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Hadron Structure
How are 
– charge and currents 
– momentum 
– spin and angular momentum 

apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in 
- electromagnetic form factors 
- unpolarized structure functions and Transverse-momentum-dependent 

distributions (TMDs) 
- polarized structure functions, Generalized Parton Distributions (GPDs), 

TMDs 
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Paradigm: Pion EM form factor
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where



⇥(x) = d̄(x)�5u(x)

⇥†(x) = �ū(x)�5d(x)

Vµ(x) = euū(x)�µu(x) + edd̄(x)�µd(x).

V cont

µ = ZV V
lattice

µ ;ZV = 1 for conserved current

Anatomy of a Matrix Element Calculation - I

Pion Interpolating 
Operator

π+

Sequential-source propagator
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Anatomy of a Matrix Element Calculation - II
Construction of three-point function 

Introduce quark propagators

Then U-contribution to three-point function given by



�0 | ⇥(0) | �, ⇤p+ ⇤q⇥��, ⇤p+ ⇤q | Vµ(0) | �, ⇤p⇥��, ⇤p | ⇥† | 0⇥e�E(�p(t�ti)e�E(�p+�q)(tf�t)
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Anatomy of a Matrix Element Calculation - II

Resolution of unity – insert states



F (Q2) =
1

1 +Q2/MVMD
2

Pion Form Factor
LHPC, Bonnet et al, 
Phys.Rev. D72 (2005) 054506

hr2i = 6
dF (q2)

dq2

����
q2=0

Charge radius Nguyen et al, 1102.3652



�pf | Vµ | pi⇥ = ū(pf )
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Nucleon EM Form Factors
Two form factors

Dirac Pauli

Related to familiar Sach’s electromagnetic form factors through

N N1

γ
pipf

q

Isovector: difference 
between p and n or 
difference between u and d 
currents.



Electromagnetic Form Factors
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fit to experiment

lattice data, m⇡ = 149 MeV

Hadron structure at nearly-
physical quark masses

Green et al (LHPC), Phys. Rev. D 90, 074507 (2014)

Wilson-clover lattices from BMW

Large Q2 behavior: Hall C at JLab to 15 GeV2 



Hadron Structure
Green et al, arXiv:1404.40

Why can’t we get rid of those 
excited states!

M Constantinou, arXiv:1511.00214
• Governs beta-decay rate 
• Important for proton-proton fusion 

rate in solar models 
• Benchmark for lattice QCD 

calculations of hadron structure

Luxury of large statistical errors! mπ L < 4



Q2 = �q2 = (k0 � k)2

� = q · P/M

x =
Q2

2M�

Bjorken limit:

Q2 �! 1, � �! 1, x fixed

Wµ� =
1

4�

Z
dzeiq·z�N(p, S) | Jµ(z)Jµ(0) | N(p, S)⇥

Structure Functions - I

The structure functions are defined in terms of the hadronic tensor:

Yields two unpolarized structure functions F1(x,Q2) and F2(x,Q2), and two 
polarized structure functions g1(x,Q2) and g2(x,Q2)
Leading twist structure functions: product of currents at light-like z2 →0

In Euclidean lattice QCD, use OPE to write in terms of local operators  
whose matrix elements we can compute in Euclidean space



Z 1
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dx xn�1F2(x,Q
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q=u,d

Cn(µ
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�N(p) | Oµ1...µn+1

q | N(p)⇥ = �xn⇥(µ)[pµ1 . . . pµn+1 ]

Ocont = ZOlatt
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Structure Functions - II

Operators
Capitani, this school

polarized

Matrix elements related to moments of structure functions
Wilson coeffs Operator 

renormalization

Perturbation theory
Non-perturbatively



Axial-vector Charge

M Constantinou, arXiv:1511.00214

Luxury of large statistical errors! mπ L < 4



Quark Momentum Fraction 

14

• Need to go to approach physical light-
quark masses: chiral behavior

Similar renormalization prescription

RBC/UKQCD 2010: DWF



Quark Momentum Helicities

15

LHPC, 2010: DWF valence, Asqtad sea

HHBChPT

RBC/UKQCD 2010: DWF

• Need to go to approach physical light-
quark masses: chiral behavior

Similar renormalization prescription



Moments of Parton Distributions

We are computing moments

Do not have full Lorentz symmetry

n >= 5: operator mixing

Need to assume 
parametrization

Detmold, Melnitchouk, 
Thomas



Wigner distributions5D

1D

3D

3D Imaging of Nucleon



Different Regimes in Different Experiments

Form Factors 
transverse quark 
 distribution in  

Coordinate space

Structure Functions 
longitudinal 

quark distribution 
in momentum space

GPDs 
Fully-correlated 

quark distribution in  
both coordinate and  
momentum space



Generalized Parton Distributions (GPDs)

D. Muller et al (1994), X. Ji & A. 
Radyushkin (1996)

Jq =
1

2
� JG =

1

2

Z 1

�1
x dx [Hq(x, ⇠, 0) + Eq(x, ⇠, 0)]

Ji’s Sum rule

Measured in Deeply 
Virtual Compton 
Scattering

ξ is skewness



Moments of GPD’s
• Matrix elements of  light-cone correlation functions

• Expand O(x) around light-cone

• Off-forward matrix element

Co-efficient of ξi

LHPC, QCDSF, 2003



GPDs and Orbital Angular Momentum
• Form factors of energy momentum tensor - quark and gluon 

angular momentum

1

2
=

X

q

Jq + Jg

=
1

2

(
X

q

(Aq
20(t = 0) +Bq

20(t = 0)) +Ag
20(t = 0) +Bg

20(t = 0)

)

“q̄�µD⌫q”

X.D. Ji, PRL 78, 610 (1997)

X

q

✓
1

2
�⌃q + Lq

◆

Decomposition 
• Gauge-invariant 
• Renormalization-scale dependent 
• Handle on Quark orbital angular momentum

Mathur et al., Phys.Rev. D62 (2000) 114504

gluon operators - see later



Origin of Nucleon Spin

HERMES, PRD75 (2007)

LHPC, Haegler et al., 
Phys. Rev. D 77, 094502 
(2008); arXiv.1001.3620
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Total orbital angular momentum 
carried by quarks small
Orbital angular momentum carried 
by quark flavors substantial
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Origin of Nucleon Spin - II

Ph. Hägler, MENU 2010, W&M 19

Ju, Jd template figure

LHPC arXiv:1001.3620 (this work)

LHPC PRD `08 0705.4295

QCDSF (Ohtani et al.) 0710.1534

Goloskokov&Kroll EPJC`09 0809.4126

Wakamatsu 0908.0972

DiFeJaKr EPJC `05 hep-ph/0408173

(Myhrer&)Thomas PRL`08 0803.2775

[JLab Hall A PRL`07; HERMES JHEP`08]
Ph. Hagler, Menu 20010

p-DVCS (HERMES)

n-DVCS (Hall A)



• t-dependence ↔ impact parameter

Compare to phenomenological 
models

bT (fm)
x

Decrease slope : decreasing 
transverse size as x ! 1 
Burkardt

Transverse Distribution - I



Flattening of GFFs with increasing n

Lattice results consistent with 
narrowing of transverse size with 
increasing x

Transverse radii

Transverse Distribution - II
LHPC, Haegler et al., Phys. Rev. D 
77, 094502 (2008)
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time

incoming electr
on

incoming proton

fragmenting proton remnant

hadronizing quark

jet of hadrons

jet of hadrons

pick a hadron and measure its momentum

Ph

final state 
interactions

Bernhard Musch 2011

   Transverse momentum distributions (TMDs) 

final state interactions! 
explain large asymmetries otherwise forbidden!

signature of QCD! 

from experiment, e.g., SIDIS (semi-inclusive deep inelastic scattering)

HERMES,  COMPASS,  JLab 6 GeV,  JLab 12 GeV ,  ...  ,  EIC

Cf: measured in 
Drell-Yan, eg at 
RHIC-spin

26



�� =

Z
d(n · k)

Z
d4l

2(2⇡)4
e�ik·l�̃�(l;P, S)

=

Z
d(n · k)

Z
d4l

2(2⇡)4
e�ik·lhP, S | q̄(l)�Uq(0) | P, Si

Transverse-Momentum Distributions

TUM/T39-09-08, MIT-CTP 4056

Intrinsic quark transverse momentum in the nucleon from lattice QCD

Ph. Hägler,1 B.U. Musch,1 J.W. Negele,2 and A. Schäfer3
1
Institut für Theoretische Physik T39, Physik-Department der TU München, 85747 Garching, Germany

⇤

2
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3
Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

(Dated: December 22, 2009)

A better understanding of transverse momentum (k?-) dependent quark distributions in a hadron
is needed to interpret several experimentally observed large angular asymmetries and to clarify the
fundamental role of gauge links in non-abelian gauge theories. Based on manifestly non-local gauge
invariant quark operators we introduce process-independent k?-distributions and study their prop-
erties in lattice QCD. We find that the longitudinal and transverse momentum dependence approx-
imately factorizes, in contrast to the behavior of generalized parton distributions. The resulting
quark k?-probability densities for the nucleon show characteristic dipole deformations due to cor-
relations between intrinsic k? and the quark or nucleon spin. Our lattice calculations are based on
Nf=2+1 mixed action propagators of the LHP collaboration.

Introduction.— Already 30 years ago, it has been
noted that intrinsic transverse momentum, k?, of par-
tons gives rise to azimuthal asymmetries in unpolarized
semi-inclusive deep inelastic scattering (SIDIS), for ex-
ample e�+p⇤e�+⇤+X, nowadays known as the Cahn
e⌅ect [1]. Since then, significant progress has been made
in understanding intrinsic k? e⌅ects and their relation
to the eikonal phases that quark fields acquire in hadron
scattering processes due to initial and final state inter-
actions [2]. The eikonal phases, given by gauge links
(Wilson lines), turn out to be process-dependent and lead
to, e.g., the Sivers and Collins asymmetries [3, 4] in po-
larized SIDIS, which have attracted a lot of attention
and were already observed in experiments at HERMES,
COMPASS and Je⌅erson Lab [5]. Theoretically, these

⊥k

u

d

zP

z

zxP

u

yk

xk

FIG. 1: Illustration
of the transverse mo-
mentum distribution of
quarks in the proton.

can be described in the
framework of QCD factoriza-
tion using transverse momen-
tum dependent parton distri-
bution functions (tmdPDFs)
[4, 6], an approach that goes
beyond the usual collinear
approximation and operator
product expansion involving
(moments of) PDFs. In addi-
tion to their phenomenolog-
ical importance, tmdPDFs
provide essential information
about the internal structure
of hadrons in the form of
probability densities in the transverse momentum plane,
⌅(x,k?), as illustrated in Fig. 1 [7], where x is the lon-
gitudinal momentum fraction carried by the quark.

In this work, we introduce process-independent k?-
distributions and calculate these in lattice QCD. We il-
lustrate our results by presenting k?-densities of quarks
in the nucleon, with a focus on possible correlations be-
tween k? and the transverse quark and nucleon spins,
resulting in deformations from a spherically symmetric

distribution. It is interesting to compare this approach
with generalized parton distributions (GPDs) in impact
parameter (b?-) space [8], which allows one to study the
spatial distribution of partons in hadrons in form of prob-
ability densities ⌅(x, b?) [9]. Lattice QCD studies of the
latter revealed characteristic non-spherical shapes of the
pion and the nucleon in the case of transversely polar-
ized quarks [10, 11]. We stress, however, that tmdPDFs
and GPDs provide fundamentally di⌅erent and comple-
mentary insight into hadron structure, since they are not
related by Fourier transformation and k? and b? are not
conjugate variables.

To introduce the di⌅erent tmdPDFs, we first define the
momentum-space correlators ⇤�=⇤�(x,k?;P, S),

⇤� =
�

d(n̄·k)
�

d4l

2(2⇤)4
e�ik·l⇥⇤�(l;P, S)

=
�

d(n̄·k)
�

d4l

2(2⇤)4
e�ik·l⇧P, S|q̄(l)�Uq(0)|P, S⌃ .(1)

with nucleon states |P, S⌃ depending on momentum and
spin, and where the Wilson line U=UC(l,0), defined by a
path ordered exponential, ensures gauge invariance of the
non-local quark operator q̄(l) . . . q(0). For the vector (un-
polarized), �µ

V =�µ, axial-vector (polarized), �µ
A=�µ�5,

and tensor (quark helicity flip), �µ⇥
T =i⇧µ⇥�5, cases, the

correlators in Eq. 1 can be parametrized by the twist-2
tmdPDFs [12]:

nµ⇤µ
V = f1 + Si�?ijkj

1
mN

f?1T

nµ⇤µ
A = ⇥g1 +

k? · S?
mN

g1T

nµ⇤µj
T = �Sjh1 �

�?jiki

mN
h?1

� ⇥kj

mN
h?1L �

(2kjki � k2
?⇥ji)Si

2m2
N

h?1T , (2)

where the distributions f, g, h depend on x and k? and
⇥ is the nucleon helicity. The light-cone vectors n and
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B. Musch, PhD Thesis; Haegler, 
Musch, Negele, Schafer arXiv:

0908.1283

Introduce Momentum-space correlators

Choice of path - retain gauge invariance

gauge link operator U

⇤P | q(⇥) �U q(0) |P ⌅ is gauge invariant.

continuum

U ⇥ P exp

�
�ig

⇤ �

0
d�µAµ(�)

⇥

along path from 0 to ⇥

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path

gauge link operator U

⇤P | q(⇥) �U q(0) |P ⌅ is gauge invariant.

continuum

U ⇥ P exp

�
�ig

⇤ �

0
d�µAµ(�)

⇥

along path from 0 to ⇥

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path

Real world!: path runs to infinity Lattice: equal time slice

gauge link operator U

⇤P | q(⇥) �U q(0) |P ⌅ is gauge invariant.

continuum

U ⇥ P exp

�
�ig

⇤ �

0
d�µAµ(�)

⇥

along path from 0 to ⇥

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path



Flavor-Singlet Hadron Structure



�pf | Vµ | pi⇥ = ū(pf )


�µF1(q

2) + iq�
⇥µ�

2mN
F2(q

2)

�
u(pi)

GE(Q
2) = F1(Q

2)� Q2

(2mN )2
F2(Q

2)

GM (Q2) = F1(Q
2) + F2(Q

2)

Flavor-singlet Quantities

N N1

γ
pipf

q

Isoscalar: p and n 
separately, or u and d 
separated contribution.

Vµ =
2

3
ū�µu� 1

3
d̄�µd�

1

3
s̄�µs

Strange-quark contribution 
to hadron structure



G�,p
E/M =

2

3
Gu

E,M � 1

3
Gd

E,M�1

3
Gs

E,M

GZ,p
E/M = (1� 8

3
sin2 �W )Gu

E,M � (1� 4

3
sin2 �W )Gd

E,M�(1� 4

3
sin2 �W )Gs

E,M

Flavor-singlet: Disconnected Contributions
Parity-violating electron scattering

Expected to be small

∆s = −0.085(13)(8)(9)

HERMES: dominated by 
small x

Spin carried by s-quark



�disc
NµN (tf , t, 0; �p, �q) =

X

�x,�y

�0 | N(�x, tf )s̄(�y, t)�s(�y, t)N̄(�0, 0) | 0⇥e�i�p·�xe�i�q·�y

=
X

�x

�0 | N(�x, tf )

0

@
X

�y

s̄(�y, t)�s(�y, t)e�i�q·�y

1

A N̄(�0, 0) | 0⇥e�i�p·�x

X

�y

Tr[M�1(�y, t; �y, t)�]

Solve MX = �: then < M�1
ij >=< �jXi >

Disconnected contributions
Three-point correlator looks like  

Need efficient means of evaluating 

Straightforward way: introduce noise vectors such 
that < ⇥i >= 0; < ⇥i⇥j >= �ij

Error both from Gauge Noise and from Stochastic noise
Noise-reduction methods 
- Partitioning (“dilution”) - sources have support on, say, 8 timeslices  
- Hopping parameter expansion 
- Different stochastic sources



Hadrons, Nuclei and Nuclear Matter from QCD

Flavor-separated Structure 32
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Sea Quark Contributions

33

J. Green, K. Orginos et al., Phys. Rev. D 92, 031501 
(2015)

Strange magnetic 
moment of nucleon

Using Hierarchical Probing - A. 
Stathopoulos, J. Laeuchli, K. Orginos 
(2013)
A. Gambhir*, K. Orginos, A. Stathopoulos, 
arXiv:1603.05988. *William and Mary 
student with SCGSR fellowship at JLab

Synergy with computer scientists - 
precision calculation of sea quark 
contributions now possible

Combination measured in expt



⇤

⇤ lnµ2

✓
qS

g

◆
=

�s(µ2)

2⇥

✓
Pqq 2nfPqg

Pgq Pgg

◆
⌦
✓

qS

g

◆

Mixing…

Quark and gluons mix under renormalization

The local operators mix as follows:



Complete calculation of flavor-separated and 
gluonic contributions to nucleon spin

Deka et al, arXiv:1312.4816

Flavor-separated and Gluon Contributions 

Tµ⌫ =
1

4
 ̄�(µD⌫) +Gµ↵G⌫↵ � 1

4
�µ⌫G

2; hP | Tµ⌫ | P i = PµP⌫/M



Parton Distributions - II
Formulation of LQCD in Euclidean space precludes direct calculation of light-cone 
correlation functions 
 → LQCD computes Moments of parton distributions 
New ideas: calculations of QUASI-distributions in infinite-momentum frame

z 

x,y 
 

Large P 

X. Ji, Phys. Rev. Lett. 110, 262002 (2013). 
X. Ji, J. Zhang, and Y. Zhao,  Phys. Rev. Lett. 111, 112002 (2013). 
J. W. Qiu and Y. Q. Ma, arXiv:1404.686.

q̃(x, µ, Pz) =

Z
dz

4⇡
e

�izk ⇥
D
~

P

���  ̄(z)�zeig
R z
0 Az(z

0)dz0
 (0)

���~P
E

“Equal time” correlator



First lattice calculations of Quasi 
Distributions

! q(x) q̄(x)

…Flavor Structure

H.W. Lin et al, arXiv:1402.1462

smallestx ' 1/a

12 GeV; Future EIC
Violation of Gottfried sum rule

¯

d(x) > ū(x)

q̃(x, µ, Pz) =

Z
dy

|y|Z
✓
x

y

,

µ

Pz

◆
q(y, µ) +O

 
⇤2
QCD

P

2
z

,

M

2
N

P

2
z

!
+ . . .



Summary
• Lattice Calculations of the simplest quantities are now 

appearing at physical values of the quark masses 
• High-precision calculations of local matrix elements - 

relevant for searches for new physics in, e.g. UCN. 
– To directly explore x distributions, there are now a slew of 

new ideas… Ji et al, Qiu et al. 
• Major effort underway in US in generating lattices designed 

for hadron structure calculations.


