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polarized strangeness ∆s



 Semi-inclusive DIS

Semi-inclusive hadron-production offers tremendous
opportunity for determining

spin-flavor composition of nucleon PDFs

new distributions, not accessible in inclusive DIS

At leading order pQCD, SIDIS cross section factorizes
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For pion-production off proton target
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Isospin symmetry

leading fragmentation functions

non-leading fragmentation functions
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EMC, Aubert et al., PLB110 (1982) 73

FIG. 2. Fragmentation functions, D(z) and D̄(z), from the EMC experiment [11], together
with the parameterizations given in Eq.(13).

FIG. 3. Theoretical ratio, Rπ, as a function of x for fixed z = 1. The dashed line represents the
ratio constructed from the CTEQ4 parameterization [12], while the solid includes the modified d

distribution according to Eq.(10).
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Valence quarks
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Traditional method extracts d/u ratio from
inclusive n/p structure function ratio at large x
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FIG. 1. FD
2 /FN

2 ratio as a function of x for the off-shell model of Refs. [4,5] (solid) and the
on-shell model of Ref. [6] (dotted).

In Refs. [4,5] the structure function F N
2 was modeled in terms of relativistic quark–

nucleon vertex functions, which were parametrized by comparing with available data for
the parton distribution functions. The off-shell extrapolation of the γ∗N interaction was
modeled assuming no additional dynamical p2 dependence in the quark–nucleon vertices.
This enabled an estimate of the correction δ(off)F D

2 to be made, which was found to be quite
small, of the order ∼ 1−2% for x <∼ 0.9. The result of the fully off-shell calculation from Ref.
[4] is shown in Fig.1 (solid curve), where the ratio of the total deuteron to nucleon structure
functions (F D

2 /FN
2 ) is plotted. Shown also is the result of an on-mass-shell calculation from

Ref. [6] (dotted curve), which has been used in many previous analyses of the deuteron data
[7,8]. The most striking difference between the curves is the fact that the on-shell ratio has
a very much smaller trough at x ≈ 0.3, and rises faster above unity (at x ≈ 0.5) than the
off-shell curve, which has a deeper trough, at x ≈ 0.6− 0.7, and rises above unity somewhat
later (at x ≈ 0.8).

The behavior of the off-shell curve in Fig.1 is qualitatively similar to that found by
Uchiyama and Saito [9], Kaptari and Umnikov [10], and Braun and Tokarev [11], who also
used off-mass-shell kinematics, but did not include the (small) non-convolution correction
term δ(off)F D

2 . The on-shell calculation [6], on the other hand, was performed in the infinite
momentum frame where the nucleons are on their mass shells and the physical structure
functions can be used in Eq.(1). One problem with this approach is that the deuteron
wave functions in the infinite momentum frame are not explicitly known. In practice one
usually makes use of the ordinary non-relativistic S- and D-state deuteron wave functions
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A similar result is also obtained in the treatment of Brodsky et al. [21] (based on
counting-rules), where the large-x behavior of the parton distribution for a quark polar-
ized parallel (∆Sz = 1) or antiparallel (∆Sz = 0) to the proton helicity is given by:
q↑↓(x) = (1 − x)2n−1+∆Sz , where n is the minimum number of non-interacting quarks
(equal to 2 for the valence quark distributions). In the x → 1 limit one therefore predicts:

F n
2

F p
2

→ 3

7
,

d

u
→ 1

5
[Sz = 0 dominance]. (11)

Note that the d/u ratio does not vanish in this model. Clearly, if one is to understand the dy-
namics of the nucleon’s quark distributions at large x, it is imperative that the consequences
of these models be tested experimentally.

The reanalyzed SLAC [7,22] data points themselves are plotted in Fig.3, at an average
value of Q2 ≈ 12 GeV2. The very small error bars are testimony to the quality of the SLAC p
and D data. The data represented by the open circles have been extracted with the on-shell
deuteron model of Ref. [6], while the filled circles were obtained using the off-shell model of
Refs. [4,5]. Most importantly, the F n

2 /F p
2 points obtained with the off-shell method appear

to approach a value broadly consistent with the Farrar-Jackson [20] and Brodsky et al. [21]
prediction of 3/7, whereas the data previously analyzed in terms of the on-shell formalism
produced a ratio that tended to the lower value of 1/4.

FIG. 3. Deconvoluted Fn
2 /F p

2 ratio extracted from the SLAC p and D data [7,22], at an average

value of Q2 ≈ 12 GeV2, assuming no off-shell effects (open circles), and including off-shell effects
(full circles).

The d/u ratio, shown in Fig.4, is obtained by inverting F n
2 /F p

2 in the valence quark
dominated region. The points extracted using the off-shell formalism (solid circles) are
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mass difference. The Λ is isosinglet, so it features [ud]; while Σ, being isotriplet, features
(ud). The Σ is indeed heavier, by about 80 MeV. Of course, this comparison of diquarks
is not ideal, since the spectator s quark also has significant spin-dependent interactions. A
cleaner comparison involves the charm analogues, where Σc−Λc = 215 MeV. (Actually this
comparison is not so clean either, as we’ll discuss later. One sign of uncleanliness is that
there either Σc(2520)

3
2

+
or Σc(2455)

1
2

+
might be used for comparison; here I’ve taken the

weighted average.)
One of the oldest observations in deep inelastic scattering is that the ratio of neutron

to proton structure functions approaches 1
4 in the limit x → 1

lim
x→1

Fn
2 (x)

F p
2 (x)

→ 1

4
(1.1)

In terms of the twist-two operator matrix elements used in the formal analysis of deep
inelastic scattering, this translates into the statement

lim
n→∞

〈p|d̄γµ1

←→∇ µ2
· · ·←→∇ µn

d|p〉
〈p|ūγµ1

←→∇ µ2
· · ·←→∇ µn

u|p〉
→ 0 (1.2)

where spin averaging of forward matrix elements, symmetrization over the µs, and removal
of traces is implicit, and a common tensorial form is factored out, together with similar equa-
tions where operators with strange quarks, gluons, etc. appear in the numerator. Equation
(1.2) states that in the valence regime x → 1, where the struck parton carries all the longitu-
dinal momentum of the proton, that struck parton must be a u quark. It implies, by isospin
symmetry, the corresponding relation for the neutron, namely that in the valence regime
within a neutron the parton must be a d quark. Then the ratio of neutron to proton matrix

elements will be governed by the ratio of the squares of quark charges, namely
(− 1

3
)2

( 2

3
)2

= 1
4 .

Any (isosinglet) contamination from other sources will contribute equally to numerator and
denominator, thereby increasing this ratio. Equation (1.2) is, from the point of view of
symmetry, a peculiar relation: it requires an emergent conspiracy between isosinglet and
isotriplet operators. It is, from a general physical point of view, most remarkable: it is
one of the most direct manifestations of the fractional charge on quarks; and it is a sort
of hadron = quark identity, closely related to the quark-hadron continuity conjectured to
arise in high density QCD. It is an interesting challenge to derive (1.2) from microscopic
QCD, and to estimate the rate of approach to 0.

A more adventurous application is to fragmentation. One might guess that the formation
of baryons in fragmentation of an energetic quark or gluon jet could proceed stepwise,
through the formation of diquarks which then fuse with quarks. To the extent this is a
tunneling-type process, analogous to pair creation in an electric field, induced by the decay
of color flux tubes, one might expect that the good diquark would be significantly more
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Diquarks as Inspiration and as Objects

Frank Wilczek∗

September 17, 2004

Abstract

Attraction between quarks is a fundamental aspect of QCD. It is plausible that
several of the most profound aspects of low-energy QCD dynamics are connected to
diquark correlations, including: paucity of exotics (which is the foundation of the quark
model and of traditional nuclear physics), similarity of mesons and baryons, color su-
perconductivity at high density, hyperfine splittings, ∆I = 1/2 rule, and some striking
features of structure and fragmentation functions. After a brief overview of these issues,
I discuss how diquarks can be studied in isolation, both phenomenologically and numer-
ically, and present approximate mass differences for diquarks with different quantum
numbers. The mass-loaded generalization of the Chew-Frautschi formula provides an
essential tool.

1 Diquarks as Inspiration

1.1 Diquarks in Microscopic QCD

In electrodynamics the basic interaction between like-charged particles is repulsive. In
QCD, however, the primary interaction between two quarks can be attractive. At the
most heuristic level, this comes about as follows. Each quark is in the 3 representation, so
that the two-quark color state 3⊗3 can be either the symmetric 6 or the antisymmetric 3̄.
Antisymmetry, of course, is not possible with just 1 color! Two widely separated quarks each
generate the color flux associated with the fundamental representation; if they are brought
together in the 3̄, they will generate the flux associated with a single anti-fundamental,
which is just half as much. Thus by bringing the quarks together we lower the gluon field
energy: there is attraction in the 3̄ channel. We might expect this attraction to be roughly
half as powerful as the quark-antiquark 3⊗ 3̄ → 1. Since quark-antiquark attraction drives
the energy in the attractive channel below zero, triggering condensation 〈q̄q〉 %= 0 of qq̄
pairs and chiral symmetry breaking, an attraction even half as powerful would appear to
be potentially quite important for understanding low-energy QCD dynamics.

∗Solicited contribution to the Ian Kogan memorial volume, ed. M. Shifman.
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Folklore that experiment gives 1/4 limiting ratio...



Botje, Eur. Phys. J. C 14 (2000) 285

uncertainty due
 to nuclear effects 

in deuteron



Semi-inclusive ratio at z = 1
FIG. 2. Fragmentation functions, D(z) and D̄(z), from the EMC experiment [11], together

with the parameterizations given in Eq.(13).

FIG. 3. Theoretical ratio, Rπ, as a function of x for fixed z = 1. The dashed line represents the
ratio constructed from the CTEQ4 parameterization [12], while the solid includes the modified d

distribution according to Eq.(10).
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Semi-inclusive ratio at z < 1
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FIG. 4. Ratio Rπ as function of x, integrated over z between 0.3 < z < 1 and 0.5 < z < 1. The

solid and dashed curves are as in Fig.3.
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smeared quark distribution in nucleon bound in d 

Combine with “neutron” (deuteron) target

eliminate dependence on fragmentation function

σ
π

+

ñ ∼ 4 (d̃(x) + εu(x)) D(z) + (ũ(x) + εd(x)) D̄(z)

σ
π
−

ñ ∼ 4 (d̃(x) + εu(x)) D̄(z) + (ũ(x) + εd(x)) D(z)

q̃(x) =

∫
dy

y
fN/d(y) q(x/y)

εq(x) = q̃(x) − q(x)



Ratio independent of fragmentation function

Rnp =
σπ+

ñ − σπ−

ñ

σπ+

p − σπ−

p

=
4d̃(x) − ũ(x) + 4εu(x) − εd(x)

4u(x) − d(x)

If no nuclear corrections 
q̃(x) = q(x)

Rnp =
4d(x)/u(x) − 1

4 − d(x)/d(x)FIGURES

FIG. 1. Ratio Rnp in Eq.(8) calculated with (solid) and without (dashed) smearing corrections.

The u and d distributions were taken (a) from the CTEQ4 parameterization [12], and (b) with the
d quark distribution modified as in Ref. [8] to have the correct perturbative QCD limit [1,6].
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DIS from “slow” n in deuteron

“Spectator Tagging”
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Quark polarization at large x

SU(6) symmetry
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Semi-inclusive polarization asymmetry for hadron h

“purity”

Ah
1 (x, z) =

∑
q e2

q ∆q(x) Dh
q (z)

∑
q′ e2

q′ q′(x) Dh
q′(z)

=
∑

q

Ph
q (x, z)

∆q(x)

q(x)

Ph
q (x, z) =

e2
q q(x) Dh

q (z)
∑

q′ e2

q′ q′(x) Dh
q′(z)

In practice integrate over z,  e.g.  0.2 < z < 0.8



Existing data (HERMES):  
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Figure 3.35: Projection of CLAS ∆d/d measurements at large x, compared with the
constituent quark model (CQM) and pQCD-based parameterizations.

distribution is reasonably well established experimentally, the polarized d-quark dis-
tribution is poorly known, especially at large x, where there are significant differences
between predictions derived from non-perturbative and perturbative models of QCD.
The data shown in Fig. 3.35 represent the present knowledge of ∆d at large x. An
energy and luminosity upgraded CLAS will allow measurements in the x region above
0.5. Assuming factorization, SIDIS measurements may be used to extract polarized
distribution functions using polarized proton and deuteron targets. The extraction
of polarized-quark distribution functions from semi-inclusive asymmetries could be
done either using the purity technique [100] or the method based on the extraction
of spin asymmetries in the difference of π+ and π− counts [117].

3.3.3 Semi-Exclusive Meson Production

In the processes of semi-exclusive electroproduction, the final meson is produced at
short distances via hard-gluon exchange [118, 119, 120], with a characteristic rapidity
gap between the current fragmentation region and target fragmentation region. This
mechanism is expected to dominate the cross section in the kinematic regime where

89

π±, K± production on p, d targets

note nuclear effects in d for x > 0.6-0.7
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Sea quarks



Because sea quarks & antiquarks are produced
“radiatively” (by             radiation) g → qq̄

expect flavour-symmetric sea
IF quark masses are the same

e.g.  since ms ! md =⇒ d̄(x) > s̄(x)

BUT  since                            expect mu ≈ md =⇒ d̄(x) ≈ ū(x)

Flavor asymmetry of proton sea



Large           asymmetry in proton observed in DIS (NMC) 
and Drell-Yan (CERN NA51 and FNAL E866) experiments  

Flavor asymmetry of proton sea

d̄ − ū

proton. An extrapolation was made to account for the unmea-

sured region at low x. To extrapolate this integral from the

measured region, which is shown in Fig. 11, to the unmea-

sured region, MRST and CTEQ5M were used to estimate the

contribution for 0!x!0.015 and it was assumed that the
contribution for x"0.35 was negligible. The uncertainty

from this extrapolation was estimated to be 0.0041 which is

half the difference between the contributions as given by

MRST and CTEQ5M.

VII. CHARGE SYMMETRY AND SHADOWING

The analysis presented here assumes that the parton dis-

tributions of the nucleon obey charge symmetry: i.e., up(x)

!dn(x), d̄ p(x)! ūn(x), etc. This is consistent with the treat-

ment in previous experiments #1–4$ and global fits #13–15$.
The possibility that charge symmetry could be significantly

TABLE XI. The cross section ratio, d̄/ ū and d̄" ū values determined from the combination of all data sets for each x2 bin. The first

uncertainty is statistical and the second uncertainty is systematic. The quantities extracted from the cross section ratio are given for Q2

!54 GeV2/c2. The cross section ratio has a systematic uncertainty of less than 1% as shown in Table X. The average values for kinematic

variables are also shown.

x2 range %pT& %M'#'"&
min-max %x2& %xF& (GeV/c) (GeV/c2) (pd/2(pp

d̄/ ū d̄" ū

0.015–0.030 0.026 0.534 1.004 4.6 1.038$0.022 1.085$0.050$0.017 0.862$0.489$0.167

0.030–0.045 0.038 0.415 1.045 5.1 1.056$0.011 1.140$0.027$0.018 0.779$0.142$0.096

0.045–0.060 0.052 0.356 1.076 5.6 1.081$0.010 1.215$0.026$0.020 0.711$0.077$0.060

0.060–0.075 0.067 0.326 1.103 6.2 1.086$0.011 1.249$0.028$0.021 0.538$0.055$0.041

0.075–0.090 0.082 0.296 1.122 6.8 1.118$0.013 1.355$0.036$0.023 0.512$0.044$0.028

0.090–0.105 0.097 0.261 1.141 7.2 1.116$0.015 1.385$0.046$0.025 0.400$0.040$0.022

0.105–0.120 0.112 0.227 1.156 7.5 1.115$0.018 1.419$0.060$0.027 0.321$0.038$0.017

0.120–0.135 0.127 0.199 1.168 7.8 1.161$0.023 1.630$0.085$0.031 0.338$0.034$0.013

0.135–0.150 0.142 0.182 1.161 8.2 1.132$0.027 1.625$0.110$0.033 0.259$0.035$0.010

0.150–0.175 0.161 0.164 1.156 8.7 1.124$0.027 1.585$0.111$0.032 0.180$0.027$0.008

0.175–0.200 0.186 0.146 1.146 9.5 1.144$0.038 1.709$0.158$0.036 0.142$0.023$0.005

0.200–0.225 0.211 0.133 1.146 10.3 1.091$0.047 1.560$0.194$0.034 0.081$0.022$0.004

0.225–0.250 0.236 0.120 1.178 11.1 1.039$0.063 1.419$0.264$0.036 0.045$0.023$0.003

0.250–0.300 0.269 0.097 1.177 12.0 0.935$0.067 1.082$0.256$0.032 0.006$0.019$0.002

0.300–0.350 0.315 0.046 1.078 12.9 0.729$0.124 0.346$0.395$0.022 "0.040$0.036$0.002

FIG. 9. d̄(x)/ ū(x) versus x shown with statistical and system-

atic uncertainties. The combined result from all three mass settings

is shown with various parametrizations. The E866 data and the

parametrizations are at Q2!54 GeV2/c2. The NA51 data point is
also shown.

FIG. 10. d̄" ū as a function of x shown with statistical and

systematic uncertainties. The E866 results, scaled to fixed Q2

!54 GeV2/c2, are shown as the circles. Results from HERMES

(%Q2&!2.3 GeV2/c2) are shown as squares. The error bars on the
E866 data points represent the statistical uncertainty. The inner er-

ror bars on the HERMES data points represent the statistical uncer-

tainty while the outer error bars represent the statistical and system-

atic uncertainty added in quadrature.
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reviews !49,50" provide a detailed survey of the literature.
Most calculations include contributions from #N and #$

configurations. g#NN and g#N$ are the well known pion-

nucleon and pion-delta coupling constants, so the primary

difference among the various calculations is the treatment of

the #NN and #N$ vertex form factors. As an example, Fig.

15 compares the present determination of d̄(x)! ū(x) to a

pion-cloud-model calculation !51", which followed a proce-
dure detailed by Kumano !52". In this calculation, dipole
form factors were used, with %"1.0 GeV for the #NN ver-
tex and %"0.8 GeV for the #N$ vertex. This calculation is

typical of many of this type, in that the probability of finding

the nucleon in a #N configuration is approximately twice

that of finding it in the #$ configuration !53,54". However, a
recent calculation by Nikolaev et al. !55", also shown in Fig.
15, calls this into question. After isolating the contribution to

inclusive particle production from Reggeon exchange, they

conclude that the #N$ vertex should be substantially softer

than previously believed, significantly reducing the probabil-

ity of finding the nucleon in a #$ configuration. It adopts

Gaussian form factors with cutoff parameters of 1 GeV!2

for the #NN vertex and 2 GeV!2 for the #N$ vertex. This

calculation predicts that the #N component of the nucleon is
slightly more probable than in Ref. !51" and the #$ compo-

nent is very small. Thus, while it provides very good agree-

ment with the E866 results for x#0.05, it contains signifi-
cantly more singular behavior as x→0. Overall, it predicts

that

!
0

1

! d̄&x '! ū&x '"dx"0.177. &22'

While the pion-cloud calculations above give a good de-

scription of the measured d̄(x)! ū(x), they are not able to

predict d̄(x)/ ū(x) since neither one attempts to describe the

entire light antiquark sea. Rather, they assume that an addi-

tional symmetric contribution exists due to gluon splitting to

bring the d̄/ ū ratio down to the measured value. These mod-

els do however indicate that pions make up a large part of the

sea where the asymmetry is greatest. In contrast, Alberg et

al. !56" have investigated whether or not the entire light an-
tiquark sea might be understood in a meson-cloud picture.

They find that, by considering #N and (N contributions,

they can fit d̄(x)! ū(x) and simultaneously obtain a reason-

able description of d̄/ ū at x$0.25. They also speculate that
the addition of #$ , )N and *N terms would preserve the fit
to d̄! ū , because of a cancellation between the #$ and )N
effects, and further improve the agreement for d̄/ ū .

A different approach to the d̄/ ū asymmetry, based on chi-

ral perturbation theory, has been proposed by Eichten et al.

!57". Within their model, the asymmetry arises from the cou-
pling of constituent quarks to Goldstone bosons, such as u

→d#% and d→u#!. The excess of d̄ over ū is then simply

due to the additional valence u quark in the proton. Figure 15

includes the result of such a calculation, based on a calcula-

tion of d̄(x)! ū(x) at Q0"0.5 GeV/c by Szczurek et al.

!58", and evolved to Q2"54 GeV2/c2. It clearly predicts
too soft an asymmetry. This arises because the model treats

the three valence quarks equivalently at the initial scale, with

each carrying 1/4 of the nucleon momentum. &Gluons carry
the remaining 1/4.' The d̄/ ū ratio is then fixed by Clebsch-
Gordan coefficients to be 11/7 for all x at Q0. With this input,

QCD evolution requires d̄/ ū+11/7, independent of x and Q.
Hence, unlike the meson-baryon models, this model under-

predicts d̄/ ū over much of the measured x range. E866 re-

sults suggest that additional correlations between the chiral

constituents of the nucleon need to be taken into account.

The chiral quark-soliton model has been used by Pobylitsa et

al. !59" to calculate d̄(x)! ū(x) in the large-Nc limit. Figure

15 shows that this model reproduces the measured d̄(x)

! ū(x) values well for x#0.08, but it overestimates the
asymmetry at small x.

The spin and flavor structure of the nucleon sea have been

investigated in the instanton model by Dorokhov and

Kochelev !60". They derive expressions for the x dependence
of the instanton-induced sea that are appropriate for very

large and very small x. They then combine the two

asymptotic forms to obtain an ad hoc expression for all x,

d̄ I&x '! ū I&x '"1.5A
&1!x '7

x ln2x
, &23'

where A is an arbitrary constant which they chose to repro-

duce early NMC results. This form gives a poor description

FIG. 15. Comparison of the measured d̄(x)! ū(x) at Q2

"54 GeV2/c2 to predictions of several models of the nucleon sea.
The solid and short-dash curves show pion-cloud calculations by

Peng et al. and Nikolaev et al., respectively. The dotted curve

shows the chiral perturbation theory calculation of Szczurek et al.,

while the dot-dash curve shows the chiral quark-soliton calculation

of Pobylitsa et al. The long-dash curve shows the instanton model

prediction of Dorokhov and Kochelev.
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∫ 1

0

dx (d̄(x) − ū(x)) = 0.118 ± 0.012

Towell et al., Phys. Rev. D 64 (2001) 052002



p → π
+

n → p

some of the time the proton             
π

+

(Heisenberg Uncertainty Principle)
 looks like a neutron &

ZN
2 Z∆

2

ZNN
1,U/P Z∆∆

1,U/P ZN∆
1,P Z∆N

1,P

ZNWT
1,P Z∆WT

1,P Ztad
1,U/P

FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN

1,U + Z∆∆
1,U + Ztad

1,U , (18a)

Z−1
∆q = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P + Ztad

1,P + ZNWT
1,P + Z∆WT

1,P , (18b)

Z−1
δq = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P +

1

2
Ztad

1,P +
1

2
ZNWT

1,P +
1

2
Z∆WT

1,P . (18c)

The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized

16

π
+

np p

Pion cloud

d̄ > ū !
Thomas, Phys. Lett. 126B (1983) 97

at the quark level

uud → (udd)(d̄u) → uud

Flavor asymmetry of proton sea



WM, Speth, Thomas, PRD59 (1998) 014033

tributions do not contradict other observables, such as the

total d̄! ū distribution, which should serve as an absolute

upper limit on the strength of the form factor !6". In Fig. 8#a$
we show the contributions to the sum x( d̄! ū) from the %N
and %& components with '%N"1.5 GeV and '%&
"1.3 GeV, compared with the CTEQ4 !15" and MRS98
!16" parametrizations. While at small x the calculated distri-
butions lie safely below the parametrization #the difference is
made up by the perturbatively generated g→qq̄ antiquark

distributions$, at large x the pion cloud already saturates the
total sea with these cut-offs—although one should add a cau-

tionary note that the antiquark distribution at large x is not

determined very precisely. For softer combinations of form

factors, namely '%N"1 GeV, '%&"1.3 GeV and '%N

"'%&"1 GeV, the total non-perturbative antiquark sea in
Fig. 8#b$ is below the empirical parametrizations in both

cases.

Therefore the only way to obtain a smaller d̄ excess at

large x and still be consistent with the total antiquark distri-

bution is to reduce the %N component, having a cut-off

smaller than for the %N& vertex. It was argued in Ref. !17"
that the %N& form factor should be softer than the %NN ,
based on the observation that the M1 transition form factor

was softer for (N& than for (NN . However, there is no
clear connection between these form factors, and hence no

compelling reason why the %N& form factor cannot be

harder than that for %NN . Indeed, a comparison of the axial
form factors for the nucleon and for the N–& transition

strongly favor an N–& axial form factor that is significantly

harder than that of the nucleon. In fact, the former is best fit

by a 1.3 GeV dipole, while the latter by a 1.02 GeV dipole

parametrization !42". Within the framework of PCAC these
form factors are directly related to the corresponding form

factors for pion emission or absorption !43".
In Fig. 9 we show the difference and ratio of the d̄ and ū

distributions calculated with the softer %NN form factor,

'%N"1 GeV, and '%&"1.3 GeV. The excess at large x
now is largely canceled by the %&. However, the smaller %N
contribution means that the asymmetry is underestimated in

the intermediate x range, x#0.2.

FIG. 6. %N and %& momentum distribution functions, with di-

pole form factor cut-offs '%N"1 GeV and '%&"1.3 GeV.

FIG. 7. Contributions from the %N and %& components

#dashed$ and the combined effect #solid$ to the #a$ d̄$ ū difference

and #b$ d̄/ ū ratio. The cut-off masses are '%N"1.5 GeV and

'%&"1.3 GeV.

FIG. 8. Total x( d̄! ū) distribution #a$ from the %N and %&
components #dashed$, with '%N"1.5 GeV, '%&"1.3 GeV, and
the total #solid$, #b$ the total contribution for '%N"1.5 GeV,
'%&"1.3 GeV #largest curve$, '%N"1 GeV, '%&"1.3 GeV
#middle$, and '%N"'%&"1 GeV #smallest$. The theoretical

curves are compared with the CTEQ4 !15" and MRS98 !16" global
parametrizations #dotted$.
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In Fig. 9 we show the difference and ratio of the d̄ and ū

distributions calculated with the softer %NN form factor,
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now is largely canceled by the %&. However, the smaller %N
contribution means that the asymmetry is underestimated in

the intermediate x range, x#0.2.
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#middle$, and '%N"'%&"1 GeV #smallest$. The theoretical

curves are compared with the CTEQ4 !15" and MRS98 !16" global
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difficult to understand downturn at large x

p(uud) → π−(dū) + ∆++(uuu)

⇒ ū > d̄



perturbative effects small

 Ross, Sachrajda, Nucl. Phys. B149 (1979) 497 
Steffens, Thomas, Phys. Rev. 55 (1997) 900

nonperturbative ??

Pauli Exclusion Principle

Flavor asymmetry of proton sea

since proton has more valence u than d 
uūdd̄easier to create       than 

Field, Feynman, Phys. Rev. D15 (1977) 2590

explicit calculations of antisymmetrization
g → uū g → dd̄ effects in               and



Flavor asymmetry in SIDIS

Levelt, Mulders, Schreiber
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Semi-inclusive ratio

R(x, z) =
σπ

+
+π

−

p
− σπ

+
+π

−

n

σπ+
−π−

p − σπ+
−π−

n

=
3

5

(u − d) − (d̄ − ū)

uv − dv

(1 + D̄/D)

(1 − D̄/D)

sensitive to d̄ − ū

nuclear smearing
in d not significant
for x < 0.4

FIGURES

FIG. 1. Ratio of the antiquark distribution in a nucleon bound in the deuteron to that in the

free nucleon, for q̄ ∼ (1 − x)n, with n = 5, 7 and 10.

FIG. 2. The x dependence of the d̄/ū ratio from the E866 [1] (filled circles) and NA51 [3] (open
circle) experiments, compared with the CTEQ4 [15] and MRS98 [16] parameterizations. Note that
the MRS98 parameterization included the E866 data in their fits, while CTEQ4 predates the

experiment.

15

q̄ ∼ (1 − x)n



Flavor asymmetry in SIDIS
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independent test of Gottfried sum rule 
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relative to the the favored pion fragmentation func- 

tions. This is sufficient because we only have to deal 

with ratios o f  fragmentation functions in Q (z).  

Using these parametrizations we have for QCh(z) 

0 .50z2+3 .1z+7 .6  

zQCh(z) =3Scz 3.2z2+ 1 l z + 0 . 8 4  " 
(27) 

Accurate data for leptoproduction o f  hadrons have 

been obtained by the EM collaboration [ 8,15 ]. The 

analysis o f  charged pion and kaon production has 

been used for an independent measurement of  va- 

lence quark distributions [ 8 ]. A determination of  the 

Gronau -Ravnda l -Za rmi  sum rule using the differ- 

ence o f  positively and negatively charged hadrons in 

leptoproduction is in agreement with the theoretical 

result [ 15 ]. 

We have attempted to use the semi-inclusive data, 

binned in x and z, from ref. [ 15 ] in order to estimate 

the experimental value of  Q(z). The experimental 

measurements o f  (aN) -~ da~/dz were multiplied 

with F~ (x) in order to obtain N Nh. For Ft (x) we have 

used the H M R S ( B )  parametrization (at Q 2 = 4  

GeV 2) [ 16 ]. Actually the results are not very sensi- 

tive to the parametrization o f  quark distributions 

used, nor are they particularly sensitive to the precise 

form of the fragmentation functions into hadrons 

other than pions. We have assumed that the quoted 

experimental errors are uncorrelated. This may lead 

to an overestimate of  the final error in Q(z). The data 

together with our prediction (27) are plotted in fig. 

1. It is clear that the comparison with data is consis- 

tent with both SG=0.24  and S~=-~. It is, however, 

quite possible that a detailed analysis of  the experi- 

mental errors will lead to a more definite conclusion 

if systematic errors cancel in the ratio (13).  

We like to point out another consequence of  an iso- 

spin asymmetric sea quark distribution. As we have 

shown above the GSR plays a role in semi-inclusive 

scattering. However, the fragmentation functions o f  

ref. [8] are extracted from semi-inclusive data using 

the quark-par ton model and a symmetric sea distri- 

bution. We conclude that the new results on the GSR 

could influence the fragmentation functions as pre- 

sented in ref. [ 8 ]. 
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Fig. 1. 2Qch(z) for charged hadron production. The data have 
been derived from rcf. [ 15 ], while the curves correspond to dif- 
ferent values of SG. The top line corresponds to a value for the 
Gottfried sum rule of ] while the hatched area corresponds to the 
result from ref. [ 1 ]. Note that the parametrizations of the frag- 
mentation functions are only valid for z> 0.3. The experimental 
uncertainties have been assumed to be statistical. 

3. Conclusions 

Leptoproduct ion of  hadrons in deep inelastic elec- 

tron or muon scattering can be used as a check of  the 

isospin distribution in the proton. The results de- 

pend on the ratio of  favored to unfavored fragmen- 

tation functions. I f  this ratio vanishes smoothly for 

z ~  1, e.g. proportional to 1 - z [ 13,14 ], it is possible 

to determine the GSR from pion a n d / o r  kaon pro- 

duction cross sections by extrapolating the experi- 

mental result to z -  1. Comparison with present data 

is not yet conclusive. A rigorous examination of  the 

systematic errors in the experimental data as well as 

semi-inclusive experiments with higher statistics for 

z >  0.5 could improve this. We also point out that the 

present accurate result on the GSR could influence 

the extraction of  the fragmentation functions from 

semi-inclusive experiments. 
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Polarization asymmetry of proton sea

Neither pQCD nor meson cloud contribute
significantly to ∆d̄ − ∆ū

But  Pauli Exclusion Principle (antisymmetrization)

∆ū − ∆d̄ ≈

5

3
(d̄ − ū)

Schreiber, Signal, Thomas, Phys. Rev. D44, 2653 (1991)
Steffens, Phys. Rev. C55, 900 (1997)

Disentangle origin of unpolarized and polarized 
asymmetries in sea via semi-inclusive DIS



Polarization asymmetry of proton sea

Extract                 either via “purity” method
or directly via               asymmetries on p, n

∆d̄ − ∆ū

π
+

+ π
−

∆R
π

+
+π

−

=
∆σπ

+
+π

−

p
− ∆σπ

+
+π

−

n

σ
π++π−

p − σ
π++π−

n

=
(∆u + ∆ū) − (∆d + ∆d̄)

(u + ū) − (d + d̄)



Polarization asymmetry of proton sea

current data cannot distinguish between
zero and small nonzero ∆ū − ∆d̄

P. Liebing: Polarized Quark Distributions 403

Fig. 2. HERMES results on the semi-inclusive asymmetries on deuterium for identified charged pions (compared to all charged
hadrons from SMC [9] in th x-range of HERMES), and for identified charged kaons. The error bands represent the systematic
uncertainties

Fig. 3. The x-weighted polarized parton distributions x∆q(x),
extracted from HERMES semi-inclusive asymmetries on polar-
ized hydrogen and deuterium targets. The data are shown at
fixed Q2 = 2.5 GeV2. The curves show results from LO QCD
fits to previously published inclusive data from [11] (dashed,
‘standard scenar io’ ) and [12] (dot-dashed, ‘scenar io 1’ ). The
light shaded error band shows the systematic uncertainties aris-
ing from uncertainties of the fragmentation model, the dark
shaded area shows the ones due to the uncertainties of the ex-
perimental asymmetries
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Fig. 4. The x-weighted difference of the light sea helicity densi-
ties x(∆ū−∆d̄) at Q2 = 2.5 GeV2 as a function of x, compared
to a theoretical prediction from [13] (dashed curve with theo-
retical error band). The systematic error bands have the same
meaning as in Fig. 3
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12. J. Blümlein and H. Böttcher: Nucl. Phys. B 636, 225

(2002)
13. B. Dressler et al.: Eur. Phys. J. C 14, 147 (2000)

Airapetian et al. [HERMES], Phys. Rev. Lett. 92 (2004) 012005

chiral soliton model
Dressler, Goeke, Polyakov, Weiss, 
Eur. Phys. J. C14 (2000) 147



Polarized strangeness

Extract          from combination of inclusive and
semi-inclusive spin-dependent asymmetries & cross sections

∆s

s
=

A+
1p

A+
1n

Fn−p

1 + gp

1A+
1n

− gn

1 A+
1p

gp−n

1 − (A+
1p

F p

1 − A+
1n

Fn

1 )

Christova, Leader
PLB 468 (1999) 299A

+
1N

=
∆σ

π
+

+π
−

N

σ
π++π−

N

∆s/s

semi-inclusive
asymmetry

∆σπ
+

+π
−

p
(x, z)

σπ++π−

p (x, z) − 2D(z)
=

∆s(x)/s(x) − Ap

1(x)

1 − Ap

1(x) · ∆s(x)/s(x)

Alternatively, obtain          ratio via ∆s/s

Frankfurt et al.,
PLB 230 (1989) 141



Outlook

unique opportunity at 12 GeV for determining
spin & flavor quark distributions in nucleon via SIDIS

first need to establish factorization empirically

       and            ratio at large xd/u ∆d/d

spin and flavor asymmetries           and           d̄ − ū ∆d̄ − ∆ū

and polarized strangeness at small x

caution in use of p, “n” (d) targets

eliminate D(z) dependence

nuclear corrections at large x (use BONUS for n target?)


