Determining resonances and other relevant scattering parameters from experimental cross-sections for non-relativistic two-body Coulomb scattering.

27 June 2018

Jefferson Lab Newport News Virginia, USA

Paul Vaandrager, Ph.D. candidate University of Pretoria, South Africa

Outline of Presentation:

- 1. Resonances in quantum mechanics
 - Definition, intuitive understanding, importance
- 2. Resonances from Scattering data
 - Difficulty in determining parameters, methods
- 3. Jost matrices
 - Definition, properties
- 4. Jost functions for a given potential
 - Calculating from Schrodinger's equation
- 5. Semi-Analytic Jost matrices
 - Factorising branching dependence

- 6. Fitting Parameters
 - Construction of S-matrix (cross sections) from fitting parameters
- 7. Model potential
 - Description, "noise", resonances, results from fitting, prediction, resonances from fitting
- 8. New study: ${}^{12}C + \alpha$ scattering :
 - Fitting of data, S-matrix residues & ANC values, preliminary results
- 9. Conclusion & Summary:
 - Discussion, future work

1. Resonances in Quantum Mechanics

• Resonances are complex energy poles, E_n , of the Scattering matrix.

$$\sigma_{mn}(E) = \frac{\pi}{k_m^2} (2\ell_m + 1) |S_{nm}(E) - \delta_{mn}|^2$$

$$T_{1/2} = \frac{\hbar \ln 2}{\Gamma}$$

• In most **physical scattering problems** there is much **overlap and averaging of peak structures** due to complicated partial-wave contributions as well as the contributions by the different channels.

- Various data-fitting methods are in existence. These methods roughly fall into 2 categories:
 - 1. Using E_r and Γ as fitting parameters, like Breit-Wigner parameterization. Number of resonances are fixed at the outset for such methods.
 - 2. Using arbitrary fitting parameters to construct *S*-matrix on appropriate Riemann energy sheet. Padé approximation a typical example.
- Our method, involving the **Jost functions**, falls within the second category.

3. Jost Matrices

- The *S*-matrix can be written as the "ratio" $S(E) = f^{(\text{out})}(E)[f^{(\text{in})}(E)]^{-1}$ of the incoming and outgoing Jost matrices.
- The Jost *functions* (Single-channel Jost matrices) are defined as the **energy-dependent amplitudes** of the **incoming and outgoing spherical waves** in the **asymptotic limit** of the **regular solution** to the radial Schrödinger equation. The Jost matrices are the multi-channel analog.

$$\psi_{a}(\mathbf{r}) = \frac{u_{a}(r)}{r} Y_{\ell m}(\theta, \varphi) \qquad \left[\frac{d^{2}}{dr^{2}} + k^{2} - \frac{\ell(\ell+1)}{r^{2}} - V(r) \right] u_{a}(r) = 0$$

$$u_a(r) \xrightarrow[r \to \infty]{} f_\ell^{(in)}(E) h_\ell^{(-)}(kr) + f_\ell^{(out)}(E) h_\ell^{(+)}(kr)$$

$$u_a(r) \xrightarrow[r \to \infty]{} f_\ell^{(in)}(E) h_\ell^{(-)}(kr) + f_\ell^{(out)}(E) h_\ell^{(+)}(kr)$$

• Resonances are complex energies, \mathcal{E} , which result in a zero determinant for the incoming Jost matrix.

det
$$f^{(\text{in})}(\mathcal{E}) = 0$$
 ($f_{\ell}^{(\text{in})}(\mathcal{E}) = 0$: single channel)

$$S(E) = f^{(\text{out})}(E)[f^{(\text{in})}(E)]^{-1}$$

• Jost functions are energy dependent via the channel momenta, k_n , each of which has a two-sheeted branching point at the threshold energy E_n .

$$\det f^{(\mathrm{in})}(\mathcal{E}) = 0$$
$$k_n = \sqrt{\frac{2\mu_n}{\hbar^2}(E - E_n)}$$

- The energies corresponding with k_n values on the *physical* sheet $(Im(k_n) > 0)$ which give zero determinant for $f^{(in)}(\varepsilon)$ are resonances.
- If the Jost matrices are constructed in such a way that they depend on energies not **explicitly on the physical sheet**, errors will arise in the resulting resonance parameters.
- This is **not a problem** if the Jost matrices are **mathematically determined from Schrödinger's equation** for a specific model potential, but **it is a problem when the Jost matrices are fitted to scattering data**.

 $\sigma_{\ell} = \arg \Gamma(\ell + 1 + i\eta) \qquad C_{\ell}(\eta) = \frac{2^{\ell} e^{-\pi\eta/2}}{\Gamma(2\ell+2)} |\Gamma(\ell + 1 \pm i\eta)|$

10 of 24

5. Semi-analytic Jost matrices

- Now assume no model potential known (or necessary): only experimental scattering cross sections at specific energies are available.
- Fitting cannot be done directly: The Jost matrices are energy dependent via the channel momentum, k_n , which is responsible for the branching of the energy Riemann surface at each channel threshold energy, E_n .

Factorized Coulomb Functions

 * E. Lambert, "Fonction de portée effective et déplacement en énergie des états liés en présence d'un potentiel coulombien modifié," *Helv. Phys. Acta*, no. 42, pp. 667–677, 1969.

11 of 24

 $k_n = \sqrt{\frac{2\mu_n}{\hbar^2}}(E - E_n)$

 $\eta = \frac{\mu e^2 Z_1 Z_2}{k\hbar^2}$

• The Jost matrices for Coulomb scattering are parameterized to factorize the problematic k_n and $\eta(k)$ dependence:

$$f_{mn}^{(\text{in/out)}}(E) = \frac{e^{\pi\eta_m/2}\ell_m!}{2\Gamma(\ell_m + 1 \pm i\eta_m)} \left\{ \frac{C_{\ell_n}(\eta_n)k_n^{\ell_n + 1}}{C_{\ell_m}(\eta_m)k_m^{\ell_m + 1}} A_{mn}(E) \right.$$

$$\left. - \left[\frac{2\eta_m h(\eta_m)}{C_0^2(\eta_m)} \pm i \right] C_{\ell_m}(\eta_m) C_{\ell_n}(\eta_n) k_m^{\ell_m} k_n^{\ell_n + 1} B_{mn}(E) \right\}$$

$$h(\boldsymbol{\eta}) = \frac{1}{2} [\boldsymbol{\psi}(i\boldsymbol{\eta}) + \boldsymbol{\psi}(-i\boldsymbol{\eta})] - \ln \hat{\boldsymbol{\eta}}, \qquad k_n = \sqrt{\frac{2\mu_n}{\hbar^2}} (E - E_n)$$
$$\boldsymbol{\psi}(z) = \frac{\Gamma'(z)}{\Gamma(z)}, \qquad C_\ell(\boldsymbol{\eta}) = \frac{2^\ell e^{-\pi\eta/2}}{\Gamma(2\ell+2)} |\Gamma(\ell+1\pm i\boldsymbol{\eta})| \qquad \boldsymbol{\eta} = \frac{\mu e^2 Z_1 Z_2}{k\hbar^2}$$

S. A. Rakityansky and N. Elander, J. Math. Phys. 54 (2013) 122112.

*

6. Fitting Parameters

• The remaining unknown matrices A(E) and B(E) are shown to be single-valued and holomorphic functions of the energy, defined on a simple energy plane without branching points.

- Since A(E) and B(E) are analytic, both can be expanded in the Taylor series around any point, E₀. A(E) and B(E) can thus be approximated by the first M terms in the series.
- The matrices a_i and b_i are the variable fitting parameters. Suitably adjusting them allows the total scattering cross-section to be fitted via the Jost matrices:

Jost matrices \rightarrow S matrix \rightarrow Cross Section (experimental)

• The fitting is done with the MINUIT programme in Fortran.

$$\frac{\text{Two-channel data:}}{\sigma_{1,1}\left(E_{i_{1}}^{(1,1)}\right) \pm \delta_{i_{1}}^{(1,1)}, \qquad i_{1} = 1, 2, 3, \dots, N^{(1,1)}}{\sigma_{1,2}\left(E_{i_{2}}^{(1,2)}\right) \pm \delta_{i_{2}}^{(1,2)}, \qquad i_{2} = 1, 2, 3, \dots, N^{(1,2)}}{\sigma_{2,2}\left(E_{i_{3}}^{(2,2)}\right) \pm \delta_{i_{3}}^{(2,1)}, \qquad i_{3} = 1, 2, 3, \dots, N^{(2,1)}}{\sigma_{2,2}\left(E_{i_{4}}^{(2,2)}\right) \pm \delta_{i_{4}}^{(2,2)}, \qquad i_{4} = 1, 2, 3, \dots, N^{(2,2)}}$$

$$\sigma_{nn}^{fit}(E) = \frac{\pi}{k_{m}^{2}}(2\ell_{m}+1) |S_{nm}(E) - \delta_{mn}|^{2}$$

$$S(E) = f^{(out)}(E) \left[f^{(in)}(E)\right]^{-1}$$

$$A(E) \approx \sum_{i=0}^{M} a_{i}(E_{0})(E - E_{0})^{i}, \\B(E) \approx \sum_{i=0}^{M} b_{i}(E_{0})(E - E_{0})^{i}, \\B(E)$$

Denkleiers • Leading Minds • Dikgopolo tša Dihlalefi

Expansion coefficients are fitting parameters

14 OT

λ,

15 of 24

7. Model Potential

 A two-channel model potential for a two-body problem where the resonances are known is used to generate scattering data.

$$V(r) = \begin{pmatrix} -1.0 & -7.5 \\ -7.5 & 7.5 \end{pmatrix} r^2 e^{-r} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{r}$$

- Experimental "noise" is introduced in the data by shifting each generated data point up or down by a random normally-distributed percentage. The standard deviation, Δ of the normal distribution used then corresponds with the magnitude of the "noise".
- Resonances for the model potential:

7. Model Potential: Results - resonances

Resonance	Δ	E_r	Г	Γ_1	Γ_2
1	exact	6.278042552	0.036866729	0.006898807	0.029967922
	0.01	6.277997424	0.036731019	0.006721542	0.030009477
	0.05	6.278563562	0.035568397	0.006497720	0.029070677
	0.10	6.278669302	0.036236713	0.006638945	0.029597768
2	exact	8.038507867	2.563111275	0.617710684	1.945400591
	0.01	7.998939904	2.096675299	0.623726003	1.472949296
	0.05	7.676616089	2.502856671	0.792088450	1.710768220
	0.10	7.968634195	1.662113407	0.231505793	1.430607614
3	exact	8.861433400	7.883809114	1.949506410	5.934302704
	0.01	11.21325906	3.204531546	0.031776330	3.172755216
	0.05	9.188805831	2.549030291	0.364986606	2.184043685
	0.10	9.259323135	2.226793463	1.232709401	0.994084062

7. Model Potential: Results - prediction

18 of 24

8. New study: ${}^{12}C + \alpha$ scattering (2 MeV – 7 MeV)

- Data from Notre Dame University & Los Alamos National lab, published by P. Tischhauser et al, 2009.
- Fitting the data duplicates resonances of previous studies very well. Our method is superior, as the fitted function is explicitly analytic.
- Possible new resonances have been found for states 5⁻ and 6⁺.

8. New study: ${}^{12}C + \alpha$ scattering (2 MeV – 7 MeV)

• S-matrix residues for specific resonance energies can also be calculated from Jost functions.

$$S_{\ell}(E) \approx \frac{R_{\ell}}{E - E_n} \qquad \text{Res } \left[S_{\ell}(E_n)\right] = \frac{f_{\ell}^{(\text{out})}(E_n)}{\dot{f}_{\ell}^{(\text{in})}(E_n)}$$

 A relation between the S-matrix residues and the Asymptotic Normalization Coefficient (ANC) is derived, based on work by Irgaziev & Orlov*:

$$Res[S_{\ell}, k_R] = i \ (-1)^{\ell+1} \ \frac{\Gamma(\ell+1-i\eta)}{\Gamma(\ell+1+i\eta)} \ C_{\ell}^2 = i \ (-1)^{\ell+1} \ e^{-2i\sigma_{\ell}} \ C_{\ell}^2$$

• ANC values are related to lifetime of **stars** and is of huge importance in astrophysics.

✤ B.F Irgaziev and Yu.V. Orlov, "Resonance properties including asymptotic normalization coefficients deduced from phase-shift data without the effective-range function", arXiv:1801.05933 [nucl-th], 2018

20 of 24

8. New study: ¹²C + α scattering (2 MeV – 7 MeV)
 Preliminary results:

Iπ	Poforonco	Resonance (¹⁶ O*)					
J "	Reference	E _R (Me∖	/)	Г (Me∨	/)	IANCI	
	This paper	4.8885	±0.0005	0.0014	±0.00015	0.04027 ± 0.00199	
0+							
	Tischhauser	4.888	±0.008	0.0015	±0.0005	-	
1-	This paper	2.3648	±0.0006	0.355	±0.005	0.1847 ± 0.0018	
	Tischhauser	2.493	±0.011	0.420	±0.020	-	
	Orlov	2.364		0.356		0.185	
	This paper	4.21606	±0.00009	0.8253	±0.0001	0.2359 ± 0.00004	
3—							
	Tischhauser	4.440	±0.015	0.800	±0.100	-	
	Orlov	4.214		0.812		0.234	
5—	This paper	3.9	± 0.8	1.8	± 0.4	0.016 ± 0.006	

9. Conclusions & Summary

- Sufficiently accurate results obtained for single- and two-channel scattering model problem. This was made possible by the proper analytic structure used for the fitting.
- While often yielding reasonable results, other methods are not rigorous in nature and rely on a suitable guess for the behaviour of the *S*-Matrix. The method we used is rigorous and exact, and can be applied to any non-relativistic two-body scattering problem involving Coulomb interactions.
- Successfully determined resonances for elastic ${}^{12}C + \alpha$ scattering.
- Successfully derived equation relating *S*-Matrix residues to ANC values, related to star lifetime.
- Successfully calculated ANC values for resonances for $\ell=0$ to $\ell=6$.
- Future work: $d + \alpha$ scattering; 2-channel problem.

Acknowledgements:

- Supervisor, Professor S.A. Rakitianski
- The South African NRF
- The University of Pretoria
- JLab and Hampton University, in particular: Alberto Accardi César Fernández Ramírez Mary Fox

Dankie! Thank you! Grazie:

