gamma^{S}_{4}(p_{1}, p_{2})\Lambda(-p_{1})\Lambda(-p_{2})$$

Vector mesons

$$\begin{split} \Gamma^{VT\mu}(p_1,p_2) = &\Gamma_1^V(p_1,p_2)\gamma^{T\mu} + \Gamma_2^V(p_1,p_2)\Lambda(-p_1)\gamma^{T\mu} + \Gamma_3^V(p_1,p_2)\gamma^{T\mu}\Lambda(-p_2) \\ &+ \Gamma_4^V(p_1,p_2)\Lambda(-p_1)\gamma^{T\mu}\Lambda(-p_2) + \Gamma_5^V(p_1,p_2)\rho^{T\mu} + \Gamma_6^V(p_1,p_2)\Lambda(-p_1)\rho^{T\mu} \\ &+ \Gamma_7^V(p_1,p_2)\rho^{T\mu}\Lambda(-p_2) + \Gamma_8^V(p_1,p_2)\Lambda(-p_1)\rho^{T\mu}\Lambda(-p_2) \end{split}$$

Axialvector mesons

$$\begin{split} \Gamma^{AT\mu}(p_1, p_2) = & \Gamma_1^A(p_1, p_2) \gamma^{T\mu} \gamma^5 + \Gamma_2^A(p_1, p_2) \Lambda(-p_1) \gamma^{T\mu} \gamma^5 + \Gamma_3^A(p_1, p_2) \gamma^{T\mu} \gamma^5 \Lambda(-p_2) \\ & + \Gamma_4^A(p_1, p_2) \Lambda(-p_1) \gamma^{T\mu} \gamma^5 \Lambda(-p_2) + \Gamma_5^A(p_1, p_2) \rho^{T\mu} \gamma^5 + \Gamma_6^A(p_1, p_2) \Lambda(-p_1) \rho^{T\mu} \gamma^5 \\ & + \Gamma_7^A(p_1, p_2) \rho^{T\mu} \gamma^5 \Lambda(-p_2) + \Gamma_8^A(p_1, p_2) \Lambda(-p_1) \rho^{T\mu} \gamma^5 \Lambda(-p_2) \end{split}$$

Solution of the 1CSE

- Work in rest frame of the bound state $P = (\mu, \mathbf{0})$
- \blacktriangleright Use $\rho\text{-spin}$ decomposition of the propagator

$$\frac{m_2 + k_2}{m_2^2 - k_2^2 - i\epsilon} = \frac{m_2}{E_{2k}} \sum_{\rho, \lambda_2} \rho \frac{u_2^{\rho}(\mathbf{k}, \lambda_2) \bar{u}_2^{\rho}(\mathbf{k}, \lambda_2)}{E_{2k} - \rho k_{20} - i\epsilon}$$

Project 1CSE onto p-spin helicity channels

$$\Gamma_{\lambda\lambda'}^{+\rho'}(p) \equiv \bar{u}_1^+(\mathbf{p},\lambda)\Gamma(p)u_2^{\rho'}(\mathbf{p},\lambda')$$

$$\Theta_{i,\lambda\lambda'}^{K,\rho\rho'}(\mathbf{p},\mathbf{k}) \equiv \bar{u}_i^{\rho}(\mathbf{p},\lambda)\Theta_i^{K}u_i^{\rho'}(\mathbf{k},\lambda')$$

Define relativistic wave functions

$$\Psi_{\lambda\lambda'}^{+\rho}(p) \equiv \sqrt{\frac{m_1 m_2}{E_{1p} E_{2p}}} \frac{\rho}{E_{2p} - \rho(E_{1p} - \mu)} \Gamma_{\lambda\lambda'}^{+\rho}(p)$$

spinor matrix elements of vertices

The 1CSE becomes a generalized linear EV problem for the mass eigenvalues μ

$$(E_{1p} - \rho_2 E_{2p}) \Psi_{\lambda_1 \lambda_2}^{+\rho_2}(\mathbf{p}) - \sum_{K \lambda_1' \lambda_2' \rho_2'} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} N_{12}(p,k) V_K(\mathbf{p},\mathbf{k}) \Theta_{1,\lambda_1 \lambda_1'}^{K,++}(\mathbf{p},\mathbf{k}) \Psi_{\lambda_1' \lambda_2'}^{+\rho_2'}(\mathbf{k}) \Theta_{2,\lambda_2' \lambda_2}^{K,\rho_2' \rho_2}(\mathbf{k},\mathbf{p})$$
$$= \mu \Psi_{\lambda_1 \lambda_2}^{+\rho_2}(\mathbf{p})$$

Solution of the 1CSE

 $n \infty$

$$2\mu = N_c \sum_{\lambda_1 \lambda_2 \rho_2} \int \frac{d^3 p}{(2\pi)^3} \left[\Psi_{\lambda_1 \lambda_2}^{+\rho_2}(\mathbf{p}) \right]^{\dagger} \Psi_{\lambda_1 \lambda_2}^{+\rho_2}(\mathbf{p})$$

(kernel independent of P)

Switch to basis of eigenstates of total orbital angular momentum L and of total spin S (not necessary, but useful for spectroscopic identification of solutions)

$$\Psi_{\lambda_1\lambda_2}^{+\rho_2}(\mathbf{p}) = \sum_j \psi_j^{\rho_2}(p) \chi_{\lambda_1}^{\dagger}(\hat{\mathbf{p}}) K_j^{\rho_2}(\hat{\mathbf{p}}) \chi_{\lambda_2}(\hat{\mathbf{p}})$$

J^P	$K_1^-(\hat{\mathbf{p}})$	Wave	$K_2^-(\hat{\mathbf{p}})$	Wave	$K_1^+(\hat{\mathbf{p}})$	Wave	$K_2^+(\hat{\mathbf{p}})$	Wave
0-	1	S	-	-	$\mathbf{\sigma}\cdot \hat{\mathrm{p}}$	P	-	-
0^+	$oldsymbol{\sigma}\cdot\hat{ extbf{p}}$	P	-	-	1	S	-	-
1-	$oldsymbol{\sigma}\cdot\hat{oldsymbol{\xi}}$		$\frac{1}{\sqrt{2}}\left(3\boldsymbol{\xi}\cdot\hat{\mathbf{p}}\boldsymbol{\sigma}\cdot\hat{\mathbf{p}}-\boldsymbol{\sigma}\cdot\hat{\boldsymbol{\xi}} ight)$		$\sqrt{3}\boldsymbol{\xi}\cdot\hat{\mathbf{p}}$	P_s	$\sqrt{rac{3}{2}}\left(oldsymbol{\sigma}\cdot\hat{oldsymbol{\xi}}oldsymbol{\sigma}\cdot\hat{f p}-oldsymbol{\xi}\cdot\hat{f p} ight)$	P_t
1^{+}	$\sqrt{3}\boldsymbol{\xi}\cdot\hat{\mathbf{p}}$	P_s	$\sqrt{rac{3}{2}} \left(oldsymbol{\sigma} \cdot \hat{oldsymbol{\xi}} oldsymbol{\sigma} \cdot \hat{oldsymbol{p}} - oldsymbol{\xi} \cdot \hat{oldsymbol{p}} ight)$	P_t	$\pmb{\sigma}\cdot\hat{\pmb{\xi}}$	S	$\frac{1}{\sqrt{2}} \left(3\boldsymbol{\xi} \cdot \hat{\mathbf{p}} \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} - \boldsymbol{\sigma} \cdot \hat{\boldsymbol{\xi}} \right)$	D

$$\begin{split} J^P &= 0^{\pm} \qquad \int_0^\infty dp \, p^2 \left[\psi_S^2(p) + \psi_D^2(p) \right] = 1 & \text{Normalization of radial wave functions} \\ \rightarrow \text{ probabilities of partial waves} \\ J^P &= 1^{\pm} \qquad \int_0^\infty dp \, p^2 \left[\psi_S^2(p) + \psi_D^2(p) + \psi_{P_s}^2(p) + \psi_{P_t}^2(p) \right] = 1 \end{split}$$

► Expand radial wave functions in a basis of B-splines (modified for correct asymptotic behavior) and solve eigenvalue problem → expansion coefficients and mass eigenvalues

Solution of the 1CSE

 \sim

Normalization

$$2\mu = N_c \sum_{\lambda_1 \lambda_2 \rho_2} \int \frac{d^3 p}{(2\pi)^3} \left[\Psi_{\lambda_1 \lambda_2}^{+\rho_2}(\mathbf{p}) \right]^{\dagger} \Psi_{\lambda_1 \lambda_2}^{+\rho_2}(\mathbf{p})$$

(kernel independent of P)

Switch to basis of eigenstates of total orbital angular momentum L and of total spin S (not necessary, but useful for spectroscopic identification of solutions)

$$\Psi_{\lambda_1\lambda_2}^{+\rho_2}(\mathbf{p}) = \sum_j \psi_j^{\rho_2}(p) \chi_{\lambda_1}^{\dagger}(\hat{\mathbf{p}}) K_j^{\rho_2}(\hat{\mathbf{p}}) \chi_{\lambda_2}(\hat{\mathbf{p}})$$

J^P	$K_1^-(\hat{\mathbf{p}})$	Wave	$K_2^-(\hat{\mathbf{p}})$	Wave	$K_1^+(\hat{\mathbf{p}})$	Wave	$K_2^+(\hat{\mathbf{p}})$	Wave
0-	1	S	-	-	$oldsymbol{\sigma}\cdot\hat{\mathrm{p}}$	P	-	-
0^+	$oldsymbol{\sigma}\cdot\hat{\mathbf{p}}$	P	-	-	1	S	-	-
1-	$oldsymbol{\sigma}\cdot\hat{oldsymbol{\xi}}$	S	$\frac{1}{\sqrt{2}}\left(3\boldsymbol{\xi}\cdot\hat{\mathbf{p}}\boldsymbol{\sigma}\cdot\hat{\mathbf{p}}-\boldsymbol{\sigma}\cdot\hat{\boldsymbol{\xi}} ight)$	D	$\sqrt{3}\boldsymbol{\xi}\cdot\hat{\mathbf{p}}$	P_s	$\sqrt{rac{3}{2}}\left(oldsymbol{\sigma}\cdot\hat{oldsymbol{\xi}}oldsymbol{\sigma}\cdot\hat{f p}-oldsymbol{\xi}\cdot\hat{f p} ight)$	P_t
1^+	$\sqrt{3}\boldsymbol{\xi}\cdot\hat{\mathbf{p}}$	P_s	$\sqrt{rac{3}{2}}\left(oldsymbol{\sigma}\cdot\hat{oldsymbol{\xi}}oldsymbol{\sigma}\cdot\hat{oldsymbol{p}}-oldsymbol{\xi}\cdot\hat{oldsymbol{p}} ight)$	P_t	$oldsymbol{\sigma}\cdot\hat{oldsymbol{\xi}}$	S	$\frac{1}{\sqrt{2}}\left(3\boldsymbol{\xi}\cdot\hat{\mathbf{p}}\boldsymbol{\sigma}\cdot\hat{\mathbf{p}}-\boldsymbol{\sigma}\cdot\hat{\boldsymbol{\xi}} ight)$	D

relativistic components

$$J^{P} = 0^{\pm} \qquad \int_{0}^{\infty} dp \, p^{2} \left[\psi_{S}^{2}(p) + \psi_{D}^{2}(p) \right] = 1 \qquad \text{Normalization of radial wave functions} \\ \rightarrow \text{ probabilities of partial waves} \\ J^{P} = 1^{\pm} \qquad \int_{0}^{\infty} dp \, p^{2} \left[\psi_{S}^{2}(p) + \psi_{D}^{2}(p) + \psi_{P_{s}}^{2}(p) + \psi_{P_{t}}^{2}(p) \right] = 1$$

► Expand radial wave functions in a basis of B-splines (modified for correct asymptotic behavior) and solve eigenvalue problem → expansion coefficients and mass eigenvalues

Data sets used in least-square fits of meson masses

				D٤	ata s	set
	State	$J^{P(C)}$	Mass (MeV)	S1	S2	S3
	$\Upsilon(4S)$	1	$10579.4{\pm}1.2$		•	•
	$\chi_{b1}(3P)$	1^{++}	10512.1 ± 2.3			•
	$\Upsilon(3S)$	1	$10355.2{\pm}0.5$		•	•
	$\eta_b(3S)$	0^{-+}	10337			
			$10259.8{\pm}1.2$			•
			$10255.46{\pm}0.22{\pm}0.50$			•
	$\chi_{b0}(2P)$	0^{++}	$10232.5 {\pm} 0.4 {\pm} 0.5$		•	•
$b\overline{b}$	$\Upsilon(1D)$	1	10155			
00	$\Upsilon(2S)$		$10023.26 {\pm} 0.31$		•	•
	$\eta_b(2S)$	0^{-+}	9999 ± 4	•	•	•
			$9899.3 {\pm} 0.8$			•
	$\lambda^{01}()$	1^{++}	$9892.78{\pm}0.26{\pm}0.31$			•
	$\chi_{b0}(1P)$	0^{++}	$9859.44{\pm}0.42{\pm}0.31$		•	•
	$\Upsilon(1S)$	$1^{}$	$9460.30 {\pm} 0.26$		•	•
	$\eta_b(1S)$	0^{-+}	$9399.0{\pm}2.3$	•	•	•
$b\overline{c}$	$B_c(2S)^{\pm}$	0^{-}	6842 ± 6			•
L	B_c^+	0^{-}	6275.1 ± 1.0	•	•	•
$b\overline{s}$	$B_{s1}(5830)$	1^{+}	$5828.63 {\pm} 0.27$			•
$b\overline{q}$	$B_1(5721)^{+,0}$	1^{+}	$5725.85{\pm}1.3$			•
$b\overline{s}$ {	B_s^*	1-	5415.8 ± 1.5		•	•
	B_s^0	0^{-}	$5366.82 {\pm} 0.22$	•	•	•
$b\overline{q}$	B^*	1-	$5324.65 {\pm} 0.25$		•	•
	$B^{\pm,0}$	0^{-}	5279.45	•	•	•

We use $m_u = m_d \equiv m_q$

Data set $J^{P(C)}$ Mass (MeV) S1 S2 S3 State X(3915) 3918.4 ± 1.9 0^{++} $\psi(3770)$ 1--- 3773.13 ± 0.35 $\psi(2S)$ 1^{--} 3686.097 ± 0.010 0^{-+} $\eta_c(2S)$ 3639.2 ± 1.2 $c\overline{c}$ 1^{+-} $h_c(1P)$ 3525.38 ± 0.11 1^{++} $\chi_{c1}(1P)$ 3510.66 ± 0.07 0^{++} $\chi_{c0}(1P)$ 3414.75 ± 0.31 1--- $J/\Psi(1S)$ 3096.900 ± 0.006 0^{-+} 2983.4 ± 0.5 $\eta_c(1S)$ 1^{+} $D_{s1}(2536)^{\pm}$ 2535.10 ± 0.06 $D_{s1}(2460)^{\pm}$ 1^{+} 2459.5 ± 0.6 $D_1(2420)^{\pm,0}$ 1^{+} 2421.4 $D_0^*(2400)^0$ 0^{+} 2318 ± 29 $D_{s0}^{*}(2317)^{\pm}$ $D_{s}^{*\pm}$ 0^+ 2317.7 ± 0.6 $c\overline{s}$ 1^{-} 2112.1 ± 0.4 $\begin{array}{c} c\overline{q} \\ c\overline{s} \\ c\overline{q} \end{array}$ $D^*(2007)^0$ 1^{-} 2008.62 $\begin{array}{c} D_s^{\pm} \\ D^{\pm,0} \end{array}$ 0^{-} 1968.27 ± 0.10 0^{-} 1867.23

S1: 9 PS mesons S2: 25 PS+V+S mesons S3: 39 PS+V+S+AV mesons

JLab, Feb 16, 2018

q represents a light quark (u or d)

Global fits with fixed quark masses and y=0

S. Leitão, A. S., M. T. Peña, E. Biernat, Phys. Lett. B 764 (2017) 38

First step: we perform global fits to the heavy + heavy-light meson spectrum

Adjustable model parameters: σ $lpha_s$ C

Model parameters not adjusted in the fits:

Constituent quark masses (in GeV)

Scalar + pseudoscalar confinement

 $m_{b=4.892}, m_{c}=1.600, m_{s}=0.448, m_{q}=0.346$

```
y = 0
```

► Model MO_{S1}: fitted to 9 pseudoscalar meson masses only

► Model MO_{S2}: fitted to 25 pseudoscalar, vector, and scalar meson masses

(Previously called models P1 and PSV1)

Global fits with fixed quark masses and scalar confinement (y=0)

JLab, Feb 16, 2018

Global fits with fixed quark masses and y=0

The results of the two fits are remarkably similar!

rms differences to experimental masses (set S3):

Model	$\sigma [{ m GeV^2}]$	$lpha_s$	$C \; [\text{GeV}]$		Model	$\Delta_{\rm rms}$ [GeV]
$M0_{S1}$	0.2493	0.3643	0.3491		$M0_{S1}$	0.037
$M0_{S2}$	0.2247	0.3614	0.3377	-	$M0_{S2}$	0.036

► Kernel parameters are already well determined through pseudoscalar states (J^P = 0⁻)

Almost 100% L=0, S=0	$\langle 0^- \mathbf{L} \cdot \mathbf{S} 0^- \rangle = 0$	Spin-orbit force vanishes
(S-wave, spin singlet)	$\langle 0^- S_{12} 0^- \rangle = 0$	Tensor force vanishes
	$\langle 0^- \mathbf{S}_1 \cdot \mathbf{S}_2 0^- \rangle = -3/4$	Spin-spin force acts in singlet only

Good test for a covariant kernel:

Pseudoscalar states do not constrain spin-orbit and tensor forces, and cannot separate spin-spin from central force.

But they should be determined through covariance.

Model M0_{S1} indeed predicts spin-dependent forces correctly!

Leitão, AS, Peña, Biernat, Phys. Lett. B 764 (2017) 38

Importance of PS coupling in the confining kernel

Fits with variable quark masses and confinement (S+PS)-V mixing y

In a new series of fits we treat quark masses and mixing parameter y as adjustable parameters.

Model	l Symbol	$\sigma [{\rm GeV}^2]$	$lpha_s$	$C \; [\text{GeV}]$	y	$m_b \; [\text{GeV}]$	$m_c \; [\text{GeV}]$	$m_s \; [\text{GeV}]$	$m_q \; [\text{GeV}]$	N	$\delta_{\rm rms} [{\rm GeV}]$	$\Delta_{\rm rms} [{\rm GeV}]$
$M0_{S1}$		0.2493	0.3643	0.3491	0.0000	4.892	1.600	0.4478	0.3455	9	0.017	0.037
$M1_{S1}$	\bigcirc	0.2235	0.3941	0.0591	0.0000	4.768	1.398	0.2547	0.1230	9	0.006	0.041
$M0_{S2}$		0.2247	0.3614	0.3377	0.0000	4.892	1.600	0.4478	0.3455	25	0.028	0.036
$M1_{S2}$		0.1893	0.4126	0.1085	0.2537	4.825	1.470	0.2349	0.1000	25	0.022	0.033
$M1_{S2'}$	\wedge	0.2017	0.4013	0.1311	0.2677	4.822	1.464	0.2365	0.1000	24	0.018	0.033
$\int M1_{S3}$		0.2022	0.4129	0.2145	0.2002	4.875	1.553	0.3679	0.2493	39	0.030	0.030
(MO_{S3})		0.2058	0.4172	0.2821	0.0000	4.917	1.624	0.4616	0.3514	39	0.031	0.031

 $^{\succ}$ include AV states in fit

Parameters in **bold** were not varied during the fit

y held fixed, other parameters refitted

- Quality of fits not much improved
- Best model M1_{S3} has y=0.20, but minimum is very shallow

y and quark masses are not much constrained by the mass spectrum.

Mass spectra of heavy and heavy-light mesons

Numerical convergence (M1_{S3})

				Nu	mber of spli	nes	
Meson	J^P	n	12	24	36	48	64
$b\overline{b}$	0-	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	9.37765 9.96915 10.33061 10.61822	9.37886 9.96932 10.32623 10.61660	9.37917 9.96938 10.32623 10.61646	9.37931 9.96939 10.32622 10.61643	9.37940 9.96939 10.32621 10.61641
$b\overline{b}$	1-	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	9.47414 10.01186 10.14699 10.36325	9.47411 10.01147 10.14692 10.35767	$9.47409 \\ 10.01141 \\ 10.14702 \\ 10.35758$	9.47407 10.01138 10.14714 10.35755	9.47406 10.01135 10.14731 10.35751
$c\bar{c}$	0-	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	3.02240 3.63778 4.09893 4.49972	$3.02341 \\ 3.63814 \\ 4.09910 \\ 4.49926$	3.02380 3.63832 4.09925 4.49940	3.02400 3.63843 4.09933 4.49947	$3.02414 \\ 3.63850 \\ 4.09938 \\ 4.49952$
$car{c}$	1-	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	$3.13139 \\ 3.69834 \\ 3.75095 \\ 4.14245$	$3.13154 \\ 3.69840 \\ 3.75366 \\ 4.14248$	$3.13163 \\ 3.69847 \\ 3.75659 \\ 4.14257$	$3.13169 \\ 3.69853 \\ 3.75966 \\ 4.14263$	$3.13174 \\ 3.69857 \\ 3.76395 \\ 4.14267$
$car{q}$	0-	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	$\begin{array}{c} 1.86997 \\ 2.51166 \\ 2.99045 \\ 3.40197 \end{array}$	$\begin{array}{c} 1.87122 \\ 2.51196 \\ 2.99065 \\ 3.40221 \end{array}$	$\begin{array}{c} 1.87182 \\ 2.51213 \\ 2.99071 \\ 3.40225 \end{array}$	$\begin{array}{c} 1.87217\\ 2.51227\\ 2.99079\\ 3.40232\end{array}$	$\begin{array}{c} 1.87247 \\ 2.51242 \\ 2.99090 \\ 3.40241 \end{array}$
$car{q}$	1-	$\begin{array}{c}1\\2\\3\\4\end{array}$	2.05555 2.61323 2.65564 3.06017	2.05597 2.61365 2.65763 3.06073	2.05612 2.61383 2.66005 3.06096	2.05620 2.61397 2.66273 3.06115	$\begin{array}{c} 2.05626 \\ 2.61411 \\ 2.66654 \\ 3.06135 \end{array}$

Bottomonium ground-state wave functions

Calculated with model M1_{S3}

Relativistic wave function components are very small

Radial excitations in vector bottomonium

 $\Upsilon(4S)$

Y(1S)

-Υ(2D)

Importance of relativistic components

Ground-state wave functions of model M1_{S3}.

JLab, Feb 16, 2018

Importance of relativistic components

Ground-state wave functions of model M1_{S3}.

JLab, Feb 16, 2018

Leitão, Li, Maris, Peña, AS, Vary, Biernat, EPJC 77, 696 (2017); arXiv:1705.06178

Comparison of CST and BLFQ wave functions

Calculated CST-LFWF, mapped with the Brodsky-Huang-Lepage prescription (map.)

Example: wave function of J/ψ (1S) with $\lambda=0$

Quarkonium spectrum with BLFQ and CST

Rms differences (in MeV) between the calculated and experimental masses shown in blue

	Charmonium	Bottomonium
BLFQ	33	39
CST	42	11

Comparison between BLFQ and CST light front wave functions

BLFQ: Basis Light Front Quantization

- Effective Hamiltonian from light-front holography
- Contains confining interaction
- Minkowski space
- Y. Li, P. Maris, J. Vary, PRD 96, 016022 (2017)

Leitão, Li, Maris, Peña, AS, Vary, Biernat, EPJC **77**, 696 (2017); arXiv:1705.06178

Vector bottomonium wave functions, dominant components (S=1)

Wave functions are remarkably similar

BLFQ and CST distribution amplitudes

Leading twist distribution amplitudes from BLFQ and CST (map.) wave functions

$$\frac{f_{P,V}}{2\sqrt{2Nc}}\phi_{P,V^{||}}(x;\mu) = \frac{1}{\sqrt{x(1-x)}} \int_{0}^{\kappa_{\perp} \leq \mu} \frac{d^{2}\mathbf{k}_{\perp}}{2(2\pi)^{3}} \psi_{\uparrow\downarrow\mp\downarrow\uparrow}^{\lambda=0}(\mathbf{k}_{\perp},x) - \frac{\mathsf{PS}}{\mathsf{V}} + \mathsf{V}$$

Pseudoscalar quarkonia

Vector quarkonia

Heavy quarkonium decay constants

Nonrelativistic: depend on $\Psi(r=0)$

Very precise measurements for some charmonium and bottomonium PS and V states (no data for S and AV)

(only S-waves contribute)

Relativistic: all partial waves can contribute

Pseudoscalar mesons

$$f_P = \frac{1}{\pi} \sqrt{\frac{N_c}{2\mu_P}} \int_0^\infty dk \, k^2 \sqrt{\left(1 + \frac{m_1}{E_{1k}}\right) \left(1 + \frac{m_2}{E_{2k}}\right)} \left[(1 - \tilde{k}_1 \tilde{k}_2) \psi_s(k) + (\tilde{k}_1 + \tilde{k}_2) \psi_p(k) \right]$$

Vector mesons

$$\begin{split} f_{V} &= \frac{1}{\pi} \sqrt{\frac{N_{c}}{2\mu_{V}}} \int_{0}^{\infty} dk \, k^{2} \sqrt{\left(1 + \frac{m_{1}}{E_{1k}}\right) \left(1 + \frac{m_{2}}{E_{2k}}\right)} \left[(1 + \frac{1}{3} \tilde{k}_{1} \tilde{k}_{2}) \psi_{s}(k) - \frac{2\sqrt{2}}{3} \tilde{k}_{1} \tilde{k}_{2} \psi_{d}(k) + \frac{1}{\sqrt{3}} \tilde{k$$

Quarkonium decay constants (preliminary results)

Refit with stronger cut-off in OGE kernel (spectrum almost unchanged)

Quark content	n	Meson	$J^{P(C)}$	PDG	Lattice	DSE I	DSE II	BLFQ	${ m M}_{Qar{Q}} \Lambda_{ m OGE}$ (this work)
	1	$\eta_b(1S)$	0^{-+}	_	667^{+6}_{-6}	773	756	589	795
	2	$\eta_b(2S)$	0^{-+}	_	_	419(8)	285	427	596
	3	$\eta_b(3S)$	0^{-+}	_	_	534(57)	333	331	536
	4	$\eta_b(4S)$	0^{-+}	_	_	_	40(15)	_	503
	1	$\Upsilon(1S)$	1	689^{+5}_{-5}	649^{+31}_{-31}	768	707	689	703
$bar{b}$	2	$\Upsilon(2S)$	1	479_{-4}^{+4}	481^{+39}_{-39}	467(17)	393	484	573
	3	$1^{3}D_{1}$	1	_	_	41(7)	371(2)	4.2	26
	4	$\Upsilon(3S)$	1	414_{-4}^{+4}	_	_	9(5)	366	536
	5	$2^{3}D_{1}$	1	_	_	_	165(50)	_	38
	6	$\Upsilon(4S)$	1	328^{+17}_{-18}	_	_	20(15)	_	518
	1	$\eta_c(1S)$	0^{-+}	330^{+13}_{-13}	393^{+9}_{-9}	401	378	368	547
	2	$\eta_c(2S)$	0^{-+}	211_{-42}^{+35}	_	244(12)	82	280	461
	3	$\eta_c(3S)$	0^{-+}	_	_	145(145)	206	_	417
$c\bar{c}$	4	$\eta_c(4S)$	0^{-+}	_	_	_	87	_	387
	1	J/ψ	1	407^{+5}_{-5}	405^{+6}_{-6}	450	411	404	525
	2	$\psi(2S)$	1	290^{+2}_{-2}	_	30(3)	155	290	531
	3	$\psi(3770)$	1	97.7^{+3}_{-3}	_	118(91)	45	0.9	98

- With the simplest, one-channel CST equation and a few global parameters, we get a very nice description of the heavy and heavy-light meson spectrum
- ► (S+PS) confining kernel with ~ 0% 30% admixture of V coupling is compatible with the data
- In heavy quarkonia, we find remarkable similarities between CST LFWF (with BHL prescription) and BLFQ LFWF by Li, Vary, Maris, even in excited states
- Decay constants are very sensitive to details stronger constraints on kernel

Next steps:

- Include dynamical quark mass (mass function) from quark self-interaction
- Inclusion of running quark-gluon coupling
- Calculation of tensor mesons (spin \geq 2)
- Extension of current model to the light-quark sector (requires 4-channel eq.)
- Calculation of parton distribution functions
- Calculate relativistic quark-antiquark states with exotic J^{PC}