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First -- why use a relativistic theory?

 NOT because
• of size of (v/c)2 corrections

(although they may be large in some
applications)

• it is more accurate (it may not be)
• it is “better ” than EFT (it

complements EFT)

 Use a covariant theory for the
following reasons

• Intellectual:  to preserve an exact
symmetry ( Poncare ’ invariance)

• Practical:  to calculate boosts and
Lorentz kinematics consistently to
all orders (essential when energies
are of the order of 1  GeV)

• Consistent:   to use field theory for
guidance in the construction of
 forces (2⇔3 body consistency)
 currents consistent with

forces
• Conceptual: for “phenomenological

economy” , and to understand the
non relativistic limit:
 spin 1/2 particles ( Dirac

equation)
 interpretation of L •S forces

(covariant scalar-vector theory
of N matter)

 efficient one boson exchange
models of NN forces (?)
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Overview of relativistic methods for a fixed number of particles

 Hamiltonian dynamics (Dirac classification)
demand a Hilbert space of positive energy states -- i.e. QM
discard antiparticles and lose manifest cluster separability

• front form light cone methods  ( Strikman, Sargsian, Miller, Pace, Salme,
Frederico, Carbonell , and Karmanov,)

• instant form standard quantum mechanics - with relativity  
(Schiavilla and Arenhovel )

• point form kinematic Lorentz group; momentum not conserved (Klink)

 Field dynamics (based on field theory)
demand manifest cluster separability
 requires negative energy states and  we lose the Hilbert space

• Bethe- Salpeter kinematic Poincaré group; 4-d ( Tjon )
• Spectator kinematic Poincaré group; 3-d (Gross, Van Orden , Stadler )
• equal time integrate over x0:  ( Tjon , Pascalutsa, Wallace)
• front form BS integrate over x+  (Carbonell and Karmanov )
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 Definition: when one particle is far away, the interaction between
the other two is the same as it would be without the third particle

 If P = p 1 + p2 + p3 = 0, and p1 ≠ 0, then the 23 amplitude is in a moving
frame.  The boost depends on the mass of the 2-body system.

 Hamiltonian dynamics is off-energy shell ,                                .  The
energies of particles and subsystems do not match the free particle
energies, and under boosts the cluster property is not easy to
implement.

 Field dynamics is off-mass shell ,                      .  Energy is conserved
so boosts and cluster properties are easily satisfied, but off-mass
shell ⇒ negative energy states.

Cluster separability -- 3-body example

=
r → ∞

1

2
3

E2 + E3 ≠ M 23
2 + p1

2

p0 ≠ m2 + p2
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Progress with 2 and 3 nucleon systems
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Progress with the 2- and 3-nucleon problem -- 1

Hamiltonian dynamics

 Excellent fits to the 2-body data to 350 MeV Lab
energy

• χ2 ~ 1/datum
• All relativistic corrections in the rest frame included

phenomenologically

 No solution of the full 3-nucleon problem (yet!)
• S-wave Malfliet -Tjon potential:  Glockle,

Lee, and Coester, PRC 33,  709 (1986)
• V18 with linear  boost corrections: J. Carlson,

Pandharipande, and  Schiavilla , PRC 47 , 484 (1993)
• CDBonn with minimal relativity:  Sammarruca

and Machleidt , Few Body Systems 24 , 87 (1998)

 Three body forces needed to fit binding energy

Relativistic
corrections to 
triton
binding energy

 0.2 (MeV)

 0.3 (boost)
 0.1 ( hamiltonian )

−0.3 
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Progress with the 2- and 3-nucleon problem -- 2

Hamiltonian dynamics

Recent study of relativistic effects in 3-nucleon problem*
*Keister and Polyzou, PRC 73, 014005 (2006)

 Supports the claim that effects (excluding pair terms) add positive
correction to the triton binding

 questions the transformation introduced by Kamada and Glockle
[PRL 80, 2547 (1998)].  In both relativistic and nonrelativistic
theory,                           , and hence the CM momenta  in both
relativistic and nonrelativistic equations should be the same.  KG
assume the CM energies  are the same.

 emphasizes that relativistic corrections are not unique

pCM
2 = 1

2 mELAB
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Progress with the 2- and 3-nucleon problem -- 3

Field dynamics

 New fits to the 2-body data to 350 MeV Lab energy [model
WJC(2006)]
• χ2 ~ 1.6/datum
• Relativistic corrections pair terms and kinematics, even in the

rest frame

 solution for the triton using the spectator equation
• Model W16 (1997) gave the best fit to the data and

the correct binding without three body forces
• New WJC(2006) also fits both the data and BE
• corrections do to pair terms of three body origin = 0.26 MeV

 OBE (or EBE) models predict NO three body forces
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Progress with the 2- and 3-nucleon problem* -- 4
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*three body calculations FG and Alfred 
  Stadler , Phys. Rev. Letters 78 , 26 (1997)

It turns out that the relativistic
calculation of the three body binding
energy is sensitive to a new,
relativistic off-shell coupling (described
by the parameter ν). Non-zero ν is
equivalent to effective three-body (and
n-body forces).

Et

ν

The value of ν that gives the correct
binding energy is close to the value that
gives the best fit to the two-body data!

Results from earlier W16(1997) model
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Progress with the 2- and 3-nucleon problem -- 5
Field dynamics

Recent development of a realistic EBE model for the CS ©

 OBE: One Boson Exchange usually implies:

• only exchange physical  bosons with masses less than or about
one Gev, except for using the σ0 (isoscalar) and σ1 (isovector) to
approximate TPE

• masses constrained to physical values

 EBE : Effective Boson Exchange (defined today) differs:
• bosons are effective degrees of freedom only
• except for OPE, the masses, coupling constants, and quantum

numbers are phenomenological
• general form constrained by relativistic field theory
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Equations of the Covariant Spectator theory* (CS©)

 2-body CS © equation

• ALL Poincare transformations are  kinematic
• has a smooth one body limit

 3-body CS © equation
• Define three-body vertex functions for each possibility

• 3-body  Faddeev -like equations emerge automatically:

M ×× M ×× ×× × +=
one particle
on-shell

this particle is 
the “last” spectator

×
×

×
×
× ×

M
×

M
ΓM ΓM

= 2Γ ΓM× ×
×
×

×Bound state 
equation for
identical particles

*FG, Phys. 
  Rev. 186 , 
  1448 (1969)
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Progress with the 2- and 3-nucleon problem -- 6

Advantages of an EBE or OBE model

 Connection to field theory:

 Consistency:
• 2-body --> 3-body with NO relativistic three body forces

• hadronic -->  electromagnetic (relativistic interaction currents)

2 body
x x

3 body

x x

x

currents

x x xx x xx x
hadronic
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 TBE is neglected ( cancellation theorem  proved only for scalar
exchanges)

 TPE is certainly important: using σ0  and σ1 exchanges to
approximate TPE violates the spirit of OBE

 Isgur ’s arguments:
• exchanging bosons over a distance small

compared to their size make little sense
• why isn ’t quark exchange more important?

 AND, IT DOESN ’T WORK (!)

dr d < r

Progress with the 2- and 3-nucleon problem -- 7

Problems with the traditional OBE model
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 mesons are “effective” and are not identified with physical mesons.
NO crossed diagrams are needed; they are already included.

 Divide and conquer!

• Part A: the effective bosons are determined  phenomenologically and
parameterize the most general interaction and include
 TBE
 quark exchange, etc., etc,

• Part B: properties of the bosons calculated from fundamental principals

 AND, IT WORKS!

Progress with the 2- and 3-nucleon problem -- 8

Advantages of the EBE model

+

TPE with/o
resonances

+

quark 
exchange

+

heavy meson & 
short range 

contact, EFT(?)

+ + • • • ??

pQCD
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 Most general on-shell kernel has 5 invariants for each
isospin , written in terms of PS, S, V(g), V(f), A couplings

 pion masses constrained, and mass of V(g) = V(f), leaving
20-4=16 parameters

 off-shell coupling included so far
• pion (small admixture of                     off shell)
• scalar (addition of                                         term)
• vector (addition of                                          term)

 3 from factor masses (N, # , and all others)

Progress with the 2- and 3-nucleon problem -- 9

Structure of the new EBE model

γ 5 ≠ γ 5 q
1 m − p( ) + m − p '( )1
γ µ m − p( ) + m − p '( )γ µ

16

2
2
2

  3
25
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 Only a few off-shell terms added to the kernel so far

 Scalar:  σ0  and σ 1

 Pseudoscalar : π and η

 Vector: ρ  and ω

 Axial vector: H1 and A1

  Definitions of the EBE parameters

Λ(p ', p) = gs +
νS

2m
2m − /p '− /p[ ]

Λ(p ', p) = igP γ 5 −
1−νP

2m
m − p '( )γ 5 + γ 5 m − p( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

Λ(p ', p) = gV γ µ +
κV

2m
iσ µν p '− p( )ν +

νV
2m

m − p '( )γ µ + γ µ m − p( )⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

zero on-shell

Λ(p ', p) = gA γ µγ 5{ } Note: axial vector tensor couplings 
add no new structures
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Parameters from the new WJC (25)  as3.2.3 8/7/06

513-0.17axial vector (I=1)

528

773

508

558

404

exp

exp

-0.12axial vector (I=0)

1.17rho

3.80omega

1.10sigma (I=1)

2.93sigma (I=0)

4.24eta

13.73pi +  and pi +

g2/4π mass

0.000.00

0.000.00

-1.824.44

0.560.06

3.95---

-4.65---

1.72---

0.01---

 f/g
 off-shell 

ν

form factor 
masses:

N =  1717
π =  2401

meson = 1329

Fit to the 2001 
data:
χ2/datum = 1.16
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Three-nucleon bound state energy as3.2.3 8/7/06

 1S0 and 3S1-3D1; (+) energy states only (5 channels)      

 all states to J=1; (+) energy states only (14 channels)

 all up to J=1  (includes (-) energy; 28 channels)

 up to J=2 (52 channels)

 up to J=3 (76 channels)

 up to J=4 (100 channels

 up to J=5 (124 channels)

 up to J=6 (148 channels)

 experimental value          -8.48

0.261-8.390

0.258-8.390

0.245-8.362

0.238-8.316

0.295-8.222

0.300-8.064

-8.364

-9.058 negative
energy
contribution
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Comments on WJC(25)

 The gπ that emerges from the fit agrees with Nijmegen

 the off-shell pion coupling (νπ ) is very small in agreement with  chiral
symmetry

 the meson masses that were adjusted are all near 500 MeV as
expected if a dispersion integral is saturated by a mass near the 2π
=280 MeV threshold.  Only the rho is larger.

 the gA
2 couplings are negative!  What does this mean? (Results are

not final!)

 the I=0 off-shell sigma coupling (νσ) can be adjusted to give the
exact 3-body binding energy without any significant change in the
χ2/datum

 3-body binding energies will become part of the fitting procedure!
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Progress with the 2- and 3-nucleon problem -- conclusion

 Hamiltonian dynamics
• Excellent fits to NN data with χ2=1/datum
• 3 -body bound state calculations can be made relativistic with uncertainties

of ~0.2 MeV; 3-body forces are several times larger
• There are uncertainties in how to go from nonrelativistic to relativistic

 Field Dynamics
• Exchange of effective bosons, not real ones (except for the pion) better

approximates the physics.  Removes several long-standing issues.
• Axial vector mesons needed for the most general expansion of the kernel
• New fits to the NN data are a dramatic improvement.  With 25 parameters,

relativistic model gives a χ2=1.16/datum, competitive with the best
nonrelativsitic models .

• 3-body calculations give accurate binding energies without 3-body forces

 Field Dynamics provides an economy and an effective theory of forces
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Recent progress in Field Dynamics

  Convergence of the BS equation

  Relativistic treatment of the spin 3/2  Δ

  Current conservation with relativistic optical potentials
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Convergence of the Bethe-Salpeter equation -- 1

 Exact BS kernel is the sum of ALL 2-nucleon irreducible
processes.  The ladder sum is only the simplest approximation:

 at 4th order, we must add the crossed ladder

 The BS equation in ladder approximation converges  only if the
ladder is close to the exact result and the crossed ladder is
small
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Convergence of the BS equation -- 2*

*Karmanov and Carbonell , Eur.Phys.J.A27:1, 2006;
  Carbonell and Karmanov , Eur.Phys.J.C

 Carbonell and Karmanov use the Nakanishi representation

 The BS amplitude, Φ, depends on 2 variables: k2 and k ⋅ P, with P 2=M 2

 Brief derivation:  Starting from Feynman parameterization of the
propagators

the Nakanishi representation includes additional the singularities that
arise from the exchange of mesons:

Φ(k,P) = 1
2

dz
−1

1

∫ dγ g(γ , z)
γ + m2 − 1

4 M
2 − k2 − z P ⋅ k − iε( )30

∞

∫

x
P2

p1 = 1
2 P + k

p2 = 1
2 P − k

1
A+A−

=
1
2

dz
A+

1
2 (1+ z) + 1

2 A− (1− z)( )2−1

1

∫ =
1
2

dz

m2 − 1
4 M

2 − k2 − z P ⋅ k − iε( )2−1

1

∫

Φ(k,P)
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Convergence of the BS equation -- 3

 C&K Solve the BS equation in Minkowski space by inserting the
Nakanishi representation and integrating over the light cone using
the projection

where ω  is a light-like vector: ω 2=0.

 The equation for the spectral function becomes

where V is related to the kernel of the BS equation.  It has no
singularities and can be solved numerically.

 What do we find?

Φ(k + βω ,P)
−∞

∞

∫ dβ

dγ 'g(γ ', z)
γ + γ '+ m2 − 1

4 (1− z
2 )M 2( )20

∞

∫ = dγ '
0

∞

∫ dz '
−1

1

∫ V (γ z,γ 'z ')g(γ ', z ')
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Convergence of the BS equation -- 4

   For χ2ϕ theory BE  vs . g2

• Exact sum of ladders and
crossed ladders from the
Feynman-Schwinger method*

• BS equation in (in ladder
approximation) ladder fails!

• Quasipotential equations best

 Crossed ladder contribution too
small

m1 = m 2 = 1;  µ = 0.15

*Nieuwenhuis and Tjon, PRL 77, 814 (1996),
*Cetin Savkli , FG, and John  Tjon , Phys. Atom.
   Nucl.68:842,2005, Yad .Fiz.68:874,2005 and
   unpublished
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Convergence of the BS equation -- 4

   For χ2ϕ theory BE  vs . g2

• Exact sum of ladders and
crossed ladders from the
Feynman-Schwinger method*

• BS equation in (in ladder
approximation) ladder fails!

• Quasipotential equations best

 Crossed ladder contribution too
small

m1 = m 2 = 1;  µ = 0.15

*Nieuwenhuis and Tjon, PRL 77, 814 (1996),
*Cetin Savkli , FG, and John  Tjon , Phys. Atom.
   Nucl.68:842,2005, Yad .Fiz.68:874,2005 and
   unpublished

⊗

⊗
⊗

⊗⊗

Bo
un

d 
st

at
e 

m
as

s
coupling



Franz GrossFB18 -- Brazil

Convergence of the BS equation -- 4

   For χ2ϕ theory BE  vs . g2

• Exact sum of ladders and
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Convergence of the BS equation -- 4

   For χ2ϕ theory BE  vs . g2

• Exact sum of ladders and
crossed ladders from the
Feynman-Schwinger method*

• BS equation in (in ladder
approximation) ladder fails!

• Quasipotential equations best

 Crossed ladder contribution too
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Convergence of the BS equation -- conclusion

The BS equation, in summing all ladders and crossed
ladders,

 does not do as well as the spectator equation

 converges slowly!
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Relativistic treatment of the spin 3/2 Δ* -- 1

*Pascalutsa, Phys. Rev. D 58 , 096002 (1998)
  Pascalutsa and Timmermans , Phys. Rev. C 60, 042201 (1999)
  Pascalutsa and Phillips, Phys. Rev. C 68 , 055205 (2003)
  Pascalutsa and Vanderhaeghen , Phys.Lett. B63 , 31 (2006)

 Old treatment of the Δ  included spurious spin 1/2 components

Sµν (P) =
1

M − P − iε
gµν −

1
3
γ µγ ν −

2
3M 2 PµPν −

1
3M

γ µPν − Pµγ ν( )⎛
⎝⎜

⎞
⎠⎟

=
1

M − P − iε
Pµν
(3/2) +

2
3M 2 (M + P )P22,µν

(1/2) +
1
3M

P12,µν
(1/2) + P21,µν

(1/2)( )

Pµν
(3/2) = gµν −

1
3
γ µγ ν −

1
3P2

Pγ µPν + Pµγ ν P( )
P22,µν
(1/2) =

PµPν
P2

; P12,µν
(1/2) =

Pρiσ µρPν
3P2

; P21,µν
(1/2) =

PµP
ρiσρν

3P2

where Note that
spin 1/2 parts
are all linear
in Pµ or Pν
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Relativistic treatment of the spin 3/2 Δ -- 2

 Pascalutsa considers the strong gauge invariance of the spin
3/2 field (needed to reduce the number of degrees of
freedom to 4X2=8 to 4)

 Conclusion is that strong gauge invariant couplings are needed
• the couplings often used in the past were

• strong gauge invariance requires                .   This constraint
insures that all spin 1/2 parts of the propagator vanish, and is
not satisfied by previous couplings

• Pascalutsa uses

ψ NΘ
µνΨΔµ∂νφπ with Θµν = gµν − z + 1

2( )γ µγ ν

where z is the
“off-shell ” parameter

ΘµνPν = 0

ψ NΘ
µνΨΔµ∂νφπ =ψ Nγ 5γ µε

µνρσ ∂ρΨΔσ − ∂σΨΔρ( )∂νφπ

⇒ψ Nγ 5γ µkπνε
µνρσ PρΨΔσ − PσΨΔρ( )
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Relativistic treatment of the spin 3/2 Δ -- Conclusion

 The strong gauge invariant treatment solves a long standing
problem -- the Δ  can now be treated and a pure spin 3/2
particle.

 Technical simplifications abound.  The bubble sum can be
computed easily:

 A relativistic Effective Field Theory can be (and has been)
developed

+ + +

 

Pµν + ΘµρBg
ρρ 'Θρ 'ν + ΘµρBg

ρρ 'Θρ 'σBg
σσ 'Θσ 'ν + ΘµρBg

ρρ 'Θρ 'σBg
σσ 'Θσ 'ωBg

ωω 'Θω 'ν +

=
Θµν

1− B
See:  FG and  Surya, 
Phys. Rev. C 47, 703 (1993)
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Current conservation with relativistic optical potentials* -- 1

*J. W. Van  Orden , nucl -th/0605031

 Long standing problem -- how to do a gauge invariant calculation of
A(e, e’p)X when A is large. The usual matrix element is

 Problem is that the optical potential used in the Hamiltonian is not
the same for initial and final states.

 For this reason it does not conserve current.

 Problem was solved for A=3 some time ago.

 New result is to construct optical potential from exact result

 A=3 result will be generalized to all A.
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Current conservation with relativistic optical potentials  -- 2

 To illustrate the problem, consider non-identical nucleons with 12 and 23
interactions only. The most general Feynman diagram is

 Isolate the deuteron (23) bound state contribution

 Then the optical potential for 1 scattering from the 23 bound state is
= +

= +
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+

Current conservation with relativistic optical potentials  -- 3

 The optical potential for particle 1 +(23) is a 3-body T matrix with

• no bound state poles for particles 2 and 3
• first and last interactions cannot be a 2-body scattering between 2 & 3

 Add current interaction with particle 1
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Current conservation with relativistic optical potentials-conclusion

 Combining this with the construction of conserved currents
introduced in 1987* and proved for three body interactions**
we can show that this construction conserves current.

 This will provide a systematic basis for optical model
approximations.

*FG and Riska , PRC 36 , 1928 (1987)  

**Kvinikhidze & Blankleider , PRC 56, 2973 (1997)
    Adam & Van Orden , PRC 71: 034003 (2005)
    FG, A. Stadler , & T. Pena, PRC 69: 034007 (2004)
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Overall Conclusions

 Progress with the 2 and 3 nucleon systems using CS© Field Dynamics
• new accurate fit to the NN data with χ2 ~ 1.16/datum
• correct 3-body binding energy without 3-body forces
• manifestly covariant with cluster separability and all spin effects included

 BS equation with 4th order crossed ladder kernel has been solved
• uses Nakanishi representation and a new light-cone projection technique
• convergence is not good.

 Major advance in the relativistic treatment of spin 3/2 states
• strong gauge invariance limits the number of degrees of freedom
• propagators reduce to spin 3/2 projection operators with spurious spin 1/2

degrees of freedom decoupled from the physics
• relativistic EFT of N and Δ coupled system

 Development of a current conserving optical model for (e, e’p) applications
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 END
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Phase shifts -- comparison between EBE-C and Nijmegen
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A large discrepancy!


