Euclidean PDFs
 Kostas Orginos

Introduction

- PDFs are defined on the light cone
- OPE: moments of PDFs are local matrix elements computable in LQCD
- Problem: Power divergent mixing due to breaking of $\mathrm{O}(4)$ down to $\mathrm{H}(4)$ due to the lattice regulator
- Can we compute them in Euclidean LQCD calculations?
- Yes if we can overcome several difficulties

PDFs

Definition

$$
\begin{gathered}
f_{j / N}^{(0)}(\xi)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{-}}{4 \pi} e^{-i \xi P^{+} \omega^{-}}\langle P| T \bar{\psi}_{j}\left(0, \omega^{-}, \mathbf{0}_{\mathrm{T}}\right) W\left(\omega^{-}, 0\right) \gamma^{+} \frac{\lambda^{a}}{2} \psi_{j}(0)|P\rangle_{\mathrm{C}} \\
W\left(\omega^{-}, 0\right)=\mathcal{P} \exp \left[-i g_{0} \int_{0}^{\omega^{-}} \mathrm{d} y^{-} A_{\alpha}^{+}\left(0, y^{-}, \mathbf{0}_{\mathrm{T}}\right) T_{\alpha}\right] \\
\left\langle P^{\prime} \mid P\right\rangle=(2 \pi)^{3} 2 P^{+} \delta\left(P^{+}-P^{\prime+}\right) \delta^{(2)}\left(\mathbf{P}_{\mathrm{T}}-\mathbf{P}_{\mathrm{T}}^{\prime}\right)
\end{gathered}
$$

Melin moments

$$
a_{0}^{(n)}=\int_{0}^{1} \mathrm{~d} \xi \xi^{n-1}\left[f_{j / N}^{(0)}(\xi)+(-1)^{n} f_{\bar{j} / N}^{(0)}(\xi)\right]=\int_{-1}^{1} \mathrm{~d} \xi \xi^{n-1} f_{j / N}(\xi)
$$

$$
f_{j / N}^{(0)}(-\xi)=-f_{\bar{j} / N}^{(0)}(\xi)
$$

Twist-2 operators

$$
\langle P| \mathcal{O}_{0}^{\left\{\mu_{1} \ldots \mu_{n}\right\}}|P\rangle=2 a_{0}^{(n)}\left(P^{\mu_{1}} \cdots P^{\mu_{n}}-\text { traces }\right)-
$$

$$
\mathcal{O}_{0}^{\left\{\mu_{1} \cdots \mu_{n}\right\}}=i^{n-1} \bar{\psi}_{j}(0) \gamma^{\left\{\mu_{1}\right.} D^{\mu_{2}} \cdots D^{\left.\mu_{n}\right\}} \frac{\lambda^{a}}{2} \psi_{j}(0)-\text { traces } .
$$

Ji's suggestion

light-cone frame
Proton with a large boost

Ji's suggestion

time local matrix element: computable on the lattice

$$
h^{(0)}\left(z P_{z}, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)=\frac{1}{2 P_{z}}\left\langle P_{z}\right| \bar{\psi}_{j}(z) W(0, z) \gamma_{z} \frac{\lambda^{a}}{2} \psi_{j}(0)\left|P_{z}\right\rangle_{\mathrm{C}}
$$

quasi-pdf:

$$
q_{j / N}^{(0)}\left(\xi, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)=\int_{-\infty}^{\infty} \frac{\mathrm{d} z}{2 \pi} e^{-i \xi z P_{z} P_{z}} h^{(0)}\left(z P_{z}, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right),
$$

These are bare quantities that are finite only if I have some a regulator (lattice ?). In principle approach the light-cone PDFs if Pz goes to infinity.

Problems

- Large momentum:
- Cut-off effects (technical)
- Noise (technical)
- Renormalization (conceptual)

moments of bare QPDFs

$$
\begin{aligned}
& \left.h^{(0)}\left(z P_{z}, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)\right|_{A_{z}=0}=\frac{1}{2 P_{z}}\left\langle P_{z}\right| \bar{\psi}_{j}(z) \gamma_{z} \frac{\lambda^{a}}{2} \psi_{j}(0)\left|P_{z}\right\rangle_{\mathrm{C}} . \\
& \left.\int_{-\infty}^{\infty} \mathrm{d} \xi q_{j / N}^{(0)}\left(\xi, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)\right|_{A_{z}=0}=\left.h^{(0)}\left(0, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)\right|_{A_{z}=0} . \\
& \quad\left(\frac{-i}{P_{z}} \frac{\partial}{\partial z}\right)^{n-1} h^{(0)}\left(z P_{z}, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)=\int_{-\infty}^{\infty} \operatorname{d} \xi \xi^{n-1} e^{i \xi z P_{z}} q_{j / N}^{(0)}\left(\xi, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& b_{n}^{(0)}\left(\Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)=\int_{-\infty}^{\infty} \mathrm{d} \xi \xi^{n-1} q_{j / N}^{(0)}\left(\xi, \Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right) \\
& \left.b_{n}^{(0)}\left(\Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)\right|_{A_{z}=0}=\frac{1}{2 P_{z}^{n}}\left\langle P_{z}\right|\left[\bar{\psi}_{j}(z) \gamma_{z}\left(-i \overleftarrow{\partial}_{z}^{n-1}\right) \frac{\lambda^{a}}{2} \psi_{j}(0)\right]_{z=0}\left|P_{z}\right\rangle_{\mathrm{C}}
\end{aligned}
$$

removing the gauge fixing:

$$
b_{n}^{(0)}\left(\Lambda_{\mathrm{QCD}} / P_{z}, M_{\mathrm{N}} / P_{z}\right)=\frac{1}{2 P_{z}^{n}}\left\langle P_{z}\right| \bar{\psi}_{j} \gamma_{z}\left(-i \overleftarrow{D}_{z}\right)^{(n-1)} \frac{\lambda^{a}}{2} \psi_{j}(0)\left|P_{z}\right\rangle_{\mathrm{C}}
$$

Operators are not traceless... corrections

$$
b_{n}^{(0)}=a_{n}^{(0)}\left(1+O\left(M_{N}^{2} / P_{z}^{2}\right)+O\left(\Lambda_{Q C D}^{2} / P_{z}^{2}\right)\right)
$$

Mass corrections

$$
\begin{aligned}
K_{n}\left(\frac{M_{\mathrm{N}}^{2}}{4 P_{z}^{2}}\right) & =\sum_{j=0}^{n / 2}\binom{n-j}{j}\left(\frac{M_{\mathrm{N}}^{2}}{4 P_{z}^{2}}\right)^{j} . \\
\frac{b_{n}^{(0)}}{K_{n}\left(\frac{M_{z}^{2}}{P_{z}^{2}}\right)} & =a_{n}^{(0)}\left(1+O\left(\Lambda_{Q C D}^{2} / P_{z}^{2}\right)\right)
\end{aligned}
$$

Can be done exactly on the PDF
Chen et. al arXiv:1603.06664v1 [hep-ph]
rely on large momentum to remove higher twist effects

Renormalization

$$
f_{j / N}(x, \mu)=\int_{-\infty}^{\infty} \frac{d \xi}{\xi} Z\left(x / \xi, \mu / P_{z}, \Lambda / P_{z}\right) q_{j / N}^{(0)}\left(\xi, \Lambda / P_{z}\right)
$$

Three scales: Momentum, cut-off, renormalization scale Need to determine Z
Z is short distance quantity independent of external states Perturbative computations exist (Ji, Qiu, ...
Can we compute Z non-perturbatively?
Alternatively (Qiu et. al.):

1. Define a renormalized quasi-PDF (at finite Pz)
2. Match the renormalized quasi-PDF to PDFs

results

Lattice result for h

Chen et. al arXiv:1603.06664v1 [hep-ph]

results

Chen et. al arXiv:1603.06664v1 [hep-ph]

renormalized and corrected PDF

Chen et. al arXiv:1603.06664v1 [hep-ph]

References

1. arXiv:1305.1539 [pdf, ps, other]

Parton Physics on Euclidean Lattice

Xiangdong Ji

Comments: 8 pages, 1 figure
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex); High Energy Physics - Lattice (hep-lat); Nuclear
Experiment (nucl-ex); Nuclear Theory (nucl-th)
2. arXiv:1412.2688 [pdf, ps, other]

QCD Factorization and PDFs from Lattice QCD Calculation
Yan-Qing Ma, Jian-Wei Qiu
Comments: 8 pages, 2 figures, accepted contribution to the proceedings of "The QCD Evolution 2014 workshop", May 12-16, 2014, Santa Fe, NM
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Lattice (hep-lat); Nuclear Theory (nucl-th)
3. arXiv:1504.07455 [pdf, ps, other]

A Lattice Calculation of Parton Distributions
Constantia Alexandrou, Krzysztof Cichy, Vincent Drach, Elena Garcia-Ramos, Kyriakos Hadjiyiannakou, Karl Jansen, Fernanda Steffens, Christian Wiese
Comments: Minor changes in the text. Version published in PRD. 19 pages, 6 figures
Journal-ref: Phys. Rev. D 92, 014502 (2015)
Subjects: High Energy Physics - Lattice (hep-lat); High Energy Physics - Phenomenology (hep-ph)
20
4. arXiv:1603.06664 [pdf, other]

Nucleon Helicity and Transversity Parton Distributions from Lattice QCD
Jiunn-Wei Chen, Saul D. Cohen, Xiangdong Ji, Huey-Wen Lin, Jian-Hui Zhang
Comments: 21 pages, 6 figures
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Lattice (hep-lat)
5. arXiv:1609.02018 [pdf, other]

Practical quasi parton distribution functions

Tomomi Ishikawa, Yan-Qing Ma, Jian-Wei Qiu, Shinsuke Yoshida
Comments: 28 pages, 7 figures
Subjects: High Energy Physics - Lattice (hep-lat); High Energy Physics - Phenomenology (hep-ph); Nuclear Theory (nucl-th)
6. arXiv:1609.08102 [pdf, ps, other]

Improved quasi parton distribution through Wilson line renormalization
Jiunn-Wei Chen, Xiangdong Ji, Jian-Hui Zhang
Comments: 9 pages, 4 figures
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Lattice (hep-lat)

