Hadron Structure
 David Richards
 Jefferson Laboratory

Hadron Structure

How are

- charge and currents
- momentum
- spin and angular momentum
apportioned amongst the quarks and gluons that make up a hadron?
Encapsulated in
- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), TMDs

Paradigm: Pion EM form factor

$$
\left\langle\pi\left(\vec{p}_{f}\right)\right| V_{\mu}(0)\left|\pi\left(\vec{p}_{i}\right)\right\rangle=\left(p_{i}+p_{f}\right)_{\mu} F\left(Q^{2}\right)
$$

where

$$
\begin{aligned}
V_{\mu} & =\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d \\
-Q^{2} & =\left[E_{\pi}\left(\vec{p}_{f}\right)-E_{\pi}\left(\vec{p}_{i}\right)\right]^{2}-\left(\vec{p}_{f}-\vec{p}_{i}\right)^{2}
\end{aligned}
$$

Anatomy of a Matrix Element Calculation - I

Pion Interpolating Operator

$$
\left\{\begin{aligned}
\phi(x) & =\bar{d}(x) \gamma_{5} u(x) \\
\phi^{\dagger}(x) & =-\bar{u}(x) \gamma_{5} d(x) \\
V_{\mu}(x) & =e_{u} \bar{u}(x) \gamma_{\mu} u(x)+e_{d} \bar{d}(x) \gamma_{\mu} d(x)
\end{aligned}\right.
$$

$$
\Gamma_{\pi^{+} \mu \pi^{+}}\left(t_{f}, t ; \vec{p}, \vec{q}\right)=\sum_{\vec{x}, \vec{y}}\langle 0| \phi\left(\vec{x}, t_{f}\right) V_{\mu}(\vec{y}, t) \phi^{\dagger}(\overrightarrow{0}, 0)|0\rangle e^{-i \vec{p} \cdot \vec{x}} e^{-i \vec{q} \cdot \vec{y}}
$$

$$
V_{\mu}^{\text {cont }}=Z_{V} V_{\mu}^{\text {lattice }} ; Z_{V}=1 \quad \text { for conserved current }
$$

Anatomy of a Matrix Element Calculation - II

Construction of three-point function

Introduce quark propagators

$$
\begin{aligned}
U_{\alpha \beta}^{i j}(x, y) & =\left\langle u_{\alpha}^{i}(x) \bar{u}_{\beta}^{j}(y)\right\rangle \\
D_{\alpha \beta}^{i j}(x, y) & =\left\langle d_{\alpha}^{i}(x) \bar{d}_{\beta}^{j}(y)\right\rangle
\end{aligned}
$$

Then U-contribution to three-point function given by

$$
\Gamma_{\pi^{+} \mu \pi^{+}}^{U}=e_{u} \sum_{\vec{x}, \vec{y}} e^{-i \vec{p} \cdot \vec{x}-i \vec{q} \cdot \vec{y}} \operatorname{Tr}\left\{\gamma_{5} U(x, y) \gamma_{\mu} U(y, 0) \gamma_{5} D(0, x)\right\}
$$

Quark propagator: $G_{\alpha \beta}^{i j}(x, y)=\left\langle q_{\alpha}^{i}(x) \bar{q}_{\beta}^{j}(y)\right\rangle$ satisfies

$$
M_{\alpha \gamma}^{i k}(x, z) G_{\gamma \beta}^{k j}(z, y)=\delta_{i j} \delta_{\alpha \beta} \delta_{x y} ; \quad G(y, x)=\gamma_{5} G(x, y)^{\dagger} \gamma_{5}
$$

Introduce Sequential Quark Propagator $H^{u}\left(y, 0 ; t_{f}, \vec{p}\right)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} U(y, x) \gamma_{5} D(x, 0) \gamma_{5}$
Satisfies: $M(z, y) H^{u}\left(y, 0 ; t_{f}, \vec{p}\right)=\delta_{t_{z}, t_{f}} e^{i \vec{p} \cdot \vec{z}} \gamma_{5} D(z, 0) \gamma_{5}$
Finally: $\Gamma_{\pi^{+} \mu \pi^{+}}^{U}=e_{u} \sum_{\vec{y}} e^{-i \vec{q} \cdot \vec{y}} \operatorname{Tr}\left\{H^{u}\left(y, 0 ; t_{f}, \vec{p}\right)^{\dagger} \gamma_{5} \gamma_{\mu} U(y, 0) \gamma_{5}\right\}$

Anatomy of a Matrix Element Calculation - II

$$
\Gamma_{\pi^{+} \mu \pi^{+}}\left(t_{f}, t ; \vec{p}, \vec{q}\right)=\sum_{\vec{x}, \vec{y}}\langle 0| \phi\left(\vec{x}, t_{f}\right) V_{\mu}(\vec{y}, t) \phi^{\dagger}(\overrightarrow{0}, 0)|0\rangle e^{-i \vec{p} \cdot \vec{x}} e^{-i \vec{q} \cdot \vec{y}}
$$

Resolution of unity - insert states

$$
\langle 0| \phi(0)|\pi, \vec{p}+\vec{q}\rangle\langle\pi, \vec{p}+\vec{q}| V_{\mu}(0)|\pi, \vec{p}\rangle\langle\pi, \vec{p}| \phi^{\dagger}|0\rangle e^{-E\left(\vec{p}\left(t-t_{i}\right)\right.} e^{-E(\vec{p}+\vec{q})\left(t_{f}-t\right)}
$$

$$
\Gamma_{\pi^{+} \pi^{+}}(t, 0 ; \vec{p})=\sum_{\vec{x}}\langle 0| \phi\left(\vec{x}, t_{f}\right) \phi^{\dagger}(0)|0\rangle e^{-i \vec{p} \cdot \vec{x}}
$$

Pion Form Factor

Charge radius Nguyen et al, 1102.3652

$$
\left\langle r^{2}\right\rangle=\left.6 \frac{d F\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}
$$

LHPC, Bonnet et al,
Phys.Rev. D72 (2005) 054506

$$
F\left(Q^{2}\right)=\frac{1}{1+Q^{2} / M_{\mathrm{VMD}}{ }^{2}}
$$

Nucleon EM Form Factors

Two form factors

$$
\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\begin{array}{cc}
\text { Dirac } & \text { Pauli } \\
\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)
\end{array}\right] u\left(p_{i}\right)
$$

Related to familiar Sach's electromagnetic form factors through

$$
\begin{array}{rll}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) & \begin{array}{l}
\text { Isovector: differenc } \\
\text { between } \mathrm{p} \text { and } \mathrm{n} \text { or } \\
G_{M}\left(Q^{2}\right)
\end{array}=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
\end{array} \quad \begin{aligned}
& \text { difference between } \\
& \text { currents. }
\end{aligned}
$$

Isovector: difference

Electromagnetic Form Factors

Wilson-clover lattices from BMW

Green et al (LHPC), Phys. Rev. D 90, 074507 (2014)

Hadron structure at nearlyphysical quark masses

Hadron Structure

M Constantinou, arXiv:1511.00214

- Governs beta-decay rate
- Important for proton-proton fusion rate in solar models
- Benchmark for lattice QCD calculations of hadron structure

Luxury of large statistical errors! $m_{\pi} L<4$
Green et al, arXiv:1404.40

Structure Functions - I

$$
\begin{aligned}
Q^{2} & =-q^{2}=\left(k^{\prime}-k\right)^{2} \\
\nu & =q \cdot P / M \\
x & =\frac{Q^{2}}{2 M \nu} \quad \boldsymbol{k} \rightarrow
\end{aligned}
$$

Bjorken limit:
$Q^{2} \longrightarrow \infty, \nu \longrightarrow \infty, x$ fixed

The structure functions are defined in terms of the hadronic tensor:

$$
W_{\mu \nu}=\frac{1}{4 \pi} \int d z e^{i q \cdot z}\langle N(p, S)| J_{\mu}(z) J_{\mu}(0)|N(p, S)\rangle
$$

Yields two unpolarized structure functions $F_{1}\left(x, Q^{2}\right)$ and $F_{2}\left(x, Q^{2}\right)$, and two polarized structure functions $\mathrm{g}_{1}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ and $\mathrm{g}_{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$
Leading twist structure functions: product of currents at light-like $z^{2} \rightarrow 0$
In Euclidean lattice QCD, use OPE to write in terms of local operators whose matrix elements we can compute in Euclidean space

Structure Functions - II

Operators polarized

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q \gamma_{5}} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}} \psi_{q}
$$

Capitani, this school

Matrix elements related to moments of structure functions

> Wilson coeffs

Operator renormalization

$$
\left.\int_{0}^{1} d x x^{n-1} F_{2}\left(x, Q^{2}\right)=\sum_{q=u, d} C_{n}\left(\mu^{2} / Q^{2}\right), g(\mu)\right)\left\langle x^{n}\right\rangle(\mu)
$$

where

$$
\begin{array}{r}
\langle N(p)| O_{q}^{\mu_{1} \ldots \mu_{n+1}}|N(p)\rangle=\left\langle x^{n}\right\rangle(\mu)\left[p_{\mu_{1}} \ldots p_{\mu_{n+1}}\right] \\
\mathcal{O}^{\text {cont }}=Z \mathcal{O}^{\text {latt }} \text { Perturbation theory } \\
\text { Non-perturbatively }
\end{array}
$$

Axial-vector Charge

Luxury of large statistical errors! $m_{\pi} L<4$
M Constantinou, arXiv:1511.00214

Quark Momentum Fraction

RBC/UKQCD 2010: DWF

- Need to go to approach physical lightquark masses: chiral behavior

Quark Momentum Helicities

LHPC, 2010: DWF valence, Asqtad sea

HBChPT
RBC/UKQCD 2010: DWF

- Need to go to approach physical lightquark masses: chiral behavior

Moments of Parton Distributions

$$
x\left(u_{v}(x)-d_{v}(x)\right)=a x^{b}(1-x)^{c}(1+\varepsilon \sqrt{x}+\gamma x)
$$

We are computing moments

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q \gamma_{5}} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}} \psi_{q}
$$

Do not have full Lorentz symmetry

3D Imaging of Nucleon

Different Regimes in Different Experiments

Form Factors transverse quark distribution in
Coordinate space

GPDs
Fully-correlated quark distribution in both coordinate and momentum space

Generalized Parton Distributions (GPDs)

ξ is skewness

Moments of GPD's

- Matrix elements of light-cone correlation functions

$$
\mathcal{O}(x)=\int \frac{d \lambda}{4 \pi} e^{i \lambda x} \bar{\psi}\left(-\frac{\lambda}{2} n\right) n P e^{-i g \int_{\lambda / 2}^{\lambda / 2} d \alpha n \cdot A(\alpha n)} \psi\left(\frac{\lambda}{2} n\right)
$$

- Expand $O(x)$ around light-cone

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}} \psi_{q}
$$

- Off-forward matrix element

$$
\begin{aligned}
\left\langle P^{\prime}\right| O_{q}^{\left\{\mu_{1} \ldots \mu_{n}\right\}}|P\rangle & \simeq \\
\longrightarrow & \int d x x^{n-1}[H(x, \xi, t), E(x, \xi, t)] \\
& \uparrow \quad A_{n i}(t), B_{n i}(t), C_{n}(t), \tilde{A}_{n i}(t), \widetilde{B}_{n i}(t), \widetilde{C}_{n}(t) \\
& \text { LHPC, QCDSF, } 2003
\end{aligned}
$$

Co-efficient of ξ^{i}

GPDs and Orbital Angular Momentum

- Form factors of energy momentum tensor - quark and gluon angular momentum

$$
\begin{aligned}
& \frac{1}{2}=\sum_{q} J^{q}+J^{g} \quad \begin{array}{c}
q \\
\gamma_{\mu}
\end{array} D_{\nu} q^{\prime \prime} \\
& \text { X.D. Ji, PRL 78, } \mathbf{6 1 0} \text { (1997) } \\
&=\frac{1}{2}\left\{\sum_{q}\left(A_{20}^{q}(t=0)+B_{20}^{q}(t=0)\right)+A_{20}^{g}(t=0)+B_{20}^{g}(t=0)\right\} \\
& \sum_{q}\left(\frac{1}{2} \Delta \Sigma^{q}-L^{q}\right)
\end{aligned}
$$

Decomposition

- Gauge-invariant
- Renormalization-scale dependent
- Handle on Quark orbital angular momentum

Mathur et al., Phys.Rev. D62 (2000) 114504

Origin of Nucleon Spin

$$
J^{q}=1 / 2\left(A_{20}^{q}(t=0)+B_{20}^{q}(t-0)\right)
$$

$$
\Delta \Sigma^{q} / 2=\tilde{A}_{10}^{q}(t=0) / 2
$$

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma^{u+d}+L^{u+d}+J^{g}
$$

HERMES, PRD75 (2007)

LHPC, Haegler et al.,
Phys. Rev. D 77, 094502 (2008); arXiv.1001.3620

Total orbital angular momentum carried by quarks small Orbital angular momentum carried by quark flavors substantial

Origin of Nucleon Spin - II

LHPC arXiv:1001.3620 (this work)
LHPC PRD `08 0705.4295 QCDSF (Ohtani et al.) 0710.1534 Goloskokov\&Kroll EPJC`09 0809.4126
Wakamatsu 0908.0972
DiFeJaKr EPJC `05 hep-ph/0408173 (Myhrer\&)Thomas PRL`08 0803.2775
$\overline{\mathrm{MS}}$ at $4 \mathrm{GeV}^{2}$

Transverse Distribution - I

Decrease slope : decreasing transverse size as x! 1 Burkardt

Transverse Distribution - II

Lattice results consistent with narrowing of transverse size with increasing x

LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008)

Flattening of GFFs with increasing n

Transverse momentum distributions (TMDs)

from experiment, e.g., SIDIS (semi-inclusive deep inelastic scattering)
HERMES, COMPASS, JLab 6 GeV, JLab 12 GeV , ... , EIC

Cf: measured in Drell-Yan, eg at RHIC-spin

final state interactions!

explain large asymmetries otherwise forbidden! signature of QCD!

N	U	L	T
U	f_{1}		
L		g_{1}	$h_{i L}^{\text {d }}$
T	$f_{\text {EI }}^{\text {b }}$	$g_{i T}$	$h_{1} h^{\text {hat }}$
${ }_{\text {Sivers }}^{4}$-time-reversal			

Transverse-Momentum Distributions

B. Musch, PhD Thesis; Haegler, Musch, Negele, Schafer arXiv:
0908.1283

Introduce Momentum-space correlators

$$
\begin{aligned}
\Phi_{\Gamma} & =\int d(n \cdot k) \int \frac{d^{4} l}{2(2 \pi)^{4}} e^{-i k \cdot l} \tilde{\Phi}_{\Gamma}(l ; P, S) \\
& \left.=\int d(n \cdot k) \int \frac{d^{4} l}{2(2 \pi)^{4}} e^{-i k \cdot l}\langle P, S| \bar{q}(l) \Gamma \mathcal{U} q(0)\right)|P, S\rangle
\end{aligned}
$$

$\mathcal{U} \equiv \mathcal{P} \exp \left(-i g \int_{0}^{\ell} d \xi^{\mu} A_{\mu}(\xi)\right)$
along path from 0 to ℓ

Choice of path - retain gauge invariance

Real world!: path runs to infinity
Lattice: equal time slice

Flavor-Singlet Hadron Structure

Flavor-singlet Quantities

$$
\begin{aligned}
&\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)\right] u\left(p_{i}\right) \\
& G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \begin{array}{l}
\text { Isoscalar: p and } \mathrm{n} \\
G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
\end{array} \quad \begin{array}{l}
\text { separately, or u and d } \\
\text { separated contribution. }
\end{array}
\end{aligned}
$$

$$
V_{\mu}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{1}{3} \bar{s} \gamma_{\mu} s
$$

Flavor-singlet: Disconnected Contributions

Parity-violating electron scattering

$$
G_{E / M}^{\gamma, p}=\frac{2}{3} G_{E, M}^{u}-\frac{1}{3} G_{E, M}^{d}-\frac{1}{3} G_{E, M}^{s}
$$

$G_{E / M}^{Z, p}=\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{u}-\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{d}-\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{s}$
Expected to be small

$$
\Delta s=-0.085(13)(8)(9)
$$

HERMES: dominated by small x

Disconnected contributions

Three-point correlator looks like

$$
\begin{aligned}
\Gamma_{N \mu N}^{\operatorname{disc}}\left(t_{f}, t, 0 ; \vec{p}, \vec{q}\right) & =\sum_{\vec{x}, \vec{y}}\langle 0| N\left(\vec{x}, t_{f}\right) \bar{s}(\vec{y}, t) \Gamma s(\vec{y}, t) \bar{N}(\overrightarrow{0}, 0)|0\rangle e^{-i \vec{p} \cdot \vec{x}} e^{-i \vec{q} \cdot \vec{y}} \\
& =\sum_{\vec{x}}\langle 0| N\left(\vec{x}, t_{f}\right)\left(\sum_{\vec{y}} \bar{s}(\vec{y}, t) \Gamma s(\vec{y}, t) e^{-i \vec{q} \cdot \vec{y}}\right) \bar{N}(\overrightarrow{0}, 0)|0\rangle e^{-i \vec{p} \cdot \vec{x}}
\end{aligned}
$$

Need efficient means of evaluating

$$
\sum_{\vec{y}} \operatorname{Tr}\left[M^{-1}(\vec{y}, t ; \vec{y}, t) \Gamma\right]
$$

Straightforward way: introduce noise vectors such that

$$
<\eta_{i}>=0 ; \quad<\eta_{i} \eta_{j}>=\delta_{i j}
$$

Solve $M X=\eta$: then $<M_{i j}^{-1}>=<\eta_{j} X_{i}>$
Error both from Gauge Noise and from Stochastic noise Noise-reduction methods

- Partitioning ("dilution") - sources have support on, say, 8 timeslices
- Hopping parameter expansion
- Different stochastic sources

Flavor-separated Structure

Isotropic Clover Gauge Generation for Hadron Structure at ORNL and at BlueWaters

Sea Quark Contributions

Combination measured in expt

J. Green, K. Orginos et al., Phys. Rev. D 92, 031501 (2015)

Using Hierarchical Probing - A.
Stathopoulos, J. Laeuchli, K. Orginos (2013)
A. Gambhir*, K. Orginos, A. Stathopoulos, arXiv:1603.05988. *William and Mary student with SCGSR fellowship at JLab
Synergy with computer scientists precision calculation of sea quark contributions now possible

Mixing...

Quark and gluons mix under renormalization

$$
\frac{\partial}{\partial \ln \mu^{2}}\binom{q^{S}}{g}=\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi}\left(\begin{array}{cc}
P_{q q} & 2 n_{f} P_{q g} \\
P_{g q} & P_{g g}
\end{array}\right) \otimes\binom{q^{S}}{g}
$$

The local operators mix as follows:

$$
\begin{aligned}
& O_{\mu_{1} \cdots \mu_{N}}^{q S}=\frac{1}{2^{N}} \bar{\psi} \gamma_{\left[\mu_{1}\right.} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \overleftrightarrow{\Delta}_{\left.\mu_{N}\right]}\left(1 \pm \gamma_{5}\right) \psi \\
& O_{\mu_{1} \cdots \mu_{N}}^{g S}=\sum_{\rho} \operatorname{Tr}\left[F_{\left[\mu_{1} \rho\right.} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{N-1}} F_{\left.\rho \mu_{N}\right]}\right]
\end{aligned}
$$

Flavor-separated and Gluon Contributions

(a)

Complete calculation of flavor-separated and gluonic contributions to nucleon spin

Deka et al, arXiv:1312.4816

$$
T_{\mu \nu}=\frac{1}{4} \bar{\psi} \gamma_{(\mu} D_{\nu)} \psi+G_{\mu \alpha} G_{\nu \alpha}-\frac{1}{4} \delta_{\mu \nu} G^{2} ;\langle P| T_{\mu \nu}|P\rangle=P_{\mu} P_{\nu} / M
$$

Parton Distributions - II

Formulation of LQCD in Euclidean space precludes direct calculation of light-cone correlation functions
\rightarrow LQCD computes Moments of parton distributions New ideas: calculations of QUASI-distributions in infinite-momentum frame

X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
X. Ji, J. Zhang, and Y. Zhao, Phys. Rev. Lett. 111, 112002 (2013).
J. W. Qiu and Y. Q. Ma, arXiv:1404.686.

$$
\tilde{q}\left(x, \mu, P_{z}\right)=\int \frac{d z}{4 \pi} e^{-i z k} \times\langle\vec{P}| \bar{\psi}(z) \gamma_{z} e^{i g \int_{0}^{z} A_{z}\left(z^{\prime}\right) d z^{\prime}} \psi(0)|\vec{P}\rangle
$$

...Flavor Structure

$$
\tilde{q}\left(x, \mu, P_{z}\right)=\int \frac{d y}{|y|} Z\left(\frac{x}{y}, \frac{\mu}{P_{z}}\right) q(y, \mu)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}, \frac{M_{N}^{2}}{P_{z}^{2}}\right)+\ldots
$$

H.W. Lin et al, arXiv:1402.1462

First lattice calculations of Quasi Distributions

smallest $x \simeq 1 / a$
12 GeV ; Future EIC Violation of Gottfried sum rule $\bar{d}(x)>\bar{u}(x)$

Summary

- Lattice Calculations of the simplest quantities are now appearing at physical values of the quark masses
- High-precision calculations of local matrix elements relevant for searches for new physics in, e.g. UCN.
- To directly explore x distributions, there are now a slew of new ideas... Ji et al, Qiu et al.
- Major effort underway in US in generating lattices designed for hadron structure calculations.

