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II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:
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where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,
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where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:
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where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.
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QED Radiative Corrections
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FIG. 2: Difference between the full two-photon exchange correction to the elastic cross section

(using the realistic form factors in Eq. (26)) and the commonly used expression (23) from Mo &

Tsai [13] for Q2 = 1–6 GeV2. The numbers labeling the curves denote the respective Q2 values in

GeV2.

26

Two-photon correction

δ
(2γ)
full − δ

(2γ)
Mo−Tsai

Q2

few % magnitude 

non-linearity in ε

positive slope

Blunden, WM, Tjon
PRL 91 (2003) 142304;
PRC72 (2005) 034612

δ
(2γ)

→

2Re{M†
0
Mγγ}

|M0|2



Two-photon correction
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FIG. 3: Model dependence of the difference between the full two-photon exchange correction and

the Mo & Tsai approximation: (a) at Q2 = 1, 6 and 12 GeV2, using realistic (solid) [16] and

dipole (dashed) form factors; (b) at Q2 = 6 GeV2 using the form factor parameterizations from

Refs. [16] (solid), [26] (dashed), and [25] with Gp
E constrained by the LT-separated (dot-dashed)

and polarization transfer (long-dashed) data.
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FIG. 3: Model dependence of the difference between the full two-photon exchange correction and

the Mo & Tsai approximation: (a) at Q2 = 1, 6 and 12 GeV2, using realistic (solid) [16] and

dipole (dashed) form factors; (b) at Q2 = 6 GeV2 using the form factor parameterizations from

Refs. [16] (solid), [26] (dashed), and [25] with Gp
E constrained by the LT-separated (dot-dashed)

and polarization transfer (long-dashed) data.
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Two-photon correction

Blunden, WM, Tjon
PRL 91 (2003) 142304;
PRC72 (2005) 034612
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the Mo & Tsai approximation: (a) at Q2 = 1, 6 and 12 GeV2, using realistic (solid) [16] and

dipole (dashed) form factors; (b) at Q2 = 6 GeV2 using the form factor parameterizations from
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E constrained by the LT-separated (dot-dashed)
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Effect on cross section

Born cross section with PT form factors

including TPE effects 
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FIG. 4: Reduced cross section σR (scaled by the dipole form factor G2
D) versus ε for several values

of Q2: (a) SLAC data [27] at Q2 = 3.25 (open squares), 4 (filled circles), 5 (open circles) and

6 GeV2 (filled squares); (b) JLab data [4] at Q2 = 2.64 (filled squares), 3.2 (open squares) and

4.1 GeV2 (filled circles). The dotted curves are Born cross sections evaluated using a form factor

parameterization [26] with Gp
E fitted to the polarization transfer data [5], while the solid curves

include 2γ contributions. The curves in the bottom panel have been shifted by (+1.0%, +2.1%,

+3.0%) for Q2 = (2.64, 3.2, 4.1) GeV2.
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4.1 GeV2 (filled circles). The dotted curves are Born cross sections evaluated using a form factor

parameterization [26] with Gp
E fitted to the polarization transfer data [5], while the solid curves

include 2γ contributions. The curves in the bottom panel have been shifted by (+1.0%, +2.1%,

+3.0%) for Q2 = (2.64, 3.2, 4.1) GeV2.
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PRL 94, 142301 (2005) 



e−p/e+psimultaneous                measurement
planned in Hall B (to Q   ~ 1 GeV  )2 2
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2! exchange invariant under e+↔ e
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FIG. 7: Ratio of elastic e+p to e−p cross sections. The data are from SLAC [31, 32], with Q2

ranging from 0.01 to 5 GeV2. The results of the 2γ exchange calculations are shown by the curves

for Q2 = 1 (dotted), 3 (dashed) and 6 GeV2 (solid).
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Generalized form factors

Generalized electromagnetic current

!µ= F̃1 "
µ + F̃2

i#µ$q$

2M
+ F̃3

" ·K Pµ

M2

K = (p1+ p3)/2 , P= (p2+ p4)/2

F̃i are complex functions of       and Q2 !

In      exchange limit1! F̃1,2(Q2,!)→ F1,2(Q2)

F̃3(Q2,!)→ 0

*

* Note:  decomposition not unique

Chen et al. (2004)

Goldberger et al. (1957)
Guichon, Vanderhaeghen (2003)



Generalized form factors
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FIG. 6: Finite 2γ contributions (defined with respect to the Mo-Tsai IR result [13]) to the real

parts of the GM (dashed), GE (dot-dashed) and Y2γ (solid) form factors of the proton at Q2 = 1,

3 and 6 GeV2. Note the larger scale in the bottom figure.
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Generalized (complex) Sachs form factors

G̃M = GM+!GMG̃E = GE +!GE , , Y2! = "̃
F̃3

GM

K ·P/M2 =
√
!(1+ !)(1+ ")/(1− ")

!R = G
2

M
+
"

#
G
2

E
+2G2

M
Re

{
$GM

GM

+Y2%

}
+
2"

#
G
2

E
Re

{
$GE

GE

+
GM

GE

Y2%

}

cannot assume all TPE effects reside in Y2!
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estimate effect of  TPE on    dependence  !

approximate correction by linear function of !

1+! ≈ a+b"

reduced cross section is then

!R ≈ a G2M

[
1+

"

µ2 #

(
R2(1+ " b/a)+µ2 # b/a

)]
where “true” ratio is

R2 =
R̃2−µ2 ! b/a
1+ "̄ b/a

average value of 
over range fitted

!“effective” ratio
contaminated by TPE

 ratioG
p
E / Gp

M



Two-photon exchange in elastic scattering
TABLE I: Parameters for the proton and neutron form factor fits in Eq. (26) used in this work,

with ni and di in units of GeV2.
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1 F p

2 Fn
1 Fn

2

N 3 3 3 2

n1 0.38676 1.01650 24.8109 5.37640

n2 0.53222 –19.0246 –99.8420

d1 3.29899 0.40886 1.98524 0.76533

d2 0.45614 2.94311 1.72105 0.59289

d3 3.32682 3.12550 1.64902 —

3
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FIG. 1: Two-photon exchange box and crossed box diagrams for elastic electron–proton scattering.
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FIG. 5: The ratio of proton form factors µpGE/GM measured using LT separation (open diamonds)

[2] and polarization transfer (PT) (open circles) [5]. The LT points corrected for 2γ exchange are

shown assuming a linear slope for ε = 0.2 − 0.9 (filled squares) and ε = 0.5 − 0.8 (filled circles)

(offset for clarity).
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BUT nucleon elastic intermediate states only     

what about higher mass states?
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Blunden, WM, Tjon
Phys. Rev. C72 (2005) 034612
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how does TPE affect polarization transfer ratio?

R̃= R

(
1+!T

1+!L

)
where                                   is finite part of       
contribution relative to IR part of Mo-Tsai

∆L,T = δ
full
L,T − δ

Mo−Tsai

IR 2γ

experimentally measure ratio of polarized to
unpolarized cross sections

P
1!+2!
L,T

P
1!
L,T

=
1+"L,T

1+"
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FIG. 8: Ratio of the finite part (with respect to the IR contribution in Eq. (22)) of the Born+2γ

correction relative to the Born term, for (a) longitudinal and (b) transverse recoil proton polariza-

tion, at Q2 = 1 (dotted), 3 (dashed) and 6 GeV2 (solid). Note the different scales on the vertical
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Excited intermediate states



Lowest mass excitation is           resonance P33 !

to divide dσ by the well-known factor describing the scattering from a structureless “proton”
(see, e. g., [11]) and thus use the reduced cross section

dσR =
[
G2

M(Q2) +
ε

τ
G2

E(Q2)
]
(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(
M†

B Mγγ
N,∆

)

|MB|
2 . (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.
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FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{
g1 [ gναp/q/ − pνγαq/ − γνγαp · q + γνp/qα ]

+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}
γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form

F∆(q2) =
Λ4

∆

(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.
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where Λ∆ is the cutoff. The form factor entails some model-dependence of our results, which
is unavoidable in any dynamical hadronic calculation. The isospin transition operator T3 is
defined by the relations

∑3
α=1 T †

αTα = 1 and TαT †
β = δαβ − τατβ/3, where τ1,2,3 are the usual

Pauli matrices. The vertex with an outgoing ∆ is given by the Dirac conjugate of Eq. (3),

Γαν
γN→∆(p, q) ≡ iV αν

∆out(p, q) = γ0

[
Γνα

γ∆→N(p, q)
]†

γ0, with pα and qν the four-momenta of
the outgoing ∆ and incoming photon, respectively. The γN∆ vertex is orthogonal to the
four-momenta of both the photon and the ∆:

qνΓ
να
γ∆→N(p, q) = 0, pαΓνα

γ∆→N(p, q) = 0 . (5)

The first of these equations ensures the usual electromagnetic gauge invariance of the cal-
culation while the second allows us to use only the physical spin 3/2 component,

S∆
αβ(p) =

−i

p/ − M∆ + i0
P3/2

αβ (p) , P3/2

αβ (p) = gαβ −
1

3
γαγβ −

1

3p2
(p/γαpβ + pαγβp/) , (6)

of the Rarita-Schwinger propagator [13], the background spin 1/2 component vanishing when
contracted with the adjacent γN∆ vertices [14]. At present we do not include a width in
the ∆ propagator as its influence on the unpolarised cross section should be small.

The loop integrals corresponding to the box and crossed-box diagrams in Fig. 1 can be
written as

Mγγ
∆ = −e4

∫ d4k

(2π)4

N∆
box(k)

D∆
box(k)

− e4

∫ d4k

(2π)4

N∆
x−box(k)

D∆
x−box(k)

, (7)

with the numerators and denominators given by

N∆
box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γµ [p/1 − k/ + me] γνu(p1) , (8)

N∆
x−box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γν [p/3 + k/ + me] γµu(p1) , (9)

D∆
box(k) =

[
k2 + i0

] [
(k − q)2 + i0

] [
(p1 − k)2 − m2

e + i0
] [

(p2 + k)2 − M2
∆ + i0

]
, (10)

D∆
x−box(k) = D∆

box(k)
∣∣∣
p1−k→p3+k

, (11)

where U and u denote the proton and electron four-spinor wave functions, respectively.
Compared to the case of the nucleon [6], the presence of a ∆ in the intermediate state entails
a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
infrared divergent, in contrast with the nucleon contribution where the infrared part is very
important [10, 15]. The evaluation of Eq. (7) involves preliminary algebraic manipulations
to effect cancellations between terms in the numerators and denominators and subsequent
integration of the thus simplified expressions. The result is obtained analytically in terms of
the standard Passarino-Veltman dilogarithm functions [16]. In the calculation we used the
computer package “FeynCalc” [17].

The first and second loop integrals in Eq. (7) must be mutually related by crossing sym-
metry, which can be formulated in terms of the numerator of Eq. (2) using the Mandelstam
variables s = (p1 + p2)2, t = (p1 − p3)2 and u = (p2 − p3)2 = 2M2

N + 2m2
e − t − s. Denoting
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where U and u denote the proton and electron four-spinor wave functions, respectively.
Compared to the case of the nucleon [6], the presence of a ∆ in the intermediate state entails
a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
infrared divergent, in contrast with the nucleon contribution where the infrared part is very
important [10, 15]. The evaluation of Eq. (7) involves preliminary algebraic manipulations
to effect cancellations between terms in the numerators and denominators and subsequent
integration of the thus simplified expressions. The result is obtained analytically in terms of
the standard Passarino-Veltman dilogarithm functions [16]. In the calculation we used the
computer package “FeynCalc” [17].

The first and second loop integrals in Eq. (7) must be mutually related by crossing sym-
metry, which can be formulated in terms of the numerator of Eq. (2) using the Mandelstam
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where Λ∆ is the cutoff. The form factor entails some model-dependence of our results, which
is unavoidable in any dynamical hadronic calculation. The isospin transition operator T3 is
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the ∆ propagator as its influence on the unpolarised cross section should be small.

The loop integrals corresponding to the box and crossed-box diagrams in Fig. 1 can be
written as

Mγγ
∆ = −e4

∫ d4k

(2π)4

N∆
box(k)

D∆
box(k)

− e4

∫ d4k

(2π)4

N∆
x−box(k)

D∆
x−box(k)

, (7)

with the numerators and denominators given by

N∆
box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γµ [p/1 − k/ + me] γνu(p1) , (8)

N∆
x−box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γν [p/3 + k/ + me] γµu(p1) , (9)

D∆
box(k) =

[
k2 + i0

] [
(k − q)2 + i0

] [
(p1 − k)2 − m2

e + i0
] [

(p2 + k)2 − M2
∆ + i0

]
, (10)

D∆
x−box(k) = D∆

box(k)
∣∣∣
p1−k→p3+k

, (11)

where U and u denote the proton and electron four-spinor wave functions, respectively.
Compared to the case of the nucleon [6], the presence of a ∆ in the intermediate state entails
a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
infrared divergent, in contrast with the nucleon contribution where the infrared part is very
important [10, 15]. The evaluation of Eq. (7) involves preliminary algebraic manipulations
to effect cancellations between terms in the numerators and denominators and subsequent
integration of the thus simplified expressions. The result is obtained analytically in terms of
the standard Passarino-Veltman dilogarithm functions [16]. In the calculation we used the
computer package “FeynCalc” [17].

The first and second loop integrals in Eq. (7) must be mutually related by crossing sym-
metry, which can be formulated in terms of the numerator of Eq. (2) using the Mandelstam
variables s = (p1 + p2)2, t = (p1 − p3)2 and u = (p2 − p3)2 = 2M2

N + 2m2
e − t − s. Denoting

4

where Λ∆ is the cutoff. The form factor entails some model-dependence of our results, which
is unavoidable in any dynamical hadronic calculation. The isospin transition operator T3 is
defined by the relations

∑3
α=1 T †

αTα = 1 and TαT †
β = δαβ − τατβ/3, where τ1,2,3 are the usual

Pauli matrices. The vertex with an outgoing ∆ is given by the Dirac conjugate of Eq. (3),

Γαν
γN→∆(p, q) ≡ iV αν

∆out(p, q) = γ0

[
Γνα

γ∆→N(p, q)
]†

γ0, with pα and qν the four-momenta of
the outgoing ∆ and incoming photon, respectively. The γN∆ vertex is orthogonal to the
four-momenta of both the photon and the ∆:

qνΓ
να
γ∆→N(p, q) = 0, pαΓνα

γ∆→N(p, q) = 0 . (5)

The first of these equations ensures the usual electromagnetic gauge invariance of the cal-
culation while the second allows us to use only the physical spin 3/2 component,

S∆
αβ(p) =

−i

p/ − M∆ + i0
P3/2

αβ (p) , P3/2

αβ (p) = gαβ −
1

3
γαγβ −

1

3p2
(p/γαpβ + pαγβp/) , (6)

of the Rarita-Schwinger propagator [13], the background spin 1/2 component vanishing when
contracted with the adjacent γN∆ vertices [14]. At present we do not include a width in
the ∆ propagator as its influence on the unpolarised cross section should be small.

The loop integrals corresponding to the box and crossed-box diagrams in Fig. 1 can be
written as

Mγγ
∆ = −e4

∫ d4k

(2π)4

N∆
box(k)

D∆
box(k)

− e4

∫ d4k

(2π)4

N∆
x−box(k)

D∆
x−box(k)

, (7)

with the numerators and denominators given by

N∆
box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γµ [p/1 − k/ + me] γνu(p1) , (8)

N∆
x−box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γν [p/3 + k/ + me] γµu(p1) , (9)

D∆
box(k) =

[
k2 + i0

] [
(k − q)2 + i0

] [
(p1 − k)2 − m2

e + i0
] [

(p2 + k)2 − M2
∆ + i0

]
, (10)

D∆
x−box(k) = D∆

box(k)
∣∣∣
p1−k→p3+k

, (11)

where U and u denote the proton and electron four-spinor wave functions, respectively.
Compared to the case of the nucleon [6], the presence of a ∆ in the intermediate state entails
a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
infrared divergent, in contrast with the nucleon contribution where the infrared part is very
important [10, 15]. The evaluation of Eq. (7) involves preliminary algebraic manipulations
to effect cancellations between terms in the numerators and denominators and subsequent
integration of the thus simplified expressions. The result is obtained analytically in terms of
the standard Passarino-Veltman dilogarithm functions [16]. In the calculation we used the
computer package “FeynCalc” [17].

The first and second loop integrals in Eq. (7) must be mutually related by crossing sym-
metry, which can be formulated in terms of the numerator of Eq. (2) using the Mandelstam
variables s = (p1 + p2)2, t = (p1 − p3)2 and u = (p2 − p3)2 = 2M2

N + 2m2
e − t − s. Denoting

4

Two-photon exchange amplitude with     intermediate state          !

numerators

spin-3/2 projection operator

to divide dσ by the well-known factor describing the scattering from a structureless “proton”
(see, e. g., [11]) and thus use the reduced cross section

dσR =
[
G2

M(Q2) +
ε

τ
G2

E(Q2)
]
(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(
M†

B Mγγ
N,∆

)

|MB|
2 . (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.

1
p p

3

p
4

p
2

k q!k
!

FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{
g1 [ gναp/q/ − pνγαq/ − γνγαp · q + γνp/qα ]

+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}
γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form

F∆(q2) =
Λ4

∆

(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.
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coupling dominates the ∆ two-photon exchange correction whereas the electric coupling
has a much smaller effect. Since the contribution of the Coulomb component is strongly
suppressed (not exceeding 0.2%) we will omit it from further discussion, setting gC = 0 in
the rest of the paper.

The ε dependence of the sum of the ∆ and nucleon two-photon exchange corrections is
shown in Fig. 2, for two fixed values of Q2. The dependence on the γN∆ form factor can
be seen by comparing the results obtained with the cutoffs Λ∆ = 0.84 GeV and Λ∆ = 0.68
GeV (the latter choice corresponds to a ∆ which is spatially “bigger” than the nucleon).
The purely nucleon contribution, shown for comparison, was calculated as in Ref. [6] using

-0.02

-0.01

0.0

Q
2
=1 GeV

2

0.0 0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.0

Q
2
=3 GeV

2

2 [N + ] =0.84 GeV

2 [N + ] =0.68 GeV

2 [N]

FIG. 2: Sum of the nucleon (N) and ∆ contributions to the two-photon exchange correction to the
electron-proton scattering cross section, using two values of the cutoff Λ∆.

the γNN form factors extracted from the PT experiments [3, 4]. The ∆ correction is more
prominent at higher momentum transfers. The ∆ tends to reduce the effect of the nucleon
two-photon exchange, making the modulus of the negative nucleon correction somewhat
smaller at backward angles (i. e. at low ε). The combined effect of the nucleon and ∆ two-
photon exchanges produces a negative correction to the cross section at small ε, decreasing
in magnitude as ε increases.2 The main features of the ∆ contribution – its smallness and its
tendency to attenuate the nucleon contribution at backward angles – are insensitive to the
γN∆ form factor, being to that extent model-independent. The detailed interplay between

2 The diminishing of the two-photon exchange correction at forward angles is consistent with the analysis

of electron-proton and positron-proton scattering data [19].
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the ∆ and the nucleon contributions can be more complicated, especially at forward angles,
as can be seen from Fig. 2.

The calculated differential cross section is shown by the solid lines in Fig. 3, including the
Born term and the sum of the two-photon exchange corrections δN +δ∆ with the nucleon and
the ∆ intermediate states. The reduced cross section Eq. (1), scaled for convenience by the

0.0 0.2 0.4 0.6 0.8 1.0

7.5

8.0

8.5

9.0

9.5

d
R
/G

D
2

Q
2
=2.64 GeV

2

Q
2
=4 GeV

2

Q
2
=6 GeV

2

Born + 2 [N + ] =0.84 GeV

Born

FIG. 3: Effect of adding the two-photon exchange (with the indicated choice of the γN∆ form

factor) to the Born cross section, the latter evaluated with the nucleon form factors from the PT
experiment [3, 4]. The reduced cross section is scaled as described in the text. The curves for
Q2 = 2.64, 4 and 6 GeV2 have been shifted vertically by −0.04, +0.04 and +0.09, respectively.

The data points at three fixed momentum transfers are taken from Refs. [1, 2].

square of the standard dipole form factor GD(Q2) = 1/(1+Q2/0.842)2, is compared in Fig. 3
with the LT separation measurements from SLAC [1] (at Q2 = 4 and 6 GeV2) and JLab [2]
(at Q2 = 2.64 GeV2). The dotted lines show the Born contribution alone, using the nucleon
form factors GE,M(Q2) taken from the analysis of the JLab PT experiment [3, 4]. One can
see that including only the Born term is inadequate in the analysis of the data. The addition
of the two-photon exchange correction increases the slope of the cross section, also exhibiting
some nonlinearity in ε. Thus the results of the PT and LT separation experiments become
essentially compatible by including the nucleon and ∆ two-photon exchange corrections.

To summarise, we calculated the correction to the electron-proton scattering cross section
due to the two-photon exchange with a ∆ intermediate state, treated on the same footing
as the intermediate nucleon contribution. For realistic choices of the γN∆ vertex we found
that the ∆ contribution alters the cross section by an amount from −1% to +2%, and is
largest at backward scattering angles. For the cross section obtained using the LT separation
technique, the ∆ two-photon exchange contribution slightly reduces the magnitude of the
(negative) nucleon correction. Generally, the cross section including the nucleon and ∆
two-photon exchange corrections has the angular dependence which can accommodate the
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Effect on
neutron form factors



Neutron correction 
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FIG. 12: 2γ contribution to the unpolarized electron–neutron elastic scattering cross section, at

Q2 = 1 (dotted), 3 (dashed) and 6 GeV2 (solid and dot-dashed). The dot-dashed curve corresponds

to the form factor parameterization of Ref. [41], while the others are from Ref. [16] (as fitted by

the parameters in Table I).
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Effect on neutron LT form factors
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FIG. 13: Effect of 2γ exchange on the ratio of neutron form factors µnGn
E/Gn

M using LT separation.

The uncorrected points (open circles) are from the form factor parameterization in Ref. [16], while

the points corrected for 2γ exchange are obtained from linear fits to δfull in Fig. 12 for ε = 0.2−0.9

(filled squares) and ε = 0.5 − 0.8 (filled circles) (offset for clarity).
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Effect on neutron PT form factors
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FIG. 14: Effect of 2γ exchange on the ratio of neutron form factors µnGn
E/Gn

M using polarization

transfer. The uncorrected points (open circles) are from the parameterization in Ref. [16], and the

points corrected for 2γ exchange correspond to ε = 0.3 (filled squares) and ε = 0.8 (filled circles)

(offset for clarity).
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Summary

First explicit calculation of  TPE taking into account
nucleon structure

Effect on neutron form factors large for LT method,
small for PT method

Nucleon elastic intermediate states resolves most 
of LT/PT              discrepancyGp

E/Gp
M

    excited state opposite sign cf. nucleon, but smaller∆

P11(1440) S11(1535)and                contributions small



The End


