The Origin of Nuclear Forces: QCD and the Structure of Hadrons

Anthony W. Thomas
GRC: Today’s Frontiers in Nuclear Physics
Bates College: July 10th, 2005
Special Mentions......
Outline

• The QCD vacuum
• Quarks to Hadrons
• Things we know about NN forces and nuclei…
• Inevitable consequences and important links…
• Nuclei emerging from QCD
• What needs measuring?
Major Challenges for Nuclear Physics

- Origin of Nuclear Saturation

- EOS ... as $\rho \uparrow$; as $T \uparrow$; as $S \uparrow$; as $N-Z \uparrow$

- Phase Transition to:
 - quark matter (QM), superconducting QM, strange condensate
 - related to nuclear astrophysics; n-stars....
QCD and the Origin of Mass

\[u + u + d = \text{proton} \]

mass: \[0.003 + 0.003 + 0.006 \neq 0.938 \]

HOW does the rest of the proton mass arise?
Free space:

\[
\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = -(225 \pm 25 \text{ MeV})^3
\]

at a renormalization scale of about 1 GeV.

- commutator measures chiral symmetry breaking
 \(\approx \) valence + pion cloud +
 volume * (difference of condensate in & out of N)

and last term is as big as 20 MeV (or more)

i.e. presence of nucleon “cleans out” vacuum to some extent

Hence: Model independent LO term for in-medium condensate

\[
\frac{Q(\rho_B)}{Q_0} \approx 1 - \frac{\sigma_N}{f^2 \pi \rho_B}
\]

BUT this has no new physics at all!
Lattice QCD Simulation of Vacuum Structure

<\rho> = 0.16 \text{ fm}

Leinweber, Signal et al.
Strangeness Widely Believed to Play a Major Role – Does It?

• As much as 100 to 300 MeV of proton mass:

\[M_N = \langle N(P) | -\frac{9\alpha_s}{4\pi} \text{Tr}(G_{\mu\nu}G^{\mu\nu}) + m_u \bar{\psi}_u \psi_u + m_d \bar{\psi}_d \psi_d + m_s \bar{\psi}_s \psi_s | N(P) \rangle \]

\[\Delta M_{N}^{s-\text{quarks}} = \frac{y m_s}{m_u + m_d} \sigma_N \]

\[y = 0.2 \pm 0.2 \]

45 ± 8 MeV (or 70?)

Hence 110 ± 110 MeV (increasing to 180 for higher \(\sigma_N \))

• Through proton spin crisis:
 As much as 10% of the spin of the proton

• HOW MUCH OF THE MAGNETIC FORM FACTOR?
G0 Experiment at Jefferson Lab
World Data @ $Q^2 = 0.1$ GeV2

$$G_E = -0.013 \pm 0.028$$

$$G_M = +0.62 \pm 0.31 \pm 0.62 \ 2\sigma$$

Contours

- 1σ, 2σ
- 68.3, 95.5% CL

Theories

1. Leinweber, et al.
 PRL 94 (05) 212001

2. Lyubovitskij, et al.
 PRC 66 (02) 055204

3. Lewis, et al.
 PRD 67 (03) 013003

 PRD 65 (01) 014016
Significance & Comparison with Lattice QCD

- Size and sign of the strange magnetic moment is astonishing!

- Experimental *isoscalar* nucleon moment is 0.88 μ_N

c.f. this result which is (Beck) - 0.54 μ_N : i.e. - 60% !!

- Also remarkable versus lattice QCD which gives

 $+0.03 \pm 0.01 \, \mu_N$ (Leinweber et al., PRL 94 (2005) 212001)

- Sign would require violation of universality of

 valence quark moments by $\sim 70\%$!
Magnetic Moments within QCD

\[p = \frac{2}{3} \, u^p - \frac{1}{3} \, d^p + O_N \]
\[n = -\frac{1}{3} \, u^p + 2/3 \, d^p + O_N \]

\[\Sigma^+ = \frac{2}{3} \, u^\Sigma - \frac{1}{3} \, s^\Sigma + O_{\Sigma} \]
\[\Sigma^- = -\frac{1}{3} \, u^\Sigma - 1/3 \, s^\Sigma + O_{\Sigma} \]

HENCE: \[O_N = \frac{1}{3} \left[2p + n - \left(\frac{u^p}{u^\Sigma} \right) (\Sigma^+ - \Sigma^-) \right] \]

Just these ratios from Lattice QCD

OR \[O_N = \frac{1}{3} \left[n + 2p - \left(\frac{u^n}{u^\Sigma} \right) (\Xi^0 - \Xi^-) \right] \]
Constraint from Charge Symmetry

\[O_N = \frac{2}{3} \ell G^u_M - \frac{1}{3} \ell G^d_M - \frac{1}{3} \ell G^s_M \]
\[= \frac{1}{3} \left(\ell G^d_M - \ell G^s_M \right) , \]
\[= \frac{\ell G^s_M}{3} \left(\frac{1 - \ell R^s_d}{\ell R^s_d} \right) , \]

\[G^s_M = \left(\frac{\ell R^s_d}{1 - \ell R^s_d} \right) \left[3.673 - \frac{u_P}{u_{\Sigma^+}} (3.618) \right] \]

\[G^s_M = \left(\frac{\ell R^s_d}{1 - \ell R^s_d} \right) \left[-1.033 - \frac{u_n}{u_{\Xi^0}} (-0.599) \right] \]

$u^p_{\text{valence}} : \text{QQCD Data Corrected for Full QCD Chiral Coeff'\text{'s}}$

New lattice data from Zanotti et al. ; Chiral analysis Leinweber et al.

c.f. CQM
$\frac{2}{3} 940/540 \sim 1.18$

$\mu (\mu_R) = a_0 + a_2 m_\pi^2 + a_4 m_\pi^4 + \chi \text{ 'al loops}$
$u^\Sigma_{\text{valence}}$
Check: Octet Magnetic Moments

Leinweber et al., hep-lat/0406002
State of the ART Magnetic Moments

<table>
<thead>
<tr>
<th></th>
<th>QQCD</th>
<th>Valence</th>
<th>Full QCD</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2.69 (16)</td>
<td>2.94 (15)</td>
<td>2.86 (15)</td>
<td>2.79</td>
</tr>
<tr>
<td>n</td>
<td>-1.72 (10)</td>
<td>-1.83 (10)</td>
<td>-1.91 (10)</td>
<td>-1.91</td>
</tr>
<tr>
<td>Σ⁺</td>
<td>2.37 (11)</td>
<td>2.61 (10)</td>
<td>2.52 (10)</td>
<td>2.46 (10)</td>
</tr>
<tr>
<td>Σ⁻</td>
<td>-0.95 (05)</td>
<td>-1.08 (05)</td>
<td>-1.17 (05)</td>
<td>-1.16 (03)</td>
</tr>
<tr>
<td>Λ</td>
<td>-0.57 (03)</td>
<td>-0.61 (03)</td>
<td>-0.63 (03)</td>
<td>-0.613 (4)</td>
</tr>
<tr>
<td>Ξ⁰</td>
<td>-1.16 (04)</td>
<td>-1.26 (04)</td>
<td>-1.28 (04)</td>
<td>-1.25 (01)</td>
</tr>
<tr>
<td>Ξ⁻</td>
<td>-0.65 (02)</td>
<td>-0.68 (02)</td>
<td>-0.70 (02)</td>
<td>-0.651 (03)</td>
</tr>
<tr>
<td>uᵖ</td>
<td>1.66 (08)</td>
<td>1.85 (07)</td>
<td>1.85 (07)</td>
<td>1.81 (06)</td>
</tr>
<tr>
<td>u⁻</td>
<td>-0.51 (04)</td>
<td>-0.58 (04)</td>
<td>-0.58 (04)</td>
<td>-0.60 (01)</td>
</tr>
</tbody>
</table>
Accurate Final Result for G_M^s

Yields: $G_M^s = -0.046 \pm 0.019 \, \mu_N$

Leinweber et al., (PRL June '05) hep-lat/0406002
Parity Violating Studies on 1H and 4He

$3 \text{ GeV beam in Hall A}$ \quad $\theta_{lab} \sim 6^\circ$ \quad $Q^2 \sim 0.1 \text{ (GeV/c)}^2$

<table>
<thead>
<tr>
<th>target</th>
<th>A_{PV} (G$^s = 0$ (ppm))</th>
<th>Stat. Error (ppm)</th>
<th>Syst. Error (ppm)</th>
<th>sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>-1.6</td>
<td>0.08</td>
<td>0.04</td>
<td>$\delta (G^s_E + 0.08G^s_M) = 0.010$</td>
</tr>
<tr>
<td>4He</td>
<td>+7.8</td>
<td>0.18</td>
<td>0.18</td>
<td>$\delta (G^s_E) = 0.015$</td>
</tr>
</tbody>
</table>

Septum magnets (not shown)
High Resolution Spectrometers detectors

Brass-Quartz integrating detector

Elastic Rate:

1H: 120 MHz
4He: 12 MHz

Background $\leq 3\%$
χ’al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon

FRR give same answer to <<1% systematic error!

Leinweber et al., PRL 92 (2004) 242002

<table>
<thead>
<tr>
<th>Regulator</th>
<th>Bare Coefficients</th>
<th>Renormalized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_0^Λ</td>
<td>a_2^Λ</td>
</tr>
<tr>
<td>Monopole</td>
<td>1.74</td>
<td>1.64</td>
</tr>
<tr>
<td>Dipole</td>
<td>1.30</td>
<td>1.54</td>
</tr>
<tr>
<td>Gaussian</td>
<td>1.17</td>
<td>1.48</td>
</tr>
<tr>
<td>Sharp cutoff</td>
<td>1.06</td>
<td>1.47</td>
</tr>
<tr>
<td>Dim. Reg. (BP)</td>
<td>0.79</td>
<td>4.15</td>
</tr>
</tbody>
</table>
Comparison with χ QSM

Goeke et al., hep-lat/0505010
Analysis of pQQCD ρ data from CP PACS

\[\sqrt{(M_V^{\text{deg}})^2 - \Sigma_{TOT}} = (a_0^{\text{cont}} + X_1 a + X_2 a^2) + a_2(M_{PS}^{\text{deg}})^2 + a_4(M_{PS}^{\text{deg}})^4 + a_6(M_{PS}^{\text{deg}})^6 \]
Infinite Volume Unitary Results

All 80 data points drop onto single, well defined curve

Allton, Young et al., hep-lat/0504022
Nuclear Structure in Terms of QCD

Aim for:

• New physical insight into nuclear structure
• e.g. new mechanism for nuclear saturation!
• Precursors of the deconfinement transition?
• Guidance as to signals of deconfinement transition
• Signals of chiral restoration as density rises....
• Changes in hadron properties in-medium!
What do we know about Nuclear Environment?

• Walecka et al., (QHD): Lorentz structure of attraction and repulsion is crucial (\(\sigma\) and \(\omega\) respectively)

• NOT arbitrary – inspired by Paris potential, built on dispersion relations \(\Rightarrow I=0, J^\pi = 0^+\) channel dominates intermediate range attraction (origin two-pion \(\approx \sigma\) exchange)

• Modern version: Machleidt et al., RBHF \(\Rightarrow g_\sigma \sigma \approx 400\) MeV

 i.e. There are strong (\(\sim 0.4 \, M_N\)) Lorentz scalar fields in nuclei........

 so what?
What happens if we put an atom in a strong electric field?

Jackson ⇒

i.e. atom has a polarizability: its internal structure is rearranged in response to applied field

///'ly in applied magnetic field (indeed, in super strong field - e.g. n-star surface atoms & molecules essentially linear!)
Electric & Magnetic Polarizabilities of Nucleon are Measured

e.g. Compton scattering:

\[4\pi \alpha_E = 2 \sum_{I \neq N} \frac{|\langle I | d_z | N \rangle|^2}{E_I - E_N} \]

\[\alpha_E^P = (12.1 \pm 1.3) \times 10^{-4} \text{ fm}^3, \]
\[\beta_M^P = (2.1 \pm 1.3) \times 10^{-4} \text{ fm}^3. \]

Also Virtual Compton Scattering \(\Rightarrow \) GPs
So what?

• Atoms respond to external E and B fields

• Nucleons respond to external E and B fields

• Nucleons must respond large scalar fields in-medium! (scalar polarizability)

• Change of hadron mass $m \rightarrow m^*$ is accepted and studied

What about other properties?
Classic Illustration: The EMC effect

- Observation stunned and electrified the HEP community 20 years ago
- Nearly one thousand papers have been generated.....
- What is it that alters the quark momentum in the nucleus?

\[\frac{\sigma(A)}{\sigma(D)} \]

Parton Distribution Functions of Nuclei

For those old enough to remember there were two responses to 1983 EMC discovery

a) Complete shock

b) So what: no reason for

\[f_{q/N}(z) = p_- \int \frac{dw^-}{2\pi} e^{ip_z w^-} <N, p|\bar{\psi}(0)\gamma^+\psi(w^-)|N, p> \]

to be related to

\[f_{q/A}(y_A) = \frac{P}{A^2} \int \frac{dw^-}{2\pi} e^{iP_y W^-/A} <A, P|\bar{\psi}(0)\gamma^+\psi(w^-)|A, P> \]

They are two different eigenstates of QCD Hamiltonian…

END of STORY!

i.e. NO derivation at all, within QCD (THE theory of the strong interaction) of a convolution of nucleon motion with free structure function!
Fundamental Question: “What is the Scalar Polarizability of the Nucleon?”

Nucleon response to a chiral invariant scalar field is then a nucleon property of great interest...

\[M^* (\vec{R}) = M - g_\sigma \sigma(\vec{R}) + \frac{d}{2} \left(g_\sigma \sigma(\vec{R}) \right)^2 \]

Non-linear dependence \(\equiv \) scalar polarizability
\[d \approx 0.22 \text{ R in original QMC (MIT bag)} \]

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the ONLY place the response of the internal structure of the nucleon enters.
Quark-Meson Coupling Model: QMC*

Intermediate step to full quark-gluon theory of ∞ nuclear matter

• Use successful model of hadron structure: MIT Bag

• Couple scalar ($\sigma: 0^+$) and vector ($\omega: 1^-$) mesons to confined quarks

• Confined quarks generate mean scalar and vector fields

• Scalar field changes confined quark wave function

$$[i\gamma^\mu \partial_\mu - (m_q - g_\sigma q\bar{\sigma}) - \gamma^0 g_\omega q\bar{\omega}]\psi = 0$$

• This changes source……..

Review: Saito et al., hep-ph/0506314
Numerical Results

Scalar mean-field \(\sim \frac{1}{3} \text{rd of QHD} \)

- Decrease of \(g_\sigma(\sigma) \) as density \(\uparrow \)
 - (effect of scalar polarizability)

\[
\begin{align*}
g_\sigma(\sigma) \text{ (MeV)} & \quad \rho_B / \rho_0 \\
& \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5
\end{align*}
\]

\[
\begin{align*}
g_\sigma(\sigma) \text{ (MeV)} & \quad 0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300 \quad 350 \quad 400
\end{align*}
\]
QMC: Generalization to Finite Nuclei*

- Use Born-Oppenheimer approximation…
 i.e. assume internal “nucleon” structure
 adjusts to local mean scalar field

 ⇒ 3% accuracy in typical nuclei

- I KNOW OF NO OTHER WAY TO DERIVE EXISTENCE
 OF NUCLEI WITHIN QCD

 ⇒ CHANGE IN PARADIGM

- everyone has heard of shell model

BUT: what occupies shell model orbits are NOT free nucleons
Application of QMC to Nuclear Density

^{40}Ca

- Walecka–Serot
- experiment
- this work

Linking QMC to Familiar Nuclear Theory

• Since early 70’s tremendous amount of work in nuclear theory is based upon effective force

• Used for everything from nuclear astrophysics to collective excitations of nuclei

• Skyrme Force: Vautherin and Brink

• Systematic phenomenology analogous to phase shifts connecting data and deeper derivation of NN force

Effective Interaction is of Skyrme III Type:

\[V = t_3 \sum_{i<j<k} \delta(\vec{R}_{ij})\delta(\vec{R}_{jk}) + t_0 \sum_{i<j} (1 + x_0 P_\sigma)\delta(\vec{R}_{ij}) \]

\[+ \frac{1}{4} t_2 \vec{\nabla}_{ij} \delta(\vec{R}_{ij})\vec{\nabla}_{ij} - \frac{1}{8} t_1 \left[\delta(\vec{R}_{ij})\vec{\nabla}_{ij}^2 + \vec{\nabla}_{ij}^2 \delta(\vec{R}_{ij}) \right] \]

\[+ \frac{i}{4} \vec{W}_0 (\vec{\sigma}_i + \vec{\sigma}_j) \cdot \vec{\nabla}_{ij} \times \delta(\vec{R}_{ij})\vec{\nabla}_{ij}, \]

and from comparison with QMC:

\[t_0 = -G_\sigma + G_\omega - \frac{G_\rho}{4}, \]

\[t_3 = 3dG_\sigma^2, \]

\[x_0 = -\frac{G_\rho}{2t_0}. \]
Comparison Between Skyrme III and QMC

<table>
<thead>
<tr>
<th></th>
<th>QMC</th>
<th>QMC</th>
<th>SkIII</th>
<th>QMC(N=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_\sigma (MeV)$</td>
<td>500</td>
<td>600</td>
<td>600</td>
<td>-1047</td>
</tr>
<tr>
<td>$t_0 (MeV fm^3)$</td>
<td>-1071</td>
<td>-1082</td>
<td>-1129</td>
<td>-1047</td>
</tr>
<tr>
<td>x_0</td>
<td>0.89</td>
<td>0.59</td>
<td>0.45</td>
<td>0.61</td>
</tr>
<tr>
<td>$t_3 (MeV fm^6)$</td>
<td>16620</td>
<td>14926</td>
<td>14000</td>
<td>12996</td>
</tr>
<tr>
<td>M_{eff}/M</td>
<td>.915</td>
<td>.814</td>
<td>.763</td>
<td>.821</td>
</tr>
<tr>
<td>$5t_2 - 9t_1 (MeV fm^5)$</td>
<td>-7622</td>
<td>-4330</td>
<td>-4030</td>
<td>-4036</td>
</tr>
<tr>
<td>$W_0 (MeV fm^5)$</td>
<td>118</td>
<td>97</td>
<td>120</td>
<td>91</td>
</tr>
</tbody>
</table>

\[
\frac{M_{eff}}{M} = \left(1 + \frac{(3t_1 + 5t_2)M\rho_0}{8}\right)^{-1}
\]
Great Start: What’s Next

- Remove zero-range approximation
- Derive density-dependent forms
- Add the pion
- Derive ΛN, ΣN, $\Lambda \Lambda$... effective forces in-medium with no additional free parameters!
- Hence attack dense hadronic matter, n-stars, transition from NM to QM or SQM with more confidence
Experimental consequences

• Form factors: $G_{E, M, A}$

• Parton Distribution Functions

• Generalized Parton Distribution Functions

• more masses…..

e.g. Experiments on both ρ and ω in finite nuclei* show predicted mass shifts

Further tests planned for η and η'

*Ttnka et al., PRL 94 (2005) 192303
Huber et al., PR C68 (2003) 065202
Properties of quark systems in-medium: Origin of the EMC effect

• Observation that structure functions are altered in nuclei stunned and electrified much of the HEP community 30 years ago

• What is it that alters the quark momentum in the nucleus?

Quark Model of QMC type: NJL with Confinement & Saturation of Nuclear Matter

• Similar to QMC of Guichon and collaborators

• Advantage that NJL is completely covariant

• Confinement modeled through “proper time regularization*” (Ebert et al., Phys Lett 388 (1996) 154)

• Saturation of nuclear matter as consequence of scalar polarizability of nucleon (response of light quarks to an applied scalar field)

Mineo et al., Nucl Phys A735 (2004) 482

* After Feynman parameters and Wick rotation:

\[\frac{1}{A^n} \rightarrow \frac{1}{(n-1)!} \int_{1/\Lambda_{IR}^2}^{1/\Lambda_{IR}^2} d\tau \tau^{n-1} e^{-\tau A} \quad (n \geq 1) \]
$g_1(A)$ – “Polarized EMC Effect”

- New calculations indicate larger effect for polarized structure than unpolarized: scalar field modifies lower cpts of Dirac wave function

 (Cloet, Bentz, AWT, Phys Rev Lett, to appear: nucl-th/0504019)
- Spin-dependent parton distribution functions for nuclei unknown

![Graph showing $R_{A/N}(x)$ with $Q^2 = 10.0 \text{ GeV}^2$ and $\rho = 0.17 \text{ fm}^{-3}$]
Proton and Neutron Asymmetry

Covariant, NJL model with confinement and QMC mechanism for saturation of nuclear matter

Lawley, Bentz, AWT, nucl-th/0504020
Conclusion

- Quark level approach to nuclear structure leads naturally to effective force of Skyrme type
- Numerical agreement between QMC and Skyrme III ~10%
- Key ingredient is scalar polarizability of nucleon
- Dramatic change to how we view shell model
- Experimental consequences just now being explored

and…. lattice QCD naturally yields scalar polarizability of correct sign and magnitude (Nishinomiya, to be published)
Big Picture

• QCD \Rightarrow \text{phase transition at high density (and T)}

• Is dense matter (n-star) nuclear/strange/QM/superconducting QM/color condensate?

• Changes at low density are precursors of what happens under more extreme conditions

• Crucial part of our understanding of these phenomena

• Theoretical and experimental studies of these kinds are the only systematic way to make progress
Rapid Convergence from LNA to NLNA

<table>
<thead>
<tr>
<th>Regulator</th>
<th>LNA</th>
<th>NLNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim. regulator</td>
<td>0.784</td>
<td>0.884 ± 0.103</td>
</tr>
<tr>
<td>Dim. regulator (BP)</td>
<td>0.784</td>
<td>0.923 ± 0.103</td>
</tr>
<tr>
<td>Sharp cutoff</td>
<td>0.968</td>
<td>0.961 ± 0.116</td>
</tr>
<tr>
<td>Monopole</td>
<td>0.964</td>
<td>0.960 ± 0.116</td>
</tr>
<tr>
<td>Dipole</td>
<td>0.963</td>
<td>0.959 ± 0.116</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.966</td>
<td>0.960 ± 0.116</td>
</tr>
</tbody>
</table>
FRR Mass well determined by data

\[\sqrt{(M_{V}^{\text{deg}})^2 - \Sigma_{TOT}} = (a_0^{\text{cont}} + X_1 a + X_2 a^2) + a_2 (M_{PS}^{\text{deg}})^2 + a_4 (M_{PS}^{\text{deg}})^4 + a_6 (M_{PS}^{\text{deg}})^6 \]
Neutron Star Composition

Hyperons enter at just 2-3 ρ_0

Hence need effective Σ-N and Λ-N forces in this density region!

Hypernuclear data is important input – but not enough

Wang, Lawley et al., nucl-th/0506014
Spin Dependent PDFs

Data: Hermes & JLab

Cloet, Bentz, AWT, hep-ph/0504229
Free Spin Independent PDFs

Cloet, Bentz, AWT, hep-ph/0504229
Excited States are more Difficult

Crouch et al., QQCD unquenched using chiral coefficients from quark model of Capstick
Predicted “EMC” Effect Bigger for Spin

First “estimate” in 3He of medium effects in spin dependent PDFs in QMC model

Flavor Dependence of EMC Effect

Cloet, Bentz, AWT, nucl-th/0504019
Flavor Dependence of PDFs

\[Q^2 = 5.0 \text{ GeV}^2 \]

- Model ratio
- Empirical ratio

\[\Delta d_v/\Delta u_v \text{ and } d_v/u_v \]

Cloet, Bentz, AWT, hep-ph/0504229