$1 / N_{c}$ expansion for baryons in the $N=2$ band

Cintia T. Willemyns

Laboratorio TANDAR - CONICET

CONICET

Jlab, June 20, 2018

Outline

(1) Motivation
(2) Baryons in the large N_{c} limit
(3) Towers with configuration mixing

4 Nucleon-meson scattering picture
(5) Antisymmetric states
(6) Conclusions

Baryon classification scheme

Baryon classification scheme \longrightarrow Quark model

In the QM

Baryons belong to the $S U(6) \times O(3)$ irreducible representations.
They organize in bands of the harmonic oscillator.

$N=0 \longrightarrow\left[56,0^{+}\right]$

Experimental data on band $\mathcal{N}=2$ states

$O(3) \times S U\left(2 N_{f}\right)$	$S U(3) \times S U(2)$	J^{P}	$s=0$	$I=0$	$\begin{aligned} & =-1 \\ & \quad I=1 \end{aligned}$	$s=-2$	$s=-3$	
$\left[56^{\prime}, 0^{+}\right]$	${ }^{2} 8$	$1 / 2^{+}$	$N(1440)$	$\Lambda(1600)$	$\Sigma(1660)$	三(1690)		
	${ }^{4} 10$	$3 / 2^{+}$	$\Delta(1600)^{* *}$		$\Sigma(1690)^{* *}$			
$\left[56,2^{+}\right]$	${ }^{2} 8$${ }^{4} 10$	$3 / 2^{+}$	$N(1720)$	$\Lambda(1890)$				
		$5 / 2^{+}$	$N(1680)$	$\Lambda(1820)$	$\Sigma(1915)$			
		$1 / 2^{+}$	$\Delta(1910)$					
		$3 / 2^{+}$	$\Delta(1920)$		$\Sigma(2080)^{* *}$			
		$5 / 2^{+}$	$\Delta(1905)$					
		$7 / 2^{+}$	$\Delta(1950)$		$\Sigma(2030)$			
[70, 0^{+}]	${ }^{2} 8$	$1 / 2^{+}$	$N(1710)$	$\Lambda(1810)$	$\Sigma(1880) * *$			
	${ }^{4} 8$	$3 / 2^{+}$	$N(1540) *$					
	${ }^{2} 10$	$1 / 2^{+}$	$\Delta(1550)$					
	${ }^{2} 1$	$1 / 2^{+}$	$N(2100) * *$					
[70, 2^{+}]	${ }^{2} 8$	5/2+		$\Lambda(2100)$				
	${ }^{4} 8$	$7 / 2^{+}$	$N(1990) * *$					
$\left[20,1^{+}\right]$	${ }^{2} 8$	$1 / 2^{+}$	$N(2010)$					
	${ }^{4} 8$	$3 / 2^{+}$	$N(2040) *$					

Table : Experimental data on baryonic resonances associated to irreducible representations of $O(3) \times S U\left(2 N_{f}\right)$ and their $S U(3) \times S U(2)$ composition.

Experimental data on band $\mathcal{N}=2$ states

[^0]Willemyns ${ }^{1}$ Edwards et al., PRD 87.054506 ('13)

Why is the constituent QM so successful?

- Lattice QCD \longrightarrow missing states $+O(3) \times S U\left(2 N_{f}\right)$ assignment
- Large N_{c} QCD \longrightarrow Analytic approach

Spin-flavor symmetry for baryons in large N_{c} QCD

Gervais, Sakita and Dashen, Manohar found that in the large N_{c} limit a spin-flavor "contracted" $\operatorname{SU}\left(2 N_{f}\right)_{c}$ arises for ground state baryons.

$S U\left(2 N_{f}\right)$	$S U\left(2 N_{f}\right)_{c}$
$\begin{aligned} & {\left[S^{i}, T^{a}\right]=0,} \\ & {\left[S^{i}, S^{j}\right]=i \epsilon^{i j k} S^{k}, \quad\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c},} \\ & {\left[S^{i}, G^{j a}\right]=i \epsilon^{i j k} G^{k a}, \quad\left[T^{a}, G^{i b}\right]=i f^{a b c} G^{i c},} \\ & {\left[G^{i a}, G^{j b}\right]=\frac{i}{4} \delta^{i j} f^{a b c} T^{c}+\frac{i}{2 N_{f}} \delta^{a b} \epsilon^{i j k} S^{k}+\frac{i}{2} \epsilon^{i j k} d^{a b c} G^{k c}} \end{aligned}$	$\begin{aligned} & {\left[S^{i}, T^{a}\right]=0,} \\ & {\left[S^{i}, S^{j}\right]=i \epsilon^{i j k} S^{k}, \quad\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c},} \\ & {\left[S^{i}, X_{0}^{j a}\right]=i \epsilon^{i j k} X_{0}^{k a}, \quad\left[T^{a}, X_{0}^{i b}\right]=i f^{a b c} X_{0}^{i c}} \\ & \quad\left[X_{0}^{i a}, X_{0}^{j b}\right]=0 \end{aligned}$
$X_{0}^{i a}=\lim _{N_{c} \rightarrow \infty}$	$\frac{G^{i a}}{N_{c}}$

$$
S U\left(2 N_{f}\right)(Q M) \underset{N_{c} \rightarrow \infty}{ } S U\left(2 N_{f}\right)_{c}
$$

${ }^{2}$ J. L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87 (1984), Phys. Rev. D 30, 1795 (1984).
Willemyns ${ }^{3}$ R. F. Dashen and A. V. Manohar, Phys. Lett. B 315, 425 (1993)

Towers of large N_{c} states

States in the large N_{c} limit organize into towers:
$S U\left(2 N_{f}\right)_{c}$ symmetry \rightarrow towers K ("grand spin")
For $N_{f}=2$
$K=L$ for S
$\mathbf{K}=\mathbf{L}+\mathbf{1}$ for MS,A

For $\left[" 70^{\prime \prime}, 2^{+}\right] \rightarrow$ three towers $K=1,2,3$

For $N_{f}=3$ this relation is not trivial

$1 / N_{c}$ expansion for excited baryons

Quark and core couple to form $O(3) \times S U\left(2 N_{f}\right)$ multiplets Building blocks for operators:

$$
s, t, g, \quad S_{c}, T_{c}, G_{c}
$$

These spin-flavor generators are coupled to the angular momentum operator ℓ.

Large N_{c} operators

Using reduction rules one can find an operator basis for excited states. The mass operator can be expressed at leading order in N_{c} as

$$
H=\sum_{i=1}^{5} c_{i}^{\mathbf{T}, \mathbf{T}^{\prime}} O_{i}+\mathcal{O}\left(1 / N_{c}\right)
$$

$$
O_{1}=\left(N_{c} 1\right)^{[0,1]}
$$

$$
O_{2}=\left(\ell^{(1)} s\right)^{[0,1]}
$$

$$
O_{3}=\left(\ell^{(2)}\left(g G_{c}\right)^{[2,1]}\right)^{[0,1]}
$$

$$
O_{4}=\frac{1}{N_{c}}\left(\ell^{(1)}\left(t G_{c}\right)^{[1,1]}\right)^{[0,1]}
$$

$$
O_{5}=\frac{1}{N_{c}}\left(t T_{c}\right)^{[0,1]}
$$

(No SU(3) breaking)

States studied in the $1 / N_{c}$ expansion

$\mathcal{N}=2$
Carlson Carone PLB 484.260
Goity Schat Scoccola PLB 564.83
Matagne Stancu PLB 631.7
Matagne Stancu PRD 74.034014
$\mathcal{N}=1$
Pirjol Schat PRD 67.096009
Goity Schat Scoccola PRD 66.114014
Schat Goity Scoccola PRL 88.102002
Carlson Carone Goity Lebed PRD
59.114008
$\mathcal{N}=0$
Witten NPB 160.57 ('79)

States studied in the $1 / N_{c}$ expansion

$$
N=0 \quad\left[\mathbf{5 6}, 0^{+}\right]
$$

- In nature these states appear mixed

States studied in the $1 / N_{c}$ expansion

$$
\begin{aligned}
& N=4 \longrightarrow\left[\mathbf{5 6}, 4^{+}\right] \\
& N=2=\begin{array}{r}
{\left[20,1^{+}\right]} \\
{\left[70,2^{+}\right.} \\
{\left[70,0^{+}\right.} \\
{\left[56,2^{+}\right]} \\
{\left[56^{\prime}, 0^{+}\right]}
\end{array} \\
& N=1 \longrightarrow\left[70,1^{-}\right] \\
& N=0 \longrightarrow\left[56,0^{+}\right]
\end{aligned}
$$

- In nature these states appear mixed
- In large N_{c} QCD too

States studied in the $1 / N_{c}$ expansion

$$
N=0 \longrightarrow\left[56,0^{+}\right]
$$

- In nature these states appear mixed
- In large N_{c} QCD too

Configuration mixing effects are not N_{c} suppressed

Large N_{c} operators

The mass operator can be expressed as

$$
H=\sum_{i=1}^{5} c_{i}^{\mathbf{T}, \mathbf{T}^{\prime}} O_{i}+\mathcal{O}\left(1 / N_{c}\right)
$$

At leading order in N_{c} taking $/ \rightarrow \xi$

$$
\begin{aligned}
& O_{1}=\left(N_{c} 1\right)^{[0,1]} \\
& O_{2}=\left(\xi^{(1)} s\right)^{[0,1]} \\
& O_{3}=\left(\xi^{(2)}\left(g G_{c}\right)^{[2,1]}\right)^{[0,1]} \\
& O_{4}=\frac{1}{N_{c}}\left(\xi^{(1)}\left(t G_{c}\right)^{[1,1]}\right)^{[0,1]} \\
& O_{5}=\frac{1}{N_{c}}\left(t T_{c}\right)^{[0,1]}
\end{aligned}
$$

Large N_{c} baryons

For $N_{c}=3$:
$56 \rightarrow$ Symmetric
$70 \rightarrow$ Mixed-symmetric $20 \rightarrow$ Antisymmetric

For large N_{c} :
"56" \rightarrow Symmetric
"70" \rightarrow Mixed-symmetric
"20" \rightarrow Antisymmetric

$8=(1,1)$

| | 1 | | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| 1 | | 2 | | 1 |
| | | | | |
| | 1 | | 1 | |

Large N_{c} baryons

Building the states

- Symmetric and Mixed-symmetric states

$$
|S ; \mathbf{R}\rangle_{S, M S}=\sum_{\eta= \pm 1 / 2} c_{\text {sym }}(p, S, \eta)\left|S ; \mathbf{R} ; S_{c}=S+\eta\right\rangle
$$

- Antisymmetric states

$$
|S, \mathbf{R}\rangle_{A}=\sum_{i} c_{i}\left|\left(\left[S_{c_{i}}, \mathbf{R}_{c_{i}}\right]_{M S} \mathbf{q}\right)^{[S, \mathbf{R}]}\right\rangle,
$$

where $\mathbf{q} \equiv[1 / 2,3]$.

Towers with configuration mixing

By calculating the eigenvalues of the 24 mass matrices we found that all the S and MS states of the $\mathcal{N}=2$ band have only nine masses which can be expressed as

$$
\begin{aligned}
m_{0} & =\bar{c}_{1}^{S_{0}} N_{c}, \\
m_{1^{ \pm}} & =\bar{m}_{1} \pm \delta_{1}, \\
m_{2^{ \pm}} & =\bar{m}_{2} \pm \delta_{2}, \\
m_{3} & =\bar{c}_{1}^{M S_{2}} N_{c}+c_{2}^{M S_{2}}-\frac{2}{7} c_{3}^{M S_{2}} \\
m_{\frac{1}{2}} & =\bar{c}_{1}^{M S_{0}} N_{c}-3 c_{5}^{M S_{0}} \\
m_{\frac{3}{2}} & =\bar{c}_{1}^{M S_{2}} N_{c}-\frac{3}{2} \bar{c}_{2}^{M S_{2}}+3 c_{4}^{M S_{2}}-3 c_{5}^{M S_{2}} \\
m_{\frac{5}{2}} & =\bar{c}_{1}^{M S_{2}} N_{c}+\bar{c}_{2}^{M S_{2}}-2 c_{4}^{M S_{2}}-3 c_{5}^{M S_{2}}
\end{aligned}
$$

Towers with configuration mixing

$$
\begin{aligned}
m_{1^{ \pm}} & =\bar{m}_{1} \pm \delta_{1} \\
m_{2^{ \pm}} & =\bar{m}_{2} \pm \delta_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{1}=\sqrt{\left(\frac{1}{2}\left(\bar{c}_{1}^{M S_{0}}-\bar{c}_{1}^{M S_{2}}\right) N_{c}+\frac{3}{4} \bar{c}_{2}^{M S_{2}}+\frac{1}{2} c_{3}^{M S_{2}}\right)^{2}+2\left(c_{3}^{M S_{0}, M S_{2}}\right)^{2}} \\
& \delta_{2}=\sqrt{\left(\frac{1}{2}\left(\bar{c}_{1}^{S_{2}}-\bar{c}_{1}^{M S_{2}}\right) N_{c}+\frac{1}{4} \bar{c}_{2}^{M S_{2}}-\frac{1}{2} c_{3}^{M S_{2}}\right)^{2}+2\left(\bar{c}_{2}^{S_{2}, M S_{2}}\right)^{2}}
\end{aligned}
$$

$$
\begin{array}{rrr}
O_{2}=\left(\xi^{(1)} s\right)^{[0,1]} & \text { mixes } & {\left[" 70 ", 0^{+}\right]-\left[\text {" } 70 \text { ", } 2^{+}\right]} \\
O_{3}=\left(\xi^{(2)}\left(g G_{c}\right)^{[2,1]}\right)^{[0,1]} & \text { mixes } & {\left[" 56 ", 2^{+}\right]-\left[" 70^{\prime \prime}, 2^{+}\right]}
\end{array}
$$

Towers with configuration mixing

Configuration mixing effects

$$
\begin{equation*}
\left[" 70^{\prime \prime}, 0^{+}\right] \tag{+}
\end{equation*}
$$

$$
\left[" 70^{\prime \prime}, \mathbf{0}^{+}\right]-\left[" 70^{\prime \prime}, \boldsymbol{2}^{+}\right]
$$

$\mathrm{K}=1 \longrightarrow$

$K=3$
$\mathrm{K}=3$

$$
\delta_{1}=\sqrt{\left(\frac{1}{2}\left(\bar{c}_{1}^{M S_{0}}-\bar{c}_{1}^{M S_{2}}\right) N_{c}+\frac{3}{4} \bar{c}_{2}^{M S_{2}}+\frac{1}{2} c_{3}^{M S_{2}}\right)^{2}+2\left(c_{3}^{M S_{0}, M S_{2}}\right)^{2}}
$$

K number assignment

We know how to get the K number for the nonstrange baryons: $\mathbf{K}=\mathbf{L}$ for S and $\mathrm{K}=\mathbf{L}+\mathbf{1}$ for MS

$$
\begin{array}{lll}
m_{0} & =\bar{c}_{1}^{S_{0}} N_{c}, & K=0 \\
m_{1^{ \pm}} & =\bar{m}_{1} \pm \delta_{1}, & K=1 \\
m_{2^{ \pm}} & =\bar{m}_{2} \pm \delta_{2}, & K=2 \\
m_{3} & =\bar{c}_{1}^{M S_{2}} N_{c}+c_{2}^{M S_{2}}-\frac{2}{7} c_{3}^{M S_{2}} & K=3 \\
m_{\frac{1}{2}} & =\bar{c}_{1}^{M S_{0}} N_{c}-3 c_{5}^{M S_{0}} & K=? \\
m_{\frac{3}{2}} & =\bar{c}_{1}^{M S_{2}} N_{c}-\frac{3}{2} \bar{c}_{2}^{M S_{2}}+3 c_{4}^{M S_{2}}-3 c_{5}^{M S_{2}} & K=? \\
m_{\frac{5}{2}}=\bar{c}_{1}^{M S_{2}} N_{c}+\bar{c}_{2}^{M S_{2}}-2 c_{4}^{M S_{2}}-3 c_{5}^{M S_{2}} & K=?
\end{array}
$$

Nucleon-meson scattering picture

For the present purpose it is sufficient to consider the case of π or η mesons scattering off a ground-state band baryon.

$$
\begin{aligned}
& S=(-1)^{\ell-\ell^{\prime}} \frac{\sqrt{D\left(\mathbf{R}_{B}\right) D\left(\mathbf{R}_{B^{\prime}}\right)}}{D\left(\mathbf{R}_{s}\right)} \sum_{\substack{, l^{\prime}, Y \in \boldsymbol{8}, l^{\prime \prime} \in \mathbf{R}_{s},}}(-1)^{I+l^{\prime}+Y \hat{l}^{\prime \prime}} \\
& \times\left(\begin{array}{cc||c}
\mathrm{R}_{B} & 8 & \mathrm{R}_{s} \gamma_{s} \\
S_{B} \frac{N_{c}}{3} & I Y & I^{\prime \prime} Y+\frac{N_{c}}{3}
\end{array}\right)\left(\begin{array}{cc||c}
\mathrm{R}_{B} & 8 & \mathbf{R}_{s} \gamma_{s} \\
I_{B} Y_{B} & I_{\phi} Y_{\phi} & I_{s} Y_{s}
\end{array}\right) \\
& \times\left(\begin{array}{cc||c}
\mathbf{R}_{B^{\prime}} & \mathbf{8} & \mathbf{R}_{s} \gamma_{s}^{\prime} \\
S_{B^{\prime}} \frac{N_{c}}{3} & I^{\prime} Y & I^{\prime \prime} Y+\frac{N_{c}}{3}
\end{array}\right)\left(\begin{array}{cc|c}
\mathbf{R}_{B^{\prime}} & \mathbf{8} & \mathbf{R}_{s} \gamma_{s}^{\prime} \\
I_{B^{\prime}} Y_{B^{\prime}} & I_{\phi^{\prime}} Y_{\phi^{\prime}} & I_{s} Y_{s}
\end{array}\right) \\
& \times \sum_{K} \hat{K}\left\{\begin{array}{ccc}
K & I^{\prime \prime} & J_{s} \\
S_{B} & \ell & I
\end{array}\right\}\left\{\begin{array}{ccc}
K & I^{\prime \prime} & J_{s} \\
S_{B^{\prime}} & \ell^{\prime} & I^{\prime}
\end{array}\right\} \tau_{K \ell \ell^{\prime}}^{\prime \prime \prime}
\end{aligned}
$$

Nucleon-meson scattering picture

For the present purpose it is sufficient to consider the case of π or η mesons scattering off a ground-state band baryon.

We consider the scatterings that can produce a given baryon and calculate the possible K numbers of the resonances:

We can test the compatibility between the two pictures.
${ }^{7}$ nonstrange $[70, L] \rightarrow$ Cohen Lebed, PRD 68.056003 ('03)
Willemyns ${ }^{8}$ complete $[70,1] \rightarrow$ Cohen Lebed, PRD 72.056001 ('05)

Operators for antisymmetric states

What about the antisymmetric states?
Recall the operator basis

$$
\begin{aligned}
& O_{1}=\left(N_{c} 1\right)^{[0,1]} \\
& O_{2}=\left(\xi^{(1)} s\right)^{[0,1]} \\
& O_{3}=\left(\xi^{(2)}\left(g G_{c}\right)^{[2,1]}\right)^{[0,1]} \\
& O_{4}=\frac{1}{N_{c}}\left(\xi^{(1)}\left(t G_{c}\right)^{[1,1]}\right)^{[0,1]} \\
& O_{5}=\frac{1}{N_{c}}\left(t T_{c}\right)^{[0,1]}
\end{aligned}
$$

States with containing cores with different symmetry cannot mix with this basis!

Operators for antisymmetric states

For the nonstrange antisymmetric states $\mathrm{K}=\mathrm{L}+\mathbf{1}$
Operator basis

$$
\begin{aligned}
& O_{1}=\left(N_{c} 1\right)^{[0,1]} \\
& O_{2}=\left(\xi^{(1)} s\right)^{[0,1]} \\
& O_{3}=\left(\xi^{(2)}\left(g G_{c}\right)^{[2,1]}\right)^{[0,1]}
\end{aligned}
$$

Towers for antisymmetric states

The tower structure found for the nonstrange antisymmetric states and their strange partners in the flavor multiplet is given by

$$
\begin{aligned}
m_{0} & =c_{1} N_{c}-c_{2}-\frac{5}{24} c_{3} \\
m_{1} & =c_{1} N_{c}-\frac{1}{2} c_{2}+\frac{5}{48} c_{3} \\
m_{2} & =c_{1} N_{c}+\frac{1}{2} c_{2}-\frac{1}{48} c_{3}
\end{aligned}
$$

Note: This structure is the same as the one found for the ["70", 1] multiplet.
Furthermore, not only the tower structure coincides but also the m_{i} and the matrices expressions are identical.

Towers for antisymmetric states

From the resonance picture we get 3 towers for the antisymmetric strange states:

$$
\begin{array}{ll}
K=\frac{1}{2}: & \left(\Lambda_{1 / 2}^{1}, \bar{\Xi}_{1 / 2}^{1}\right) \\
K=\frac{3}{2}: & \left(\Lambda_{3 / 2}^{1}, \bar{\Xi}_{3 / 2}^{1}\right) \\
K=\frac{5}{2}: & \left(\Lambda_{5 / 2}^{1}, \bar{\Xi}_{5 / 2}^{1}\right)
\end{array}
$$

Towers for antisymmetric states

From the resonance picture we get 3 towers for the antisymmetric strange states:

$$
\begin{array}{lll}
K=\frac{1}{2}:\left(\Lambda_{1 / 2}^{1}, \bar{\Xi}_{1 / 2}^{1}\right) & \left(\Lambda_{1 / 2}^{1}, \bar{\Xi}_{1 / 2}^{1}\right) \\
K=\frac{3}{2}:\left(\Lambda_{3 / 2}^{1}, \bar{\Xi}_{3 / 2}^{1}\right) & \left(\Lambda_{3 / 2}^{1}, \bar{\Xi}_{3 / 2}^{1}\right) \\
K=\frac{5}{2}:\left(\Lambda_{5 / 2}^{1}, \bar{\Xi}_{5 / 2}^{1}\right) &
\end{array}
$$

Towers for antisymmetric states

From the resonance picture we get 3 towers for the antisymmetric strange states:

$$
\begin{array}{lll}
K=\frac{1}{2}:\left(\Lambda_{1 / 2}^{1}, \bar{\Xi}_{1 / 2}^{1}\right) & \left(\Lambda_{1 / 2}^{1}, \bar{\Xi}_{1 / 2}^{1}\right) \\
K=\frac{3}{2}:\left(\Lambda_{3 / 2}^{1}, \bar{\Xi}_{3 / 2}^{1}\right) & \left(\Lambda_{3 / 2}^{1}, \bar{\Xi}_{3 / 2}^{1}\right) \\
K=\frac{5}{2}:\left(\Lambda_{5 / 2}^{1}, \bar{\Xi}_{5 / 2}^{1}\right) &
\end{array}
$$

A completely spurious tower arises

Summary and conclusions I

- We found that symmetric and mixed-symmetric states in the $N=2$ band organize into 9 towers
- We built the antisymmetric states and found that they organize into 3 (+3) towers
- Confirmed that the core+quark approach is suitable for S and MS states.
- We found that the core+quark approach is suitable for antisymmetric states. Effects from more complex constructions are N_{c} suppressed.

Summary and conclusions II

- We found configuration mixing effects only on flavor multiplets containing nonstrange states: " 8 " and "10" (but not on " 1 " or "S")
- Configuration mixing happens between ["70", $\left.0^{+}\right]-\left[" 70^{\prime \prime}, 2^{+}\right]$ and [" 56 ", $\left.2^{+}\right]$- [" 70 ", 2^{+}].
- Configuration mixing of the [" 20 ", 1^{+}] is a $\mathcal{O}\left(1 / N_{c}\right)$ effect.
- Quark+core picture is consistent with the resonance picture for the $\mathcal{N}=2$ band.

Next steps

- Break SU(3), consider NLO corrections, fit coefficients to data

[^0]: ${ }^{1}$ Edwards Dudek Richards Wallace, PRD 84.074508 ('11)

