$1/N_c$ expansion for baryons in the N=2 band

Cintia T. Willemyns

Laboratorio TANDAR - CONICET

CONICET

Jlab, June 20, 2018

Willemyns Scoccola, arXiv:1804.07840

Willemyns Schat, PRD 95.094007

Outline

- 2 Baryons in the large N_c limit
- 3 Towers with configuration mixing
- 4 Nucleon-meson scattering picture
- 5 Antisymmetric states

6 Conclusions

Baryon classification scheme

Baryon classification scheme \longrightarrow Quark model

In the QM

Baryons belong to the $SU(6) \times O(3)$ irreducible representations. They organize in bands of the harmonic oscillator.

Experimental data on band $\mathcal{N} = 2$ states

$O(2) \sim SU(2N)$	$SU(3) \times SU(2)$	JP	<i>s</i> = 0	s = -1		s = -2	s = -3
$O(3) \times SO(2N_f)$				1 = 0	l = 1		
[56 ′, 0 ⁺]	² 8	$1/2^{+}$	N(1440)	Λ(1600)	Σ(1660)	Ξ(1690)	
	410	$3/2^{+}$	$\Delta(1600)^{**}$		Σ(1690)**		
	² 8	$3/2^{+}$	N(1720)	Λ(1890)			
		$5/2^{+}$	N(1680)	Λ(1820)	Σ(1915)		
[56 2+]	⁴ 10	$1/2^{+}$	$\Delta(1910)$				
[50, 2 *]		$3/2^{+}$	$\Delta(1920)$		Σ(2080)**		
		$5/2^{+}$	$\Delta(1905)$				
		$7/2^{+}$	$\Delta(1950)$		Σ(2030)		
	² 8	$1/2^+$	N(1710)	Λ(1810)	Σ(1880)**		
[70 0 ⁺]	⁴ 8	$3/2^{+}$	N(1540)*				
[10,01]	² 10	$1/2^{+}$	$\Delta(1550)$				
	² 1	$1/2^{+}$	N(2100)**				
[70 , 2 ⁺]	² 8	5/2+		Λ(2100)			
	⁴ 8	$7/2^{+}$	N(1990)**				
$[20, 1^+]$	² 8	$1/2^{+}$	N(2010)				
	⁴ 8	$3/2^{+}$	N(2040)*				

Table : Experimental data on baryonic resonances associated to irreducible representations of $O(3) \times SU(2N_f)$ and their $SU(3) \times SU(2)$ composition.

Willemyns ¹M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Experimental data on band $\mathcal{N} = 2$ states

$O(3) \times SU(2N_f)$	$SU(3) \times SU(2)$	J^P	<i>s</i> = 0	s = / = 0	= -1	s = -2	s = -3
[56 ′, 0 ⁺]	² 8	$1/2^+$	N(1440)	Λ(1600)	$\Sigma(1660)$	Ξ(1690)	
	28	3/2+	N(1720)	Λ(1890)	2(1090)***		
[56 , 2 ⁺]	Lattice calc classification	$u_{atic}^{5/2^+}$	N(1680) ns(1seem) $\Delta(1920)$ $me_{1905)}$	Λ(1820) to co	$\Sigma(1915)$ nfirm th $\Sigma(2080)^{**}$	is	
	28	$\frac{7/2^{+}}{1/2^{+}}$	$\Delta(1950)$ N(1710)	Λ(1810)	$\frac{\Sigma(2030)}{\Sigma(1880)^{**}}$		
[70 , 0 ⁺]	48 210 21	3/2 ⁺ 1/2 ⁺ 1/2 ⁺	$N(1540)^*$ $\Delta(1550)$ $N(2100)^{**}$				
[70, 2 ⁺]	28 48	5/2 ⁺ 7/2 ⁺	N(1990)**	Λ(2100)			
$[20, 1^+]$	2 ₈ 4 ₈	1/2+ 3/2+	N(2010) N(2040)*				

¹Edwards Dudek Richards Wallace, PRD 84.074508 ('11)

Willemyns ¹Edwards et al., PRD 87.054506 ('13)

Why is the constituent QM so successful?

- Lattice QCD \longrightarrow missing states + $O(3) \times SU(2N_f)$ assignment
- Large N_c QCD \longrightarrow Analytic approach

Spin-flavor symmetry for baryons in large N_c QCD

Gervais, Sakita and Dashen, Manohar found that in the large N_c limit a spin-flavor "contracted" $SU(2N_f)_c$ arises for ground state baryons.

SU(2N _f)	SU(2N _f) _c
$[S^i, T^a] = 0,$	$[S^i, T^a] = 0,$
$[S^i, S^j] = i\epsilon^{ijk}S^k$, $[T^a, T^b] = if^{abc}T^c$,	$[S^i, S^j] = i\epsilon^{ijk}S^k, \qquad [T^a, T^b] = if^{abc}T^c,$
$[S^i, G^{ja}] = i\epsilon^{ijk}G^{ka}$, $[T^a, G^{ib}] = if^{abc}G^{ic}$,	$[S^{i}, X_{0}^{ja}] = i\epsilon^{ijk}X_{0}^{ka}, [T^{a}, X_{0}^{ib}] = if^{abc}X_{0}^{ic}$
$[G^{ia}, G^{jb}] = \frac{i}{4} \delta^{ij} f^{abc} T^c + \frac{i}{2N_f} \delta^{ab} \epsilon^{ijk} S^k + \frac{i}{2} \epsilon^{ijk} d^{abc} G^{kc}$	$[X_0^{ia}, X_0^{jb}] = 0$

$$X_0^{ia} = \lim_{N_c \to \infty} \frac{G^{ia}}{N_c}$$

$$SU(2N_f) (QM) \xrightarrow[N_c \to \infty]{} SU(2N_f)_c$$

²J. L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87 (1984), Phys. Rev. D 30, 1795 (1984).

Willemyns ³R. F. Dashen and A. V. Manohar, Phys. Lett. B 315, 425 (1993)

Towers of large N_c states

States in the large N_c limit organize into towers: $SU(2N_f)_c$ symmetry \rightarrow towers K ("grand spin")

For $N_f = 2$ K = L for S K = L + 1 for MS,A

For ["70", 2⁺ $] \rightarrow$ three towers K = 1, 2, 3

For $N_f = 3$ this relation is not trivial

$1/N_c$ expansion for excited baryons

Excited baryon :
$$\underbrace{\text{excited quark}}_{\ell} + \underbrace{N_c - 1 \text{ quarks core}}_{\text{Symmetric in spin-flavor}}$$
.

Quark and core couple to form $O(3) \times SU(2N_f)$ multiplets

Building blocks for operators:

These spin-flavor generators are coupled to the angular momentum operator ℓ .

Large N_c operators

as

Using reduction rules one can find an operator basis for excited states. The mass operator can be expressed at leading order in N_c

$$H = \sum_{i=1}^{5} c_i^{\mathsf{T},\mathsf{T}'} O_i + \mathcal{O}(1/N_c)$$

$$\begin{array}{rcl}
O_1 &=& (N_c 1)^{[0,1]} \\
O_2 &=& \left(\ell^{(1)} s\right)^{[0,1]} \\
O_3 &=& \left(\ell^{(2)} \left(g G_c\right)^{[2,1]}\right)^{[0,1]} \\
O_4 &=& \frac{1}{N_c} \left(\ell^{(1)} \left(t G_c\right)^{[1,1]}\right)^{[0,1]} \\
O_5 &=& \frac{1}{N_c} \left(t T_c\right)^{[0,1]}
\end{array}$$

(No SU(3) breaking)

Willemyns ⁴Carlson Carone Goity Lebed, PRD 59.114008 ('99)

States studied in the $1/N_c$ expansion

$$N = 4$$

$$N = 2$$

$$N = 2$$

$$N = 1$$

$$N = 0$$

$$(56, 4^{+})$$

$$(70, 9^{+})$$

$$(70, 9^{+})$$

$$(70, 9^{+})$$

$$(70, 9^{+})$$

$$(70, 1^{-})$$

$$(76, 1^{-})$$

$$(76, 1^{-})$$

$$\mathcal{N}=2$$

Carlson Carone PLB 484.260

Goity Schat Scoccola PLB 564.83

Matagne Stancu PLB 631.7

Matagne Stancu PRD 74.034014

 $\mathcal{N}=1$

Pirjol Schat PRD **67**.096009 Goity Schat Scoccola PRD **66**.114014 Schat Goity Scoccola PRL **88**.102002 Carlson Carone Goity Lebed PRD **59**.114008

 $\mathcal{N}=\mathbf{0}$

Witten NPB 160.57 ('79)

States studied in the $1/N_c$ expansion

• In nature these states appear mixed

- In nature these states appear mixed
- In large N_c QCD too

Conclusions

States studied in the $1/N_c$ expansion

Willemyns ⁵Goity, Yad. Fiz. 68.655 (2005).

Large N_c operators

The mass operator can be expressed as

$$H = \sum_{i=1}^{5} c_i^{\mathsf{T},\mathsf{T}'} O_i + \mathcal{O}(1/N_c)$$

At leading order in N_c taking $I \rightarrow \xi$

$$O_{1} = (N_{c}1)^{[0,1]}$$

$$O_{2} = \left(\xi^{(1)}s\right)^{[0,1]}$$

$$O_{3} = \left(\xi^{(2)}(gG_{c})^{[2,1]}\right)^{[0,1]}$$

$$O_{4} = \frac{1}{N_{c}}\left(\xi^{(1)}(tG_{c})^{[1,1]}\right)^{[0,1]}$$

$$O_{5} = \frac{1}{N_{c}}(tT_{c})^{[0,1]}$$

Ħ

Large N_c baryons

For $N_c = 3$:

- $\mathbf{56} \rightarrow \mathsf{Symmetric}$
- $70 \rightarrow Mixed$ -symmetric
- 20
 ightarrow Antisymmetric

1

For large N_c : "56" \rightarrow Symmetric

- "70" \rightarrow Mixed-symmetric
- "20" \rightarrow Antisymmetric

		"8" = ($(1, \frac{N_c - 1}{2})$		
		1	1		
	1	2	1		
	1	2	2	1	
1	2	2	2		1
	2	2	2	2	
	1	1 1 1 2 2	"8" = (1 1 1 2 1 2 1 2 2 2 2 2	$"8" = \left(1, rac{N_{c}-1}{2} ight)$ 1 1 1 2 1 1 2 2 1 2 2 2 2 2 2 2 2	$"8" = \left(1, rac{N_{r}-1}{2} ight)$ 1 1 1 2 1 1 2 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2

Large N_c baryons

Building the states

• Symmetric and Mixed-symmetric states

$$egin{aligned} \mathsf{S} &= \mathsf{S}_c + 1/2 \ |S;\mathsf{R}
angle_{\mathcal{S},\mathcal{MS}} &= & \sum\limits_{\eta=\pm 1/2} c_{sym}(p,S,\eta) |S;\mathsf{R};S_c = S + \eta
angle \end{aligned}$$

• Antisymmetric states

$$|S,\mathbf{R}\rangle_A = \sum_i c_i |([S_{c_i},\mathbf{R}_{c_i}]_{MS} \mathbf{q})^{[S,\mathbf{R}]}\rangle,$$

where $q \equiv [1/2, 3]$.

Towers with configuration mixing

By calculating the eigenvalues of the 24 mass matrices we found that all the S and MS states of the $\mathcal{N}=2$ band have only nine masses which can be expressed as

m_0	=	$\bar{c}_1^{S_0} N_c$,
$m_{1^{\pm}}$	=	$ar{m}_1\pm\delta_1,$
$m_{2^{\pm}}$	=	$ar{m}_2\pm\delta_2,$
<i>m</i> 3	=	$ar{c}_1^{MS_2} N_c + c_2^{MS_2} - rac{2}{7} c_3^{MS_2}$
$m_{\frac{1}{2}}$	=	$ar{c}_1^{MS_0} N_c - 3c_5^{MS_0}$
$m_{\frac{3}{2}}$	=	$\bar{c}_1^{MS_2}N_c - \frac{3}{2}\bar{c}_2^{MS_2} + 3c_4^{MS_2} - 3c_5^{MS_2}$
$m_{\frac{5}{2}}$	=	$\bar{c}_1^{MS_2}N_c + \bar{c}_2^{MS_2} - 2c_4^{MS_2} - 3c_5^{MS_2}$

Towers with configuration mixing

$$egin{array}{rcl} m_{1^{\pm}} &=& ar{m}_{1} \pm \delta_{1}, \ m_{2^{\pm}} &=& ar{m}_{2} \pm \delta_{2}, \end{array}$$

where

$$\delta_{1} = \sqrt{\left(\frac{1}{2}\left(\bar{c}_{1}^{MS_{0}} - \bar{c}_{1}^{MS_{2}}\right)N_{c} + \frac{3}{4}\bar{c}_{2}^{MS_{2}} + \frac{1}{2}c_{3}^{MS_{2}}\right)^{2} + 2\left(c_{3}^{MS_{0},MS_{2}}\right)^{2}} \\ \delta_{2} = \sqrt{\left(\frac{1}{2}\left(\bar{c}_{1}^{S_{2}} - \bar{c}_{1}^{MS_{2}}\right)N_{c} + \frac{1}{4}\bar{c}_{2}^{MS_{2}} - \frac{1}{2}c_{3}^{MS_{2}}\right)^{2} + 2\left(\bar{c}_{2}^{S_{2},MS_{2}}\right)^{2}}$$

$$O_2 = \left(\xi^{(1)}s\right)^{[0,1]} \text{ mixes } [``70", 0^+] - [``70", 2^+]$$
$$O_3 = \left(\xi^{(2)} \left(gG_c\right)^{[2,1]}\right)^{[0,1]} \text{ mixes } [``56", 2^+] - [``70", 2^+]$$

Towers with configuration mixing

Configuration mixing effects

$$\begin{bmatrix} ["70", 0^+] & ["70", 2^+] & ["70", 0^+] - ["70", 2^-] \\ K = 1 & K = 1 & K = 1^+ & \\ K = 2 & K = 2 & \\ K = 3 & K = 3 & \\ K = 3 & K = 3 & \\ \end{bmatrix}$$

$$\delta_1 = \sqrt{\left(\frac{1}{2}\left(\bar{c}_1^{MS_0} - \bar{c}_1^{MS_2}\right)N_c + \frac{3}{4}\bar{c}_2^{MS_2} + \frac{1}{2}c_3^{MS_2}\right)^2 + 2\left(c_3^{MS_0,MS_2}\right)^2}$$

K number assignment

We know how to get the K number for the nonstrange baryons: $\mathsf{K}=\mathsf{L}$ for S and $\mathsf{K}=\mathsf{L}+1$ for MS

$$\begin{array}{rcl} m_{0} & = & \bar{c}_{1}^{S_{0}}N_{c}, & & & & & & & \\ m_{1^{\pm}} & = & \bar{m}_{1}\pm\delta_{1}, & & & & & \\ m_{2^{\pm}} & = & \bar{m}_{2}\pm\delta_{2}, & & & & & \\ m_{3} & = & \bar{c}_{1}^{MS_{2}}N_{c}+c_{2}^{MS_{2}}-\frac{2}{7}c_{3}^{MS_{2}} & & & & \\ m_{\frac{1}{2}} & = & \bar{c}_{1}^{MS_{0}}N_{c}-3c_{5}^{MS_{0}} & & & & \\ m_{\frac{3}{2}} & = & \bar{c}_{1}^{MS_{2}}N_{c}-\frac{3}{2}\bar{c}_{2}^{MS_{2}}+3c_{4}^{MS_{2}}-3c_{5}^{MS_{2}} & & & & \\ m_{\frac{5}{2}} & = & \bar{c}_{1}^{MS_{2}}N_{c}+\bar{c}_{2}^{MS_{2}}-2c_{4}^{MS_{2}}-3c_{5}^{MS_{2}} & & & & \\ \end{array}$$

Nucleon-meson scattering picture

For the present purpose it is sufficient to consider the case of π or η mesons scattering off a ground-state band baryon.

$$S = (-1)^{\ell-\ell'} \frac{\sqrt{D(\mathsf{R}_B)D(\mathsf{R}_{B'})}}{D(\mathsf{R}_s)} \sum_{\substack{I,I',Y\in\mathsf{8},\\I''\in\mathsf{R}_s}} (-1)^{I+I'+Y} \hat{I}''$$

$$\times \begin{pmatrix} \mathsf{R}_B & \mathsf{8} \\ S_B \frac{N_c}{3} & IY \end{pmatrix} \overset{\mathsf{R}_s \gamma_s}{I'Y+Y+\frac{N_c}{3}} \begin{pmatrix} \mathsf{R}_B & \mathsf{8} \\ I_B Y_B & I_\phi Y_\phi \end{pmatrix} \overset{\mathsf{R}_s \gamma_s}{I_s Y_s} \end{pmatrix}$$

$$\times \begin{pmatrix} \mathsf{R}_{B'} & \mathsf{8} \\ S_{B'} \frac{N_c}{3} & I'Y \end{pmatrix} \overset{\mathsf{R}_s \gamma'_s}{I''Y+\frac{N_c}{3}} \begin{pmatrix} \mathsf{R}_{B'} & \mathsf{8} \\ I_B Y_{B'} & I_{\phi'} Y_{\phi'} \end{pmatrix} \overset{\mathsf{R}_s \gamma'_s}{I_s Y_s} \end{pmatrix}$$

$$\times \sum_{K} \hat{K} \begin{cases} K & I'' & J_s \\ S_B & \ell & I \end{cases} \begin{cases} K & I'' & J_s \\ S_B & \ell & I \end{cases} \begin{cases} K & I'' & J_s \\ S_{B'} & \ell' & I' \end{cases} \frac{1}{2} \tau_{K\ell\ell'}^{II'Y}$$

Nucleon-meson scattering picture

For the present purpose it is sufficient to consider the case of π or η mesons scattering off a ground-state band baryon.

We consider the scatterings that can produce a given baryon and calculate the possible K numbers of the resonances:

We can test the compatibility between the two pictures.

⁷nonstrange [70, L] \rightarrow Cohen Lebed, PRD 68.056003 ('03) Willemyns ⁸complete [70, 1] \rightarrow Cohen Lebed, PRD 72.056001 ('05)

Operators for antisymmetric states

What about the antisymmetric states? Recall the operator basis

$$O_{1} = (N_{c}1)^{[0,1]}$$

$$O_{2} = (\xi^{(1)}s)^{[0,1]}$$

$$O_{3} = (\xi^{(2)}(gG_{c})^{[2,1]})^{[0,1]}$$

$$O_{4} = \frac{1}{N_{c}} (\xi^{(1)}(tG_{c})^{[1,1]})^{[0,1]}$$

$$O_{5} = \frac{1}{N_{c}} (tT_{c})^{[0,1]}$$

States with containing cores with different symmetry cannot mix with this basis!

Operators for antisymmetric states

For the nonstrange antisymmetric states $\mathsf{K}=\mathsf{L}+1$ Operator basis

$$O_{1} = (N_{c}1)^{[0,1]}$$

$$O_{2} = (\xi^{(1)}s)^{[0,1]}$$

$$O_{3} = (\xi^{(2)}(gG_{c})^{[2,1]})^{[0,1]}$$

The tower structure found for the nonstrange antisymmetric states and their strange partners in the flavor multiplet is given by

$$m_0 = c_1 N_c - c_2 - \frac{5}{24} c_3$$

$$m_1 = c_1 N_c - \frac{1}{2} c_2 + \frac{5}{48} c_3$$

$$m_2 = c_1 N_c + \frac{1}{2} c_2 - \frac{1}{48} c_3$$

<u>Note</u>: This structure is the same as the one found for the ["**70**", 1⁻] multiplet. Furthermore, not only the tower structure coincides but also the m_i and the matrices expressions are identical.

Willemyns ⁹Cohen Lebed, PRD 68.056003 ('03)

From the resonance picture we get 3 towers for the antisymmetric strange states:

$$\begin{split} & \mathcal{K} = \frac{1}{2} \quad : \quad \left(\Lambda_{1/2}^{1}, \Xi_{1/2}^{1}\right) \\ & \mathcal{K} = \frac{3}{2} \quad : \quad \left(\Lambda_{3/2}^{1}, \Xi_{3/2}^{1}\right) \\ & \mathcal{K} = \frac{5}{2} \quad : \quad \left(\Lambda_{5/2}^{1}, \Xi_{5/2}^{1}\right) \end{split}$$

From the resonance picture we get 3 towers for the antisymmetric strange states:

$$\begin{split} & \mathcal{K} = \frac{1}{2} \quad : \quad \left(\Lambda_{1/2}^{1}, \Xi_{1/2}^{1}\right) & \left(\Lambda_{1/2}^{1}, \Xi_{1/2}^{1}\right) \\ & \mathcal{K} = \frac{3}{2} \quad : \quad \left(\Lambda_{3/2}^{1}, \Xi_{3/2}^{1}\right) & \left(\Lambda_{3/2}^{1}, \Xi_{3/2}^{1}\right) \\ & \mathcal{K} = \frac{5}{2} \quad : \quad \left(\Lambda_{5/2}^{1}, \Xi_{5/2}^{1}\right) \end{split}$$

From the resonance picture we get 3 towers for the antisymmetric strange states:

$$\begin{split} & \mathcal{K} = \frac{1}{2} \quad : \quad \left(\Lambda_{1/2}^{1}, \Xi_{1/2}^{1}\right) & \left(\Lambda_{1/2}^{1}, \Xi_{1/2}^{1}\right) \\ & \mathcal{K} = \frac{3}{2} \quad : \quad \left(\Lambda_{3/2}^{1}, \Xi_{3/2}^{1}\right) & \left(\Lambda_{3/2}^{1}, \Xi_{3/2}^{1}\right) \\ & \mathcal{K} = \frac{5}{2} \quad : \quad \left(\Lambda_{5/2}^{1}, \Xi_{5/2}^{1}\right) \end{split}$$

A completely spurious tower arises

Summary and conclusions I

- We found that symmetric and mixed-symmetric states in the N = 2 band organize into 9 towers
- We built the antisymmetric states and found that they organize into 3 (+3) towers
- Confirmed that the core+quark approach is suitable for S and MS states.
- We found that the core+quark approach is suitable for antisymmetric states. Effects from more complex constructions are N_c suppressed.

Summary and conclusions II

- We found configuration mixing effects only on flavor multiplets containing nonstrange states: "8" and "10" (but not on "1" or "S")
- Configuration mixing happens between ["70", 0⁺] ["70", 2⁺] and ["56", 2⁺] ["70", 2⁺].
- Configuration mixing of the ["20", 1⁺] is a $O(1/N_c)$ effect.
- Quark+core picture is consistent with the resonance picture for the $\mathcal{N}=2$ band.

Next steps

• Break SU(3), consider NLO corrections, fit coefficients to data