Hadron Structure

David Richards Jefferson Laboratory

Hadron Structure

How are

- charge and currents
- momentum
- spin and angular momentum

apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in

- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), TMDs

Paradigm: Pion EM form factor

Anatomy of a Matrix Element Calculation - I

Pion Interpolating Operator

Sequential-source propagator

$$\Gamma_{\pi^+\mu\pi^+}(t_f,t;\vec{p},\vec{q}) = \sum_{\vec{x},\vec{y}} \langle 0|\phi(\vec{x},t_f)V_\mu(\vec{y},t)\phi^\dagger(\vec{0},0)|0\rangle e^{-i\vec{p}\cdot\vec{x}}e^{-i\vec{q}\cdot\vec{y}},$$

 $V_{\mu}^{\text{cont}} = Z_V V_{\mu}^{\text{lattice}}; Z_V = 1$ for conserved current

Anatomy of a Matrix Element Calculation - II

Construction of three-point function

Introduce quark propagators

 $U^{ij}_{\alpha\beta}(x,y) = \langle u^i_{\alpha}(x)\bar{u}^j_{\beta}(y)\rangle$ $D^{ij}_{\alpha\beta}(x,y) = \langle d^i_{\alpha}(x)\bar{d}^j_{\beta}(y)\rangle,$

Then U-contribution to three-point function given by

 $\Gamma^{U}_{\pi^{+}\mu\pi^{+}} = e_{u} \sum_{\vec{x},\vec{y}} e^{-i\vec{p}\cdot\vec{x}-i\vec{q}\cdot\vec{y}} \text{Tr} \left\{ \gamma_{5}U(x,y)\gamma_{\mu}U(y,0)\gamma_{5}D(0,x) \right\}$ Quark propagator: $G^{ij}_{\alpha\beta}(x,y) = \langle q^{i}_{\alpha}(x)\bar{q}^{j}_{\beta}(y) \rangle$ satisfies

$$M_{\alpha\gamma}^{ik}(x,z)G_{\gamma\beta}^{kj}(z,y) = \delta_{ij}\delta_{\alpha\beta}\delta_{xy}; \quad G(y,x) = \gamma_5 G(x,y)^{\dagger}\gamma_5$$

Introduce Sequential Quark Propagator $H^{u}(y,0;t_{f},\vec{p}) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}}U(y,x)\gamma_{5}D(x,0)\gamma_{5}$ Satisfies: $M(z,y)H^{u}(y,0;t_{f},\vec{p}) = \delta_{t_{z},t_{f}}e^{i\vec{p}\cdot\vec{z}}\gamma_{5}D(z,0)\gamma_{5}$

Finally: $\Gamma^U_{\pi^+\mu\pi^+} = e_u \sum_{\vec{y}} e^{-i\vec{q}\cdot\vec{y}} \operatorname{Tr}\left\{H^u(y,0;t_f,\vec{p})^{\dagger}\gamma_5\gamma_{\mu}U(y,0)\gamma_5\right\}$

Anatomy of a Matrix Element Calculation - II

$$\Gamma_{\pi^+\mu\pi^+}(t_f,t;\vec{p},\vec{q}) = \sum_{\vec{x},\vec{y}} \langle 0|\phi(\vec{x},t_f)V_{\mu}(\vec{y},t)\phi^{\dagger}(\vec{0},0)|0\rangle e^{-i\vec{p}\cdot\vec{x}}e^{-i\vec{q}\cdot\vec{y}},$$

Resolution of unity - insert states

 $\langle 0 \mid \phi(0) \mid \pi, \vec{p} + \vec{q} \rangle \langle \pi, \vec{p} + \vec{q} \mid V_{\mu}(0) \mid \pi, \vec{p} \rangle \langle \pi, \vec{p} \mid \phi^{\dagger} \mid 0 \rangle e^{-E(\vec{p}(t-t_i)} e^{-E(\vec{p}+\vec{q})(t_f-t)})$

Pion Form Factor

Charge radius Nguyen et al, 1102.3652

$$\langle r^2 \rangle = 6 \left. \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0}$$

LHPC, Bonnet et al, Phys.Rev. D72 (2005) 054506

Nucleon EM Form Factors

Two form factors

$$\langle p_f \mid V_\mu \mid p_i \rangle = \bar{u}(p_f) \left[\gamma_\mu F_1(q^2) + iq_\nu \frac{\sigma_{\mu\nu}}{2m_N} F_2(q^2) \right] u(p_i)$$

Related to familiar Sach's electromagnetic form factors through

Electromagnetic Form Factors

Hadron Structure

Structure Functions - I

The structure functions are defined in terms of the hadronic tensor:

$$W_{\mu\nu} = \frac{1}{4\pi} \int dz e^{iq \cdot z} \langle N(p,S) \mid J_{\mu}(z) J_{\mu}(0) \mid N(p,S) \rangle$$

Yields two unpolarized structure functions $F_1(x,Q^2)$ and $F_2(x,Q^2)$, and two polarized structure functions $g_1(x,Q^2)$ and $g_2(x,Q^2)$

Leading twist structure functions: product of currents at light-like $z^2 \rightarrow 0$

In Euclidean lattice QCD, use OPE to write in terms of local operators whose matrix elements we can compute in Euclidean space

Structure Functions - II

Jefferson Lab

Axial-vector Charge

Luxury of large statistical errors! $m_{\pi} L < 4$

M Constantinou, arXiv:1511.00214

Quark Momentum Fraction

RBC/UKQCD 2010: DWF

• Need to go to approach physical lightquark masses: chiral behavior

Quark Momentum Helicities

LHPC, 2010: DWF valence, Asqtad sea

Moments of Parton Distributions

Thomas Jefferson National Accelerator Facility

3D Imaging of Nucleon

Different Regimes in Different Experiments

Form Factors transverse quark distribution in Coordinate space

Structure Functions longitudinal quark distribution in momentum space

GPDs

Fully-correlated quark distribution in both coordinate and momentum space

Generalized Parton Distributions (GPDs)

ξ is *skewness*

Moments of GPD's

• Matrix elements of light-cone correlation functions

$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}\left(-\frac{\lambda}{2}n\right) n P e^{-ig \int_{\lambda/2}^{\lambda/2} d\alpha \, n \cdot A(\alpha n)} \psi\left(\frac{\lambda}{2}n\right)$$

- Expand *O(x)* around light-cone $O_q^{\{\mu_1\mu_2...\mu_n\}} = \bar{\psi}_q \gamma^{\{\mu_1} i D^{\mu_2} \dots D^{\mu_n\}} \psi_q$
- Off-forward matrix element

GPDs and Orbital Angular Momentum

• Form factors of energy momentum tensor - *quark and gluon* angular momentum

Decomposition

- Gauge-invariant
- Renormalization-scale dependent
- Handle on Quark orbital angular momentum

Mathur et al., *Phys.Rev. D62 (2000) 114504*

Origin of Nucleon Spin

Origin of Nucleon Spin - II

Transverse Distribution - I

Transverse Distribution - II

Lattice results consistent with narrowing of transverse size with increasing x

LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008)

Flattening of GFFs with increasing n

Transverse momentum distributions (TMDs)

from experiment, e.g., SIDIS (semi-inclusive deep inelastic scattering)

HERMES, COMPASS, JLab 6 GeV, JLab 12 GeV, ..., EIC

Transverse-Momentum Distributions

Flavor-Singlet Hadron Structure

Flavor-singlet Quantities

Flavor-singlet: Disconnected Contributions

Parity-violating electron scattering

Disconnected contributions

Three-point correlator looks like

$$\begin{split} \Gamma^{\text{disc}}_{N\mu N}(t_f, t, 0; \vec{p}, \vec{q}) &= \sum_{\vec{x}, \vec{y}} \langle 0 \mid N(\vec{x}, t_f) \bar{s}(\vec{y}, t) \Gamma s(\vec{y}, t) \bar{N}(\vec{0}, 0) \mid 0 \rangle e^{-i\vec{p} \cdot \vec{x}} e^{-i\vec{q} \cdot \vec{y}} \\ &= \sum_{\vec{x}} \langle 0 \mid N(\vec{x}, t_f) \left(\sum_{\vec{y}} \bar{s}(\vec{y}, t) \Gamma s(\vec{y}, t) e^{-i\vec{q} \cdot \vec{y}} \right) \bar{N}(\vec{0}, 0) \mid 0 \rangle e^{-i\vec{p} \cdot \vec{x}} \end{split}$$

Need efficient means of evaluating

$$\sum_{i} \operatorname{Tr}[M^{-1}(\vec{y}, t; \vec{y}, t)\Gamma]$$

Straightforward way: introduce noise vectors such that $\langle \eta_i \rangle = 0; \quad \langle \eta_i \eta_j \rangle = \delta_{ij}$

Solve $MX = \eta$: then $\langle M_{ij}^{-1} \rangle = \langle \eta_j X_i \rangle$

Error both from Gauge Noise and from Stochastic noise

Noise-reduction methods

- Partitioning ("dilution") sources have support on, say, 8 timeslices
- Hopping parameter expansion
- Different stochastic sources

Isotropic Clover Gauge Generation for Hadron Structure at ORNL and at BlueWaters

Sea Quark Contributions

J. Green, <u>K. Orginos</u> et al., Phys. Rev. D 92, 031501 (2015)

Using *Hierarchical Probing -* A. Stathopoulos, J. Laeuchli, <u>K. Orginos</u> (2013)

<u>A. Gambhir*, K. Orginos</u>, A. Stathopoulos, arXiv:1603.05988. **William and Mary student with SCGSR fellowship at JLab*

Synergy with computer scientists precision calculation of sea quark contributions now possible

Mixing...

Quark and gluons mix under renormalization

$$\frac{\partial}{\partial \ln \mu^2} \left(\begin{array}{c} q^S \\ g \end{array} \right) = \frac{\alpha_s(\mu^2)}{2\pi} \left(\begin{array}{c} P_{qq} & 2n_f P_{qg} \\ P_{gq} & P_{gg} \end{array} \right) \otimes \left(\begin{array}{c} q^S \\ g \end{array} \right)$$

The local operators mix as follows:

$$O_{\mu_{1}\cdots\mu_{N}}^{qS} = \frac{1}{2^{N}} \overline{\psi} \gamma_{[\mu_{1}} \overleftrightarrow{D}_{\mu_{2}} \cdots \overleftrightarrow{D}_{\mu_{N}]} (1 \pm \gamma_{5}) \psi$$
$$O_{\mu_{1}\cdots\mu_{N}}^{gS} = \sum_{\rho} \operatorname{Tr} \left[F_{[\mu_{1}\rho} \overleftrightarrow{D}_{\mu_{2}} \cdots \overleftrightarrow{D}_{\mu_{N-1}} F_{\rho\mu_{N}]} \right]$$

Flavor-separated and Gluon Contributions

Complete calculation of flavor-separated and gluonic contributions to nucleon spin

Deka et al, arXiv:1312.4816

$$T_{\mu\nu} = \frac{1}{4}\bar{\psi}\gamma_{(\mu}D_{\nu)}\psi + G_{\mu\alpha}G_{\nu\alpha} - \frac{1}{4}\delta_{\mu\nu}G^{2}; \langle P \mid T_{\mu\nu} \mid P \rangle = P_{\mu}P_{\nu}/M$$

Parton Distributions - II

Formulation of LQCD in Euclidean space precludes direct calculation of light-cone correlation functions

 \rightarrow LQCD computes Moments of parton distributions New ideas: calculations of QUASI-distributions in *infinite-momentum frame*

...Flavor Structure

12 GeV; Future EIC Violation of Gottfried sum rule $\bar{d}(x) > \bar{u}(x)$

Summary

- Lattice Calculations of the simplest quantities are now appearing at physical values of the quark masses
- High-precision calculations of local matrix elements relevant for searches for new physics in, e.g. UCN.
 - To directly explore x distributions, there are now a slew of new ideas... Ji et al, Qiu et al.
- Major effort underway in US in generating lattices designed for hadron structure calculations.

