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Nuclear Physics Program ($454.1 million)
This is an $87 million increase over FY 2006.  This funding supports research to provide
new insights and knowledge of the structure and interaction of atomic nuclei and the
primary forces of particles of nature in nuclear matter.  The funding increase restores
operations at both the Thomas Jefferson National Accelerator Facility (TJNAF) and the
Relativistic Heavy Ion Collider (RHIC).  In addition, new funding is requested for a
TJNAF power upgrade and a new injector for RHIC.

High Energy Physics Program ($775.1 million)
This is a $58.4 million increase over FY 2006.  This funding for grants and full experimental 
facility operations will be used to further explore basic research to explore the laws of nature  
governing the most basic constituents of matter and the forces binding them.  These are 
fundamental principles at the heart of physics and the physical sciences.  Project engineering 
and design funding of $10.3 million is requested for the new Electron Neutrino Appearance 
project.

Thursday, February 2, 2006
U.S. Department of Energy Requests $4.1 Billion Investment

As Part of the American Competitiveness Initiative

“puts DOE's Office of Science on the path to doubling its budget by 2016”



1.  
Introduction

- QCD and the strong nuclear force
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Building Blocks of the Universe

• Each quark

comes in 3

“colours”:

red, green

and blue.

• Leptons do

not carry

color charge.

        These are the building blocks of matter!



Operated by the Southeastern Universities Research Association for the U.S. Department of  Energy

 Thomas Jefferson National Accelerator Facility Page 3

Force Carriers of the Universe

• The massless photon mediates the long-range e.m. interactions.

• Gluons carry color and mediate the strong interaction.

• The very massive W-, W+, and Z0 bosons mediate the

 weak interaction
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Quantum Chromodynamics (QCD)

• Photons do not carry electric

charge.

• Gluons do carry colour

charge!

• Gluons can directly interact

with other gluons!

• This is new!

A red quark

emitting a

red-anti-blue

gluon to leave a

blue quark.

Quark-quark force grows WEAKER as quarks come close

               ´ “Asymptotic Freedom”
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Pentaquark Summary

•  Existence or otherwise is a CRUCIAL question in

 strong interaction physics

•  Wilczek, Jaffe: That we cannot say whether such

   such exotica exist or not shows HOW LITTLE WE

   UNDERSTAND NON-PERTURBATIVE QCD

•  Jefferson Lab

  is the ideal

  facility to

  definitively

  answer this

  question!

2004 Nobel Prize for discovery
of asymptotic freedom
(Gross, Politzer, Wilczek)

calculate observables using perturbation theory
as power series in small expansion parameter αs
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Pentaquark Summary

•  Existence or otherwise is a CRUCIAL question in

 strong interaction physics

•  Wilczek, Jaffe: That we cannot say whether such

   such exotica exist or not shows HOW LITTLE WE

   UNDERSTAND NON-PERTURBATIVE QCD

•  Jefferson Lab

  is the ideal

  facility to

  definitively

  answer this

  question!

BUT - only half of the story...
at low energy        confinement !

so cannot use perturbative expansionαs ∼ 1

here QCD said to be “nonperturbative”
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QCD and the Origin of Mass

HOW does the rest of the proton mass arise?
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QCD and the Origin of Mass

HOW does the rest of the proton mass arise?

u    +     u     +     d     =     proton

mass: 0.003 + 0.003 + 0.006 != 0.938 MeV
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QCD: Unsolved in  Nonperturbative Regime

• 2004 Nobel Prize awarded for

       “asymptotic freedom”

• BUT in nonperturbative regime QCD is still unsolved

• One of the top 10 challenges for physics!

• Is it right/complete?

• Do glueballs, exotics and other apparent predictions 

   of QCD in this regime agree with experiment?

   JLab at 12 GeV is uniquely positioned to answer!

The Nobel Prize in Physics

2004

Gross, Politzer, Wilczek

central to answering these questions is the need
to understand how quarks form hadrons



Looking for quarks in the nucleon 
is like looking for the Mafia in Sicily -

everybody knows they’re there,
but it’s hard to find the evidence!

Anonymous
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How to probe the structure of hadrons?
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collide hadrons
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probe with leptons



1.  
Introduction
- electron scattering



Electron scattering
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Electron Scattering Provides an Ideal
Microscope for Nuclear Physics

221241ˆ iiqxeSu(k)u(k)fJ(x)dxqfiÙeµµ!"#=$

• Electrons are point-like

• The interaction (QED) is well-known

• The interaction is weak

• Vary q to map out Fourier Transforms

of charge and current densities:
     ! " 2#/q      (1 fm $ 1 GeV/c)

224-Momentum TransferQq=!=

  CEBAF’s e and CW beams dramatically enhance
    the power of electron scattering
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Electron Scattering Provides an Ideal
Microscope for Nuclear Physics

221241ˆ iiqxeSu(k)u(k)fJ(x)dxqfiÙeµµ!"#=$

• Electrons are point-like

• The interaction (QED) is well-known

• The interaction is weak

• Vary q to map out Fourier Transforms

of charge and current densities:
     ! " 2#/q      (1 fm $ 1 GeV/c)

224-Momentum TransferQq=!=

  CEBAF’s e and CW beams dramatically enhance
    the power of electron scattering

N

e
e
′

X

γ
∗



Continuous Electron Beam Accelerator Facility
(CEBAF)

at Jefferson Lab (JLab)



Continuous Electron Beam Accelerator Facility
(CEBAF)

at Jefferson Lab (JLab)

0.6 GeV electrons / linac

x 10         6 GeV

Hall A
Hall B Hall C



Experimental Halls

Hall A

Hall C

Hall B

Hall D



Experimental Halls

Hall A

Hall C

high luminosity

very high precision
measurements

high Q   form factors,
parity-violating e scattering,
precision structure functions,
...

2

> 10
38

cm
−2

s
−1



Experimental Halls

Hall B

large acceptance
lower luminosity
∼ 10

35
cm

−2
s
−1

collect all data “at once”

N   spectroscopy
(multi-hadron final states),
structure function moments,
...

*

CLAS
(CEBAF Large Acceptance Spectrometer)



Experimental Halls

Hall D

proposed new Hall
as part of 12 GeV upgrade

photon beam

exotic meson spectroscopy
(GlueX Collaboration)
“origins of confinement”

acceptance4π
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heavyheavy
nucleinucleifewfew

bodybody

quarksquarks
gluonsgluons

vacuumvacuum

JLab Central to all of Nuclear Science 

Nature of Confinement
…n-stars

Precise 

few-nucleon 

calculations

Correlations
n-radii: N ! Z

Hypernuclei

Hadrons in- medium

Effective NN (+ HN) force

Quark-Gluon Structure

Of Nucleons and Nuclei

Exotic mesons

and baryons



Electron scattering

X

NN

*!*!

N

e

e
′

X

γ
∗

one-photon exchange approximation



X

NN

*!*!

d2σ

dΩdE′
=

4α2E′2 cos2 θ

2

Q4

(
2 tan2

θ

2

F1

M
+

F2

ν

)

“structure functions”F1 , F2

contain all information about structure of nucleon

functions of             in generalx, Q2

Electron scattering

ν = E − E
′

x =
Q2

2Mν}
Bjorken
scaling
variableQ2

= !q 2
− ν2

= 4EE′
sin

2
θ

2



X

NN

*!*!d
2σ

dΩdE′
∼ L

µν
Wµν

leptonic tensor

X

NN

*!*!

Electron scattering



in general,              transition matrix element very complicated N → X

at large      and large     (“Bjorken limit”) things simplify ...Q2
ν

correctionsM2/Q2



2

2

Parton model: F2(x, Q2) = x
∑

q

e2

q
q(x, Q2)

probability to find quark type “q” in nucleon,
carrying (light-cone) momentum fraction x =

p
+
q

p
+
N

=
p
0
q + p

z
q

p0
N + pz

N



(τ = 2)
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τ = 2

single quark
scattering

τ > 2

qq and qg
correlations

Higher twists
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2.
Quark distributions



Parton distributions functions (PDFs)
(leading twist)

PDFs provide basic information on structure
of bound states in QCD

momentum, flavour, spin ...  distributions
of quarks and gluons in hadrons

integrals of PDFs (“moments”) test fundamental
sum rules (Adler, Bjorken ...)

relate high-energy observables to low-energy
hadron properties



Parton distributions functions (PDFs)
(leading twist)

needed to understand backgrounds in searches
for ‘‘new physics’’ beyond the Standard Model
in high-energy colliders

e.g. neutrino oscillations

provide input into nuclear physics and
astrophysics calculations

e.g. relativistic heavy ion collisions



N = 229. A closer inspection of Fig. 3 does not suggest any systematic disagreement. To assess

the significance of this 2σ effect, we examine in detail the systematic shifts obtained in the fit in

Appendix B.3. We find that they are all quite reasonable, thus giving us confidence that the fit is

indeed of good quality.

The new PDF’s also fit the older fixed-target DIS experiments well—similar to previous

global analyses. Figure 4 shows the comparison to the fixed-target neutral current experiments

BCDMS and NMC. Because we are incorporating the fully correlated systematic errors, the data

sets used for these experiments are those obtained at each measured incoming energy, rather than

the “combined” data sets that are usually shown. This more detailed and quantitative comparison

is important when we try to evaluate the statistical significance of the fits in our uncertainty analysis

(cf. Appendix B).

Fig. 4 : Comparison of the CTEQ6M fit with the BCDMS [19] and NMC [21] data on µp DIS.

Same format as Fig. 2. (The offset for the kth Q value in (b) is 0.2k.)

The χ2 per data point for these data sets are 1.11 (378/339) for BCDMS and 1.52 (305/201) for

NMC. The fit to the BCDMS data is clearly excellent, both by inspection of Fig. 4a and by the

normal χ2 test. For the NMC data, Fig. 4b shows rather good overall agreement, but with some

notable large fluctuations away from the smooth theory curves. The most noticeable fluctuations—

points with almost the same (x,Q) values—are from data sets taken at different incoming energies.5

This is reflected in the χ2 value which is quite a bit larger than expected for a normal probability

distribution. This raises two issues: (i) Is the fit acceptable or unacceptable? (ii) Can the fit be
5These fluctuations are smoothed out by re-binning and other measures in the combined data set [21], which is

not used here.

10

Lai et al., Eur. Phys. J. C12 (2000) 375

Structure function data



Fig. 2 : Comparison of the CTEQ6M fit to the H1 data [14] in separate x bins. The data points

include the estimated corrections for systematic errors. The error bars contain statistical only.

Fig. 3 : Comparison of the CTEQ6M fit to the ZEUS data [15]. Same format as Fig. 2.

The χ2 value is 263 for 229 data points. This is 2σ (σ =
√

2N = 21) away from the ideal value of

9

Lai et al., Eur. Phys. J. C12 (2000) 375

Structure function data



parameterized using some functional form, e.g.

xq(x, Q2) = A0 xA1(1 − x)A2 eA3x(1 + eA4x)A5

10
−6

< x < 1

1 < Q2 < 10
8

GeV
2

determined over several orders of magnitude
in x and Q 2

Parton distributions functions (PDFs)
(leading twist)

PDFs extracted in global analyses of structure function 
data from electron, muon & neutrino scattering
(also from Drell-Yan & W-boson production in hadronic collisions)
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3.1 The New Standard PDF Sets

The standard set of parton distributions in the MS scheme, referred to as CTEQ6M, provides an

excellent global fit to the data sets listed in Sec. 2.1. An overall view of these PDF’s is shown in

Fig. 1, at two scales Q = 2 and 100 GeV. The overall χ2 for the CTEQ6M fit is 1954 for 1811

data points. The parameters for this fit and the individual χ2 values for the data sets are given in

Appendix A. In the next two subsections, we discuss the comparison of this fit to the data sets, and

then describe the new features of the parton distributions themselves. Quantitative comparison of

data and fit is studied in more depth in Appendix B

Fig. 1 : Overview of the CTEQ6M parton distribution functions at Q = 2 and 100 GeV.

3.1.1 Comparison with Data

The fact that correlated systematic errors are now fully included in the fitting procedure allows a

more detailed study of the quality of fits than was possible in the past. We can take the correlated

systematic errors into account explicitly when comparing data and theory, by using the procedure

discussed in Sec. B.2 of Appendix B. In particular, based on the formula for the extended χ2

function expressed in the simple form Eq. (11), we obtain a precise graphical representation of the

quality of the fit by superimposing the theory curves on the shifted data points {D̂i} containing

the fitted systematic errors. The remaining errors are purely uncorrelated, hence are properly

represented by error bars. We use this method to present the results of our fits whenever possible.

Figure 2 shows the comparison of the CTEQ6M fit to the latest data of the H1 experiment

[14]. The extensive data set is divided into two plots: (a) for x < 0.01, and (b) for x > 0.01. In

order to keep the various x bins separated, the values of F2 on the plot have been offset vertically

for the kth bin according to the formula: ordinate = F2(x,Q2) + 0.15 k. The excellent fit seen

in the figure is supported by a χ2 value of 228 for 230 data points. Similarly, Fig. 3 shows the

comparison to the latest data from ZEUS [15]. One again sees very good overall agreement.

8

Lai et al., Eur. Phys. J. C12 (2000) 375

Virtual sea of      pairs and gluons dominate small-x regionqq̄



Botje, Eur. Phys. J. C 14 (2000) 285



2.
Quark distributions

- sea quarks



Sea quarks

Because sea quarks & antiquarks are produced
“radiatively” (by             radiation) g → qq̄

expect flavour-symmetric sea
IF quark masses are the same

e.g.  since ms ! md =⇒ d̄(x) > s̄(x)

BUT  since                            expect mu ≈ md =⇒ d̄(x) ≈ ū(x)



Fermilab E866 Drell-Yan experiment

d2σ

dxbdxt

=
4πα2

9Q2

∑

q

e2

q (q(xb)q̄(xt) + q̄(xb)q(xt))

Drell, Yan, Phys. Rev. Lett. 25 (1970) 316 

annihilation in 
hadron-hadron collisions

qq̄

qq̄ → γ
∗
→ µ

+
µ
−

σpd

2σpp
≈

1

2

(
1 +

d̄(xt)

ū(xt)

)For xb ! xt

“beam’’

“target”



proton. An extrapolation was made to account for the unmea-

sured region at low x. To extrapolate this integral from the

measured region, which is shown in Fig. 11, to the unmea-

sured region, MRST and CTEQ5M were used to estimate the

contribution for 0!x!0.015 and it was assumed that the
contribution for x"0.35 was negligible. The uncertainty

from this extrapolation was estimated to be 0.0041 which is

half the difference between the contributions as given by

MRST and CTEQ5M.

VII. CHARGE SYMMETRY AND SHADOWING

The analysis presented here assumes that the parton dis-

tributions of the nucleon obey charge symmetry: i.e., up(x)

!dn(x), d̄ p(x)! ūn(x), etc. This is consistent with the treat-

ment in previous experiments #1–4$ and global fits #13–15$.
The possibility that charge symmetry could be significantly

TABLE XI. The cross section ratio, d̄/ ū and d̄" ū values determined from the combination of all data sets for each x2 bin. The first

uncertainty is statistical and the second uncertainty is systematic. The quantities extracted from the cross section ratio are given for Q2

!54 GeV2/c2. The cross section ratio has a systematic uncertainty of less than 1% as shown in Table X. The average values for kinematic

variables are also shown.

x2 range %pT& %M'#'"&
min-max %x2& %xF& (GeV/c) (GeV/c2) (pd/2(pp

d̄/ ū d̄" ū

0.015–0.030 0.026 0.534 1.004 4.6 1.038$0.022 1.085$0.050$0.017 0.862$0.489$0.167

0.030–0.045 0.038 0.415 1.045 5.1 1.056$0.011 1.140$0.027$0.018 0.779$0.142$0.096

0.045–0.060 0.052 0.356 1.076 5.6 1.081$0.010 1.215$0.026$0.020 0.711$0.077$0.060

0.060–0.075 0.067 0.326 1.103 6.2 1.086$0.011 1.249$0.028$0.021 0.538$0.055$0.041

0.075–0.090 0.082 0.296 1.122 6.8 1.118$0.013 1.355$0.036$0.023 0.512$0.044$0.028

0.090–0.105 0.097 0.261 1.141 7.2 1.116$0.015 1.385$0.046$0.025 0.400$0.040$0.022

0.105–0.120 0.112 0.227 1.156 7.5 1.115$0.018 1.419$0.060$0.027 0.321$0.038$0.017

0.120–0.135 0.127 0.199 1.168 7.8 1.161$0.023 1.630$0.085$0.031 0.338$0.034$0.013

0.135–0.150 0.142 0.182 1.161 8.2 1.132$0.027 1.625$0.110$0.033 0.259$0.035$0.010

0.150–0.175 0.161 0.164 1.156 8.7 1.124$0.027 1.585$0.111$0.032 0.180$0.027$0.008

0.175–0.200 0.186 0.146 1.146 9.5 1.144$0.038 1.709$0.158$0.036 0.142$0.023$0.005

0.200–0.225 0.211 0.133 1.146 10.3 1.091$0.047 1.560$0.194$0.034 0.081$0.022$0.004

0.225–0.250 0.236 0.120 1.178 11.1 1.039$0.063 1.419$0.264$0.036 0.045$0.023$0.003

0.250–0.300 0.269 0.097 1.177 12.0 0.935$0.067 1.082$0.256$0.032 0.006$0.019$0.002

0.300–0.350 0.315 0.046 1.078 12.9 0.729$0.124 0.346$0.395$0.022 "0.040$0.036$0.002

FIG. 9. d̄(x)/ ū(x) versus x shown with statistical and system-

atic uncertainties. The combined result from all three mass settings

is shown with various parametrizations. The E866 data and the

parametrizations are at Q2!54 GeV2/c2. The NA51 data point is
also shown.

FIG. 10. d̄" ū as a function of x shown with statistical and

systematic uncertainties. The E866 results, scaled to fixed Q2

!54 GeV2/c2, are shown as the circles. Results from HERMES

(%Q2&!2.3 GeV2/c2) are shown as squares. The error bars on the
E866 data points represent the statistical uncertainty. The inner er-

ror bars on the HERMES data points represent the statistical uncer-

tainty while the outer error bars represent the statistical and system-

atic uncertainty added in quadrature.

R. S. TOWELL et al. PHYSICAL REVIEW D 64 052002

052002-10

Towell et al., Phys. Rev. D 64 (2001) 052002

∫ 1

0

dx (d̄(x) − ū(x)) = 0.118 ± 0.012

Sea quarks

Large           asymmetry in proton observed in DIS (NMC) 
and Drell-Yan (CERN NA51 and FNAL E866) experiments  

d̄ − ū

why is d̄ ! ū ?



Sea quarks

Pauli Exclusion Principle



and five for the insertion of a u quark. The possible graphs

would be the analog of !b" and !c" from Fig. 1 for a uū in the
sea and the analog of graph !c" from Fig. 2 for a dd̄ in the

sea. Again, we would have more uū pairs than dd̄ pairs and

now it is clear why that happens: This is because there is one

free valence u quark that can be exchanged with the sea and

there is no such free valence d quark to be exchanged !in the

case of a dd̄ sea". The opposite situation happens when the
u quark emits the gluon such that the sum of all diagrams,

gluon emission from u and d valence quarks, renders an

equal probability for a uū and dd̄ pair creation, as expected

in a proton containing only one quark of each flavor. The

lesson is that we cannot treat the gluon emission in the pro-

ton from different flavors separately, and expect the Pauli

FIG. 1. Graphs containing uū pairs in the case where the valence quark emitting the virtual gluon goes to an excited state !i.e.,
s!g ,v#g).

FIG. 2. Graphs containing dd̄ pairs, in the case where the valence quark emitting the virtual gluon goes to an excited state !i.e.,
s!g ,v#g).
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uū

dd̄

Steffens, Thomas, Phys. Rev. 55 (1997) 900



since proton has more valence u than d 
uūdd̄easier to create       than 

Field, Feynman, Phys. Rev. D15 (1977) 2590

Sea quarks

Pauli Exclusion Principle

explicit calculations of antisymmetrization
g → uū g → dd̄ effects in               and

 Ross, Sachrajda, Nucl. Phys. B149 (1979) 497 
Steffens, Thomas, Phys. Rev. 55 (1997) 900

ū > d̄

asymmetry tiny





p → π
+

n → p

some of the time the proton             
π

+

(Heisenberg Uncertainty Principle)
 looks like a neutron &

ZN
2 Z∆

2

ZNN
1,U/P Z∆∆

1,U/P ZN∆
1,P Z∆N

1,P

ZNWT
1,P Z∆WT

1,P Ztad
1,U/P

FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN

1,U + Z∆∆
1,U + Ztad

1,U , (18a)

Z−1
∆q = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P + Ztad

1,P + ZNWT
1,P + Z∆WT

1,P , (18b)

Z−1
δq = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P +

1

2
Ztad

1,P +
1

2
ZNWT

1,P +
1

2
Z∆WT

1,P . (18c)

The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized

16

π
+

np p

Pion cloud

Sea quarks

d̄ > ū !
Thomas, Phys. Lett. 126B (1983) 97

at the quark level

uud → (udd)(d̄u) → uud



tributions do not contradict other observables, such as the

total d̄! ū distribution, which should serve as an absolute

upper limit on the strength of the form factor !6". In Fig. 8#a$
we show the contributions to the sum x( d̄! ū) from the %N
and %& components with '%N"1.5 GeV and '%&
"1.3 GeV, compared with the CTEQ4 !15" and MRS98
!16" parametrizations. While at small x the calculated distri-
butions lie safely below the parametrization #the difference is
made up by the perturbatively generated g→qq̄ antiquark

distributions$, at large x the pion cloud already saturates the
total sea with these cut-offs—although one should add a cau-

tionary note that the antiquark distribution at large x is not

determined very precisely. For softer combinations of form

factors, namely '%N"1 GeV, '%&"1.3 GeV and '%N

"'%&"1 GeV, the total non-perturbative antiquark sea in
Fig. 8#b$ is below the empirical parametrizations in both

cases.

Therefore the only way to obtain a smaller d̄ excess at

large x and still be consistent with the total antiquark distri-

bution is to reduce the %N component, having a cut-off

smaller than for the %N& vertex. It was argued in Ref. !17"
that the %N& form factor should be softer than the %NN ,
based on the observation that the M1 transition form factor

was softer for (N& than for (NN . However, there is no
clear connection between these form factors, and hence no

compelling reason why the %N& form factor cannot be

harder than that for %NN . Indeed, a comparison of the axial
form factors for the nucleon and for the N–& transition

strongly favor an N–& axial form factor that is significantly

harder than that of the nucleon. In fact, the former is best fit

by a 1.3 GeV dipole, while the latter by a 1.02 GeV dipole

parametrization !42". Within the framework of PCAC these
form factors are directly related to the corresponding form

factors for pion emission or absorption !43".
In Fig. 9 we show the difference and ratio of the d̄ and ū

distributions calculated with the softer %NN form factor,

'%N"1 GeV, and '%&"1.3 GeV. The excess at large x
now is largely canceled by the %&. However, the smaller %N
contribution means that the asymmetry is underestimated in

the intermediate x range, x#0.2.

FIG. 6. %N and %& momentum distribution functions, with di-

pole form factor cut-offs '%N"1 GeV and '%&"1.3 GeV.

FIG. 7. Contributions from the %N and %& components

#dashed$ and the combined effect #solid$ to the #a$ d̄$ ū difference

and #b$ d̄/ ū ratio. The cut-off masses are '%N"1.5 GeV and

'%&"1.3 GeV.

FIG. 8. Total x( d̄! ū) distribution #a$ from the %N and %&
components #dashed$, with '%N"1.5 GeV, '%&"1.3 GeV, and
the total #solid$, #b$ the total contribution for '%N"1.5 GeV,
'%&"1.3 GeV #largest curve$, '%N"1 GeV, '%&"1.3 GeV
#middle$, and '%N"'%&"1 GeV #smallest$. The theoretical

curves are compared with the CTEQ4 !15" and MRS98 !16" global
parametrizations #dotted$.
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difficult to understand quantitatively large x behavior

JLab can significantly improve uncertainties at large x

p(uud) → π−(dū) + ∆++(uuu)

⇒ ū > d̄



!
" "#$ "#% "#& "#' "#( "#)

*+
!
,

-.
/

"

"#%

"#'

"#)

"#0

$

$#%

$#'

$#)

$#0

%

%#%

1234*5366*7*89:;<=></
)"*/3?@*AB>C*$$*D<E.=

FG72*H0))

FG72*HI")*89:;<=>B:J

(statistical uncertainties only)



Polarization asymmetry of proton sea
(aside...)

Neither gluon radiation nor pion cloud contribute to ∆d̄ − ∆ū

Pauli Exclusion Principle (antisymmetrization)

∆ū − ∆d̄ ≈

5

3
(d̄ − ū)

also contributes to d̄ − ū

Disentangle origin of unpolarized and polarized 
asymmetries in sea via semi-inclusive DIS
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Strange asymmetry

Sea quarks

can similarly be generated by nonperturbative 
kaon cloud

s != s̄

net number of strange quarks must be zero∫ 1

0

dx (s − s̄) = 0

Signal, Thomas, Phys. Lett. B 191, 205 (1987)

nnnnn-

Λ (uds)

K
+(us̄)

p (uud) p (uud)



Strange asymmetry

Sea quarks

WM, Malheiro, Phys. Lett. B451, 229 (1999)

FIGURES

FIG. 1. Strange axial charge of the proton as a function of the hadronic vertex function cut-off

mass, Λ. The solid line is the full result from Eq.(4), while the short-dashed is the uncorrected result
from Eq.(5). The shaded area represents the range for gS

A found in νp and ν̄p elastic scattering

[36], and the two long-dashed lines are the limits on ∆s from deep-inelastic scattering [37].

FIG. 2. Strange – antistrange quark difference in the nucleon, with M-dependent (solid) and

t-dependent (dashed) monopole form factors, each with a Λ = 1 GeV momentum cut-off (giving a
normalisation of 〈n〉KY ≈ 6%).

12

shape very sensitive
to details of 
interaction

KpΛ



Strange asymmetry

Sea quarks

4

shift of sin2 θW : without the CCFR data the strange sea asymmetry has the

required magnitude to reduce sin2 θW to 0.2222 ± 0.0018, and with all data

included sin2 θW = 0.2249±0.0017, which is now 1.35σ away from the Standard

Model fit value. Here the reduction is due to the neutron excess correction

which is larger in our case, but approximately half of this discrepancy can

be understood by taking into account the experimental cuts and cross talk

between NC and CC using the model described in [12]. However for a realistic

estimate a full MC study is required. Another relevant point is the parton

distribution uncertainty, which is found to be one order of magnitude larger

than the reported NuTeV value.

Since the [11] the NuTeV collaboration have re-evaluated this parton dis-

tribution error adjusting the value1 0.00005 to 0.0003 [13]. Note that the error

in the evaluation have been independently found and originally reported to the

NuTeV collaboration by S. Alekhin and S. Kulagin.
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Figure 2: The strange sea asymmetry (one sigma error band) as obtained with

the global fit including all data.

1These numbers replace the mistyped values contained in the DIS03 proceeding.

B. Portheault, hep-ph/0406226

2 Stefan Kretzer

Figure 1. Representative results of the CTEQ strangeness asymmetry analysis.

to quantify if the amount can be significant. The experimental signature of the
process (4) are opposite sign dimuons (the second muon stemming from the charm
decay) in an active target [2]; I will next give an overview of the corresponding
QCD calculations.

2 Neutrino-Production of Charm at NLO

Chromodynamic corrections to the inclusive charm production process in Eq. (4)
were first calculated more than 20 years ago [3], a re-calculation e.g. in [4] fixes typos
and provides modern MS conventions which are also identical to the ms → 0 limit
of the corresponding NLO corrections [5] in the ACOT scheme [6]. In order to meet
the real world experimental requirements of applying acceptance corrections to data
[2] taken with non-ideal detectors, differential NLO distributions were calculated
in [7] and [8] that provide the charm hadron (D meson) kinematics in terms of the
fragmentation z variable and rapidity η. The dσ/dxdydzdη code DISCO [8] exists
as an interface to the NuTeV MC event generator.

For detailed NLO results I have to refer the reader to the original articles listed
above. In this short write-up I have to restrict myself to an itemized summary:

(i) The NLO calculations all agree (some early discrepancies have been clarified).

(ii) For the fixed target kinematics under investigation, the NLO corrections to
the LO process are modest, no bigger than O(! 20%).

3 CTEQ Fit

Typical results of a recent CTEQ global data analysis [9] that includes the dimuon
data in [2] are shown in Fig. 1. An essential constraint on these fits is the sum rule∫

[s(x) − s(x)] dx = 0 , (5)

and a stable tendency of the fit is to realize the constraint through a change of sign
from negative to positive with increasing x, resulting in a positive second moment

S. Kretzer, hep-ph/0408287

shape from global fits also not well constrained
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Catani et al., hep-ph/0404240

can also be generated perturbatively by higher-order
(3-loop) gluon radiation

          can have significant impact on extraction of 
            from          data
s != s̄

sin
2
θW ν, ν̄

... though cannot predict shape
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Fig. 2. Charm structure function as a function of Q2 for
x = 0.05 and 0.2, evaluated according to the various schemes
discussed in the text. “IS” refers to the interpolating scheme of
(9), while “IS (massive g)” denotes the interpolating scheme
but with massless quark coefficient functions. The GRV pa-
rameterization [13] for the gluon is used

where the scaling variable ξ includes quark mass correc-
tions,

ξ =
1
2
x

(
1 +

√
1 +

4m2
c

Q2

)
, (10)

where the charm and gluon distributions in (9) are deter-
mined from the evolution in exactly the same way as in the
massless case described in Sect. 2. Note that the leading-
order part of F c

2 in (9) is given by e2
cξ(c(ξ, Q2)+ c̄(ξ, Q2)).

Fig. 2 shows F c
2 evaluated according to the three schemes

described above at x = 0.05 and 0.2, for a Q2 range rele-
vant to the EMC data. In addition, for the interpolating
scheme we also show the effect of neglecting the quark
mass dependence in the quark coefficient function, so that
Hq–Hsub

q is replaced by Cq in (9). For the parton distri-
butions the GRV parameterizations [13] are used. Note,
however, that in the GRV fit a charm quark distribution
is never introduced explicitly; rather F c

2 is always cal-
culated via the FFNS. The charm density is generated
from the GRV distributions by evolving with 3 flavors
from µ2 = 0.4 GeV2 to m2

c in next-to-leading order, then
from m2

c to Q2 with 4 flavors according to the VFNS. For
the FFNS calculation, the gluon distribution is evolved
in leading order from µ2 = 0.26 GeV2 to m2

c with 3 fla-
vors. (Note that the choice of µ2 in Fig. 2 is only for the
purpose of comparison with the other methods, which in-
troduce charm at m2

c . In the final calculations the scale

Fig. 3. Charm structure function calculated within the in-
terpolating scheme for different gluon distributions, GRV [13]
(dotted) and MRST [12] with minimum (dashed) and maxi-
mum (solid) gluons. The data at small x are from the ZEUS
Collaboration [2], while the large-x data are from the EMC [3].
For clarity the small-x curves have been scaled by a factor 10
(0.1) for Q2 = 25 (60)GeV2, and the large-x curves by a factor
100 (0.01)

µ2 = 4m2
c will be used for the FFNS, which is also the

value used in [13].)
At small x the effect of the mass-corrected quark co-

efficient functions on F c
2 turns out to be negligible, and

only slight at larger x. As Q2 becomes large, one can
see in Fig. 2 how the VFNS and interpolating schemes
converge. Even at small Q2 the difference between these
is not large. On the other hand, while the FFNS pro-
vides a good approximation to the interpolating scheme
for Q2 ! 30 GeV2, it dramatically overestimates the full
result at larger Q2, especially at large x. Since this is the
region where most of the relevant EMC data which we
analyse lie, clearly a full interpolating scheme must be
used in order to draw reliable conclusions from the anal-
ysis. Finally, the FFNS and the interpolating scheme ap-
pear not to converge at low Q2 and large x. There are
indications from [13] that in this region the FFNS is not
stable, and the introduction of higher-order corrections
is necessary. In this respect note that the interpolating
scheme has by definition resummed all the logarithms in
the charm mass through the introduction of a charm quark
density, while the FFNS at O(αs) has only the leading log
in the mass. This may explain the apparent discrepancy.

Another source of uncertainty in the calculation of F c
2

comes from the gluon distribution at large x, which at
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Abstract. A next-to-leading order analysis of inelastic electroproduction of charm is performed using an
interpolating scheme which maps smoothly onto massless QCD evolution at large Q2 and photon–gluon
fusion at small Q2. In contrast with earlier analyses, this scheme allows the inclusion of quark and target
mass effects and heavy quark thresholds, as well as possible non-perturbative, or intrinsic, charm contri-
butions. We find no conclusive evidence in favor of an intrinsic charm component in the nucleon, although
several data points which disagree with perturbative QCD expectations will need to be checked by future
experiments.

1 Introduction

Understanding the role played in the nucleon by heavy
quarks, such as the charm quark, is necessary for a num-
ber of reasons. Firstly, one cannot claim to have unrav-
eled the rich structure of the nucleon sea until one has
mapped out the details of the distribution of its virtual
charm and heavier1 flavors. Secondly, in the absence of a
direct probe of gluons, charm leptoproduction remains one
of the main sources of information on the nucleon’s gluon
distribution. Furthermore, tagging charm in neutrino and
antineutrino scattering allows one to probe the strange
and antistrange quark densities in the nucleon. From a
more theoretical point of view, in order to have a reliable
procedure through which to analyze deep-inelastic scat-
tering data, one needs to consistently incorporate heavy
quark masses and threshold effects in the QCD evolution
equations.

Recently, important new data have become available
on the charm structure function, F c

2 , of the proton from
the H1 [1] and ZEUS [2] collaborations at HERA, which
have probed the small-x region down to x = 8× 10−4 and
2 × 10−4, respectively. At these values of x, the charm
contribution to the total proton structure function, F p

2 , is
found to be around 25%, which is a considerably larger
fraction than that found by the European Muon Collab-
oration at CERN [3] at somewhat larger x, where it was
only ∼ 1% of F p

2 . Extensive theoretical analyses in recent
years have generally served to confirm that the bulk of the

a Present address: Jefferson Lab., 12000 Jefferson Ave., New-
port News, VA 23606, USA

1 Although in practice the direct accessibility of bottom and
top quark densities is likely to remain elusive for some time.

c

g

!"

c

Fig. 1. Photon–gluon fusion process at leading order in αs

F c
2 data can be described through perturbative generation

of charm within QCD.
At the same time, there are several lingering pieces

of evidence which seem to suggest the possibility that
a small component of charm exists which is intrinsically
non-perturbative in origin [4–8]. One of these is the EMC
data [3] at large x, some of which appear to lie above the
perturbative QCD predictions, and which have in the past
been taken [4] as evidence for a non-perturbative, or “in-
trinsic” charm component. Furthermore, as recently dis-
cussed in [6], there are some indications of intrinsic charm
also from hadronic reactions, such as leading charm pro-
duction in πN and Y N scattering. As found in [9], some
intrinsic charm may account for the larger than expected
number of fast correlated J/ψ pairs seen in the NA3 πN
experiment at CERN [10], as well as for the anomalous
polarization of J/ψ seen in inclusive J/ψ production in
πN collisions [11].

disagreement with
perturbative charm??
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5.2 Meson cloud model (IC2)

An alternative to the five-quark intrinsic charm model was
considered in [28–31], in which the charm sea was assumed
to arise from the quantum fluctuation of the nucleon to a
virtual D̄0 + Λ+

c configuration. In the following we shall
refer to this model as “IC2”. The nucleon charm radius
[28] and the charm quark distribution [29] were both esti-
mated in this framework. Furthermore, the effects of hard
charm distributions on large-x HERA cross sections, and
in particular on the so-called HERA anomaly [32,33], were
studied in [30].

The meson cloud model for the long-range structure of
the nucleon has been used extensively to describe various
flavor symmetry breaking phenomena observed in deep-
inelastic scattering and related experiments. It offers a
natural explanation of the d excess in the proton over u
[34,35] in terms of a pion cloud, which itself is a neces-
sary ingredient of the nucleon by chiral symmetry. It also
provides an intuitive framework to study the strangeness
content of the nucleon, through the presence of the kaon
cloud [36]. Whether the same philosophy can be justified
for a cloud of heavy charm mesons and baryons around the
nucleon is rather more questionable given the large mass
of the fluctuation. Nevertheless, to a crude approximation,
one may take the meson cloud framework as indicative of
the possible order of magnitude and shape of the non-
perturbative charm distribution. Furthermore, a natural
prediction of this model is that the c and c distributions
are not symmetric.

In the meson cloud model, the distribution of charm
and anticharm quarks in the nucleon at some low hadronic
scale can be approximated by [30]

cIC2(x) ≈ 3
2
fΛc/N (3x/2), (15a)

cIC2(x) ≈ fD̄/N (x), (15b)

where

fD̄/N (x) =
1

16π2

∫ ∞

0
dk2

⊥
g2(k2

⊥, x)
x(1 − x)(s − M2)2

×
(

k2
⊥ + [MΛc − (1 − x)M ]2

1 − x

)
(16)

is the light-cone distribution of D̄0 mesons in the nu-
cleon, and fΛc/N (x) = fD̄/N (1 − x) is the correspond-
ing distribution of Λ+

c baryons. In (16) the function g de-
scribes the extended nature of the D̄ΛcN vertex, with
the momentum dependence parameterized by g2(k2

⊥, x) =
g2
0(Λ2 + M2)/(Λ2 + s), where s is the D̄Λc center of mass

energy squared and g0 the D̄ΛcN coupling constant at
the pole, s = M2. As a first approximation, one might
take g0 to be of the same order of magnitude as the πNN
coupling constant. In [37] this coupling constant was esti-
mated within a QCD sum rule calculation.

5.3 Intrinsic charm distributions

The c and c distributions in the intrinsic charm models
IC1 and IC2 are shown in Fig. 4, each normalized to a

Fig. 4. Charm quark distributions from the intrinsic charm
models IC1 [30] (solid) and IC2 [4] (dashed), both normalized
to 1%, and from the MRST parameterization [12] (with maxi-
mal gluon) at Q2 = 5 GeV2 (dotted)

common value of 1%. For the IC2 model this corresponds
to a cutoff Λ ≈ 2.2 GeV (for a probability of 0.5% one
would need Λ ≈ 1.7 GeV). Quite interestingly, the shapes
of the c quark distributions are quite similar in the two
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because the IC2 model gives a significantly harder c dis-
tribution, while IC1 implies that c and c̄ are equal, the
resulting structure function, F c

2 , will be somewhat harder
in the IC2 model. For comparison, a typical (soft) per-
turbatively generated charm distribution is also shown in
Fig. 4, evaluated from the MRST parameterization [12]
(with the maximal gluon) at Q2 = 5 GeV2.

The effects of the modified boundary conditions incor-
porating non-zero intrinsic charm distributions are shown
in Fig. 5 for the GRV parameterization [13] and for 1% in-
trinsic charm normalizations, at Q2 = 25, 45 and 60 GeV2.
The data at 60 GeV2 are well fitted with a 1% IC1 com-
ponent, although with the IC2 model one slightly overes-
timates the x = 0.44 point, due to its very hard c̄ dis-
tribution. At lower Q2 values, however, the addition of a
1% intrinsic charm component, from either model, over-
estimates the large-x points. This finding is essentially in-
dependent of the parton distribution functions employed,
as Fig. 6 illustrates for the MRST distributions [12]. From
this one can conclude that with a 1% intrinsic charm com-
ponent one cannot simultaneously resolve the large-x dis-
crepancy for the large-Q2 data, and maintain a satisfac-
tory fit to the data at lower Q2.

To compare with the procedure for incorporating in-
trinsic charm adopted in the earlier analysis in [5], we show
in Fig. 7 the F c

2 obtained from the FFNS through (11), and
the O(αs) corrections to the intrinsic charm component,
F c(IC)

2 – see (57) of [5]. (Note that although the FFNS
curves appear to lie slightly below the data for Q2 = 25
and 45 GeV2, the inclusion of O(α2

s ) corrections leads to a
slight improvement for the lower Q2 data, without much
effect on the data at 60 GeV2 [13].) The results are qualita-
tively similar to those obtained from the full interpolating
scheme, namely the data at different Q2 seem to require
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present is not very well constrained. To cover the full range
of allowed gluon distributions, we use the maximum and
minimum gluon distributions from the MRST [12] param-
eterizations in addition to that of GRV [13]. The resulting
F c

2 for the different next-to-leading order glue is shown
in Fig. 3, where the evolution was again performed as
described in the massless evolution section. The data at
small x in Fig. 3 are taken from the ZEUS Collaboration
[2], while the large-x data are from the earlier EMC exper-
iment [3]. At small x all of the parameterizations fit the
data very well. At large x the maximum-gluon MRST and
GRV fits also provide good descriptions of the data, with
the exception of the two points at Q2 = 60 GeV2. The
last data point at x = 0.44 is not shown in the fits of [12,
13], even though this point appears to confirm the trend
indicated by the x = 0.24 point to lie somewhat above
the perturbative QCD calculation. Neglecting the large-x,
Q2 = 60 GeV2 points, one would conclude that perturba-
tive QCD fits the F c

2 data very well, without any need for
additional non-perturbative contributions [12,13]. On the
other hand, the authors of [24] have pointed out that the
x = 0.44 point at large Q2 is in conflict with perturbative
QCD. Furthermore, taking these points seriously has led
several authors [5,6] to conclude that the large-x EMC
data provide evidence for an intrinsic charm component
of the nucleon.

In the next section we shall study the large-x EMC
data more carefully, with the aim of ascertaining whether
these can be understood perturbatively, or whether they
can indeed be interpreted as suggesting that a perturba-
tive QCD treatment alone is incomplete.

5 Non-perturbative charm

The apparent discrepancy between some of the large-x F c
2

data and predictions based solely on perturbative QCD
has prompted several authors [4–6] to take seriously the
possibility that an additional, non-perturbative, compo-
nent of F c

2 may be necessary to account for the data over
the full range of x and Q2. In this section we discuss
how non-perturbative charm may affect F c

2 , particularly
at large x, and how the intrinsic contributions can be in-
cluded on the same footing as the perturbative effects.

In earlier analyses [5,6] intrinsic charm distributions
have simply been added to the perturbatively generated
F c

2 ,

F c
2 (x, Q2) = F c(pert)

2 (x, Q2) + F c(IC)
2 (x, Q2), (11)

where the perturbative contribution, F c(pert)
2 , is given by

(4) (with higher-order corrections), while the intrinsic charm
contribution, F c(IC)

2 , in its simplest form is

F c(IC)
2 = e2

cx(cIC + c̄IC). (12)

In practice, O(αs) contributions to (12) are fully imple-
mented in the present analysis (the relevant expressions
are given in [5]).

Within the interpolating scheme of Sect. 4, the most
natural way to implement intrinsic charm in F c

2 is to mod-
ify the boundary condition for the charm quark distri-
bution. Instead of c(x, µ2) = c̄(x, µ2) = 0, one now has
non-zero distributions at the scale µ2 = m2

c . The physical
reason for this is that if there are non-perturbative pro-
cesses producing charm in the nucleon, this charm can be
resolved (brought on its mass shell) only when the system
has sufficient energy. In the MS scheme, the scale at which
the number of flavors changes from 3 to 4 is µ2 = m2

c in
a next-to-leading order analysis, so that regardless of the
dynamical origin of the charm, there will be enough en-
ergy in the system to open a new active flavor channel
for Q2 > m2

c . With this in mind, we next discuss several
non-perturbative models which attempt to describe the
generation of intrinsic charm in the nucleon.

5.1 Five-quark component of the nucleon (IC1)

Based on the initial observation [26] that the charm pro-
duction cross section in hadronic collisions was larger than
that predicted in leading-order perturbative QCD, Brod-
sky et al. [4] suggested that the discrepancy could be re-
solved by introducing an intrinsic, non-perturbative, charm
component in the nucleon wave function. In this model,
which we shall refer to as “IC1”, the nucleon is assumed
to contain, in addition to the lowest energy three-quark
Fock state, a more complicated, five-quark configuration
on the light-cone,

|p〉 = c0|uud〉 + c1|uudcc̄〉, (13)

where c2
0(c2

1) is the three- (five-) quark probability. In or-
der to explain the original data [26], the normalization
of the latter was chosen to be 1% [4]. Assuming the five-
quark wave function to be inversely proportional to the
light-cone energy difference between the nucleon ground
state and the five-quark excited state, one finds that the
x dependence of the c quark distribution is given by [4]

cIC1(x) = 6x2 (
(1 − x)(1 + 10x + x2)

−6x(1 + x) log 1/x
)
. (14)

The anticharm distribution has the same shape as the
charm distribution in this model: cIC1(x) = cIC1(x).

Because the intrinsic charm in this model is assumed
to be generated through gg → cc̄ processes, with each
gluon originating from different valence quarks, the cc̄
probability scales like α2

s (m2
c)/m2

c relative to the pertur-
bative component [6,27]. This contribution can therefore
be interpreted as a higher-order effect in a 1/mc expan-
sion [6,27]. On the other hand, since this is generated
non-perturbatively, the resulting non-perturbative intrin-
sic charm distribution calculated at m2

c must be evolved
as a leading twist, on the same footing as the perturbative
contribution. Since there is only one kind of charm quark,
irrespective of its origin, QCD corrections affect the per-
turbative and non-perturbative distributions identically.
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1) is the three- (five-) quark probability. In or-
der to explain the original data [26], the normalization
of the latter was chosen to be 1% [4]. Assuming the five-
quark wave function to be inversely proportional to the
light-cone energy difference between the nucleon ground
state and the five-quark excited state, one finds that the
x dependence of the c quark distribution is given by [4]
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The anticharm distribution has the same shape as the
charm distribution in this model: cIC1(x) = cIC1(x).

Because the intrinsic charm in this model is assumed
to be generated through gg → cc̄ processes, with each
gluon originating from different valence quarks, the cc̄
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bative component [6,27]. This contribution can therefore
be interpreted as a higher-order effect in a 1/mc expan-
sion [6,27]. On the other hand, since this is generated
non-perturbatively, the resulting non-perturbative intrin-
sic charm distribution calculated at m2

c must be evolved
as a leading twist, on the same footing as the perturbative
contribution. Since there is only one kind of charm quark,
irrespective of its origin, QCD corrections affect the per-
turbative and non-perturbative distributions identically.
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Fig. 7. As in Fig. 5, but with F c
2 calculated according to the

FFNS in (11)

where a number of experiments have now confirmed be-
yond any doubt a significant excess of d̄ over ū quarks
[34]. This in turn has created an environment in which
the importance of non-perturbative effects in the nucleon
is appreciated to a far greater extent, even when discussing
structure at deep-inelastic energy scales [35].

More speculative, and less constrained experimentally,
are suggestions that the proton sea for heavier flavors
might also exhibit characteristics which cannot be attri-
buted to perturbative QCD mechanisms alone [30,36].
A prime example would be the presence of asymmetric
sea quark and antiquark distributions, which have been
searched for in the strange sector in both deep-inelastic
neutrino and antineutrino scattering, as well as in electro-
magnetic form factors at low energies [38]. Indeed, there
is no symmetry in QCD which would prevent sea quarks
and antiquarks having different momentum distributions,
just as there is no symmetry requiring the d̄ and ū sea to
be equivalent.

Fig. 8a–d. As in Fig. 5, but with different normalizations
for the IC1 and IC2 model distributions, and with the MRST
parameterization [12] with the minimum gluon
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Nucleon structure at intermediate & large x
dominated by valence quarks
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At large x,  valence u and d distributions extracted
from p and n structure functions
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Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon
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Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon
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BUT  no free neutron targets!
(neutron half-life ~ 12 mins)                                            

use deuteron as ‘‘effective neutron target’’
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“nuclear EMC effect”
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Nuclear ‘‘EMC effect’’

FA
2 (x, Q2) != AFN

2 (x, Q2)

Aubert et al., Phys. Lett. B 123, 123 (1983)
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3. The discovery of the effect

As part of a comprehensive study of muon scattering, the European Muon Collaboration
measured structure functions on hydrogen, deuterium and iron targets. The purpose of using
iron was to increase the experimental luminosity, providing more precise measurement of
structure functions at high Q2 and allowing the study of rarer processes such as charm
production.

When the iron and deuterium structure functions F2 per nucleon were compared, the ratio
of the cross-sections was not unity (Aubert et al 1983b). The ratios depended upon x, although
at fixed x there was no evidence for a Q2 dependence. Hence the ratios were averaged over
Q2, and showed the dependence on x depicted in figure 4, which is very slightly different from
the original publication. The range of Q2 varied with x: 8 < Q2 < 20GeV2 for x = 0.05–
35 < Q2 < 200GeV2 for x = 0.65. There are many points to be made concerning the
experimental ratios:
(i) There was an overall normalization uncertainty of 7% in the ratio F Fe2 / F D2 .
(ii) The error bars show an inner bar of statistical errors, and an outer bar representing all the

estimated systematic errors combined in quadrature.
(iii) The iron datawere corrected for the neutron excess in iron using the ratioF n2 / F

p
2 measured

by EMC (Aubert et al 1983a). The correction was negligible at small x and amounted to
only 2.3% at x=0.65.

(iv) No attemptwasmade to correct the iron or deuteriumdata for Fermimotion of the nucleons
in the nucleus. The effect is not expected to cancel because of the larger Fermi momentum
in iron, but predictions for the correction (Bodek and Ritchie 1981), as shown by the solid
line in figure 4, clearly do not explain the difference.

(v) It was assumed in evaluating F2 that R was zero. This was consistent with the
measurements made by EMC on iron (Aubert et al 1986) and hydrogen (Aubert et al

Figure 4. The final published EMC measurement of the structure function ratio (from Aubert et al
(1987)), which differs slightly from the original data (Aubert et al 1983b) chiefly in a normalization
change of around 3% (reproduced with permission from Elsevier).

Original EMC data The EMC effect 1261

Figure 6. Cross-section ratios compared with deuterium for SLAC data from Gomez et al (1994)
(!) and Stein et al (1975) updated by Rock and Bosted (2001) (") for Be, Al, Fe and Au. Data
were also taken on He, C, Ca and Ag by Gomez et al.

scattering have to be subtracted, and the effect of Pauli blocking on the quasielastic tail taken
into account.

4.2. Neutrino measurements

Results from many neutrino experiments have been reported. Comparison of structure
functions between heavy nuclei and deuterium or hydrogen all suffer from large statistical
uncertainties because of low event-rates on light targets. Results have been obtained from the
CDHS experiment (Abramowicz et al 1984), the BEBC-TST experiment (Parker et al 1984),
the BEBC experiments WA25 and WA59 (Cooper et al 1984, Guy et al 1987) and the 15 ft
bubble chamber at Fermilab (Ammosov et al 1984, Hanlon et al 1985). The bubble chamber
experiments compared hydrogen or deuterium with neon. While detailed comparisons with
electron and muon data are made difficult because of the limited statistics, the trends are of
an ‘EMC ratio’ somewhat below unity for x < 0.1 (in contradiction with the original EMC
result of Aubert et al (1983b)), a rise above unity for 0.1 < x < 0.3 and a steady fall beyond.
The data are at considerably lower Q2 than EMC, and any differences could conceivably be
attributed to aQ2-dependence of the effect. Nevertheless, there is noQ2-dependence visible in
the neutrino data on ratios of structure functions between neon on the one hand and hydrogen
or deuterium on the other.

As mentioned in section 2, the chief value of neutrino data is in the separation of sea and
valence contributions to the structure functions. The sea enhancement in Fe over H, integrated
over all x, found by CDHS (Abramowicz et al 1984) was 1.10± 0.11(stat)± 0.07(syst). Little
conclusion can be drawn because of the large errors, but it is clear that a large sea enhancement
is not favoured. The BEBC experiment has attempted to parametrize the sea distribution as a
function of x. The ratio on the sea distribution of neon and deuterium is found to be 0.92± 0.05,
assuming RNe = RD and no change in shape of the sea, and 0.88 ± 0.07 if only the former
is assumed (Guy et al 1987). The absence of an enhancement of the sea is independent of

Later SLAC data

Gomez et al., Phys. Rev. D 49, 4348 (1994)
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Fig. 3.1. The structure function ratio FA
2 /F d

2 for 40Ca and 56Fe. The data are taken from NMC
[71], SLAC [72], and BCDMS [73].

Figure 3.1 presents a compilation of data for the structure function ratio FA
2 /F d

2 over
the range 0 ≤ x ≤ 1. Here FA

2 is the structure function per nucleon of a nucleus with
mass number A, and F d

2 refers to deuterium. In the absence of nuclear effects the ratios
FA

2 /F d
2 are thus normalized to one. Neglecting small nuclear effects in the deuteron, F d

2 can
approximately stand for the isospin averaged nucleon structure function, FN

2 . However, the
more detailed analysis must include two-nucleon effects in the deuteron. Several distinct
regions with characteristic nuclear effects can be identified: at x < 0.1 one observes a
systematic reduction of FA

2 /F d
2 , the so-called nuclear shadowing. A small enhancement is

seen at 0.1 < x < 0.2. The dip at 0.3 < x < 0.8 is often referred to as the traditional
“EMC effect”. For x > 0.8 the observed enhancement of the nuclear structure function is
associated with nuclear Fermi motion. Finally, note again that nuclear structure functions
can extend beyond x = 1, the kinematic limit for scattering from free nucleons.

• Shadowing region
Measurements of E665 [76,77,78] at Fermilab and NMC [71,75,79,80,81,82] at CERN
provide detailed and systematic information about the x- and A-dependence of the
structure function ratios FA

2 /F d
2 . Nuclear targets ranging from He to Pb have been

used. A sample of data for several nuclei is shown in Fig.3.2. While most experiments
cover the region x > 10−4, the E665 collaboration provides data for FXe

2 /F d
2 [76] down

to x " 2 · 10−5. Given the kinematic constraints in fixed target experiments, the small
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EMC effect in deuteron

Nuclear  “impulse approximation’’

incoherent scattering 
from individual nucleons
in deuteron

A!"#$k ,q %!i$q2&!"k#"$k2#m2%&!"q#

#2$k!&kq#"#k"&kq#!%%, $8c%

A!"#'$k ,q %!#im$q2g!#g"'"2q#$k!g"'#k"g!'%%.
$8d%

Here k is the interacting quark four-momentum, and m is its

mass. We use the notation &!"kq(&!"#'k
#q'. $The com-

plete forward scattering amplitude would also contain a

crossed photon process which we do not consider here, since

in the subsequent model calculations we focus on valence

quark distributions.% The function H(k ,p) represents the soft
quark-nucleon interaction. Since one is calculating the

imaginary part of the forward scattering amplitude, the inte-

gration over the quark momentum k is constrained by )
functions which put both the scattered quark and the nonin-

teracting spectator system on-mass-shell:

dk̃(
d4k

$2*%4
2*)+$k"q %2#m2,2*)+$p#k %2#mS

2,

$k2#m2%2
,

$9%

where mS
2!(p#k)2 is the invariant mass squared of the

spectator system.

Taking the trace over the quark spin indices we find

Tr+Hr!",!A!"#H
#"A!"#'H

#', $10%

where H# and H#' are vector and tensor coefficients, respec-

tively. The general structure of H# and H#' can be deduced

from the transformation properties of the truncated nucleon

tensor Ĝ!" and the tensors A!"# and A!"#' . Namely, from

A!"#* (k ,q)!A"!#(k ,q) and A!"#( k̃ , q̃)!#A!"#(k ,q), we

have

H#$p ,k %!#PH#$ p̃ , k̃ %P†, $11a%

H#$p ,k %!$TH#$ p̃ , k̃ %T †%*, $11b%

H#$p ,k %!-0H
#†$p ,k %-0 . $11c%

Similarly, since A!"#'* (k ,q)!A"!#'(k ,q) and A
!"#'( k̃ , q̃ )

!A!"#'(k ,q), one finds

H#'$p ,k %!PH#'$ p̃ , k̃ %P†, $12a%

H#'$p ,k %!#$TH#'$ p̃ , k̃ %T†%*, $12b%

H#'$p ,k %!-0H
#'†$p ,k %-0 . $12c%

With these constraints, the tensors H# and H#' can be pro-

jected onto Dirac and Lorentz bases as follows:

H#!p#-5$p” g1"k”g2%"k#-5$p” g3"k”g4%
"i-5./0p

/k0$p#g5"k#g6%"-#-5g7

"i-5./#$p/g8"k/g9%, $13a%

H#'!$p#k'#p'k#%./0p
/k0 f 1"$p#./'#p'./#%

$$p/ f 2"k/ f 3%"$k#./'#k'./#%$p/ f 4"k/ f 5%

".#' f 6"&/0#'p
/k0-5$p” f 7"k” f 8%

"&/0#'-5-
0$p/ f 9"k/ f 10%, $13b%

where the functions g1•••9 and f 1•••10 are scalar functions of
p and k .

Performing the integration over k in Eq. $7% and using
Eqs. $13%, we obtain expressions for the truncated structure
functions G (i) in terms of the nonperturbative coefficient

functions f i and gi . The explicit forms of these are given in

Appendix I. From Eq. $4% we then obtain the leading twist
contributions to the truncated nucleon tensor Ĝ!" . It is im-

portant to note that at leading twist the non-gauge-invariant

contributions to Ĝ!" vanish, so that the expansion in Eq. $4%
is the most general one which is consistent with the gauge

invariance of the hadronic tensor.

III. NUCLEAR STRUCTURE FUNCTIONS

Our discussion of polarized deep-inelastic scattering from

nuclei is restricted to the nuclear impulse approximation, il-

lustrated in Fig. 1. Nuclear effects which go beyond the im-

pulse approximation include final state interactions between

the nuclear debris of the struck nucleon +17,, corrections due
to meson exchange currents +18–20, and nuclear shadowing
$see +21–24, and references therein%. Since we are interested
in the medium- and large-x regions, coherent multiple scat-

tering effects, which lead to nuclear shadowing for x%0.1,
will not be relevant. In addition, it has been argued +6, that
meson exchange currents are less important in polarized

deep-inelastic scattering than in the unpolarized case since

their main contribution comes from pions.

Within the impulse approximation, deep-inelastic scatter-

ing from a polarized nucleus with spin 1/2 or 1 is then de-

scribed as a two-step process, in terms of the virtual photon-

nucleon interaction, parametrized by the truncated

antisymmetric nucleon tensor Ĝ!"(p ,q), and the polarized

nucleon-nucleus scattering amplitude Â(p ,P ,S). The anti-

FIG. 1. DIS from a polarized nucleus in the impulse approxima-

tion. The nucleus, virtual nucleon, and photon momenta are denoted

by P , p , and q , respectively, and S stands for the nuclear spin

vector. The upper blob represents the truncated antisymmetric

nucleon tensor Ĝ!" , while the lower one corresponds to the polar-

ized nucleon-nucleus amplitude Â .
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Nucleon off-shell correction
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Off-shell correction

effect≤ 1 − 2 %

total
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F
d
2

δ
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2

WM, Schreiber, Thomas, Phys. Lett.  B 335 (1994) 11



Larger EMC effect (smaller d/N ratio)

F
n

2
underestimated at large x

FIGURES

FIG. 1. FD
2 /FN

2 ratio as a function of x for the off-shell model of Refs. [4,5] (solid) and the
on-shell model of Ref. [6] (dotted).

In Refs. [4,5] the structure function F N
2 was modeled in terms of relativistic quark–

nucleon vertex functions, which were parametrized by comparing with available data for
the parton distribution functions. The off-shell extrapolation of the γ∗N interaction was
modeled assuming no additional dynamical p2 dependence in the quark–nucleon vertices.
This enabled an estimate of the correction δ(off)F D

2 to be made, which was found to be quite
small, of the order ∼ 1−2% for x <∼ 0.9. The result of the fully off-shell calculation from Ref.
[4] is shown in Fig.1 (solid curve), where the ratio of the total deuteron to nucleon structure
functions (F D

2 /FN
2 ) is plotted. Shown also is the result of an on-mass-shell calculation from

Ref. [6] (dotted curve), which has been used in many previous analyses of the deuteron data
[7,8]. The most striking difference between the curves is the fact that the on-shell ratio has
a very much smaller trough at x ≈ 0.3, and rises faster above unity (at x ≈ 0.5) than the
off-shell curve, which has a deeper trough, at x ≈ 0.6− 0.7, and rises above unity somewhat
later (at x ≈ 0.8).

The behavior of the off-shell curve in Fig.1 is qualitatively similar to that found by
Uchiyama and Saito [9], Kaptari and Umnikov [10], and Braun and Tokarev [11], who also
used off-mass-shell kinematics, but did not include the (small) non-convolution correction
term δ(off)F D

2 . The on-shell calculation [6], on the other hand, was performed in the infinite
momentum frame where the nucleons are on their mass shells and the physical structure
functions can be used in Eq.(1). One problem with this approach is that the deuteron
wave functions in the infinite momentum frame are not explicitly known. In practice one
usually makes use of the ordinary non-relativistic S- and D-state deuteron wave functions
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this section, we examine the accuracy of this assumption.

The off-shell dependence of F2
N is, as a matter of principle,

not measurable, since one can always redefine the nuclear

spectral function to absorb any p2 dependence in the bound

nucleon structure function. However, off-shell effects can be

identified once a particular form of the interaction of a

nucleon with the surrounding nuclear medium is specified.

The discussion of off-shell modification of the nucleon struc-

ture function in the nuclear medium is therefore understood

to be within the framework of the nuclear spectral functions

defined in Sec. III.

In convolution models, off-shell corrections can arise both

kinematically, through the transverse motion of the nucleon

in the nucleus, and dynamically, from modifications of the

bound nucleon’s internal structure. Kinematical off-shell ef-

fects are essentially model independent, as discussed in Ref.

!35", while dynamical off-shell effects do depend on descrip-
tions of the intrinsic deformation of the bound nucleon struc-

ture and are therefore model dependent. The latter have been

modeled, for instance, in a covariant spectator model !33", in
which the DIS from a bound nucleon is described in terms of

relativistic vertex functions which parametrize the nucleon-

quark-spectator ‘‘diquark’’ interaction. The dependence of

the vertex functions on the quark momentum and the diquark

energy is constrained by fitting to the on-shell nucleon #pro-
ton$ structure function data, while the additional dependence
on the virtuality of the off-shell nucleon can be constrained

by comparing the calculated nuclear structure function with

the inclusive F2
A data.

Taking the nucleon’s off-shellness into account, the bound

nucleon structure function in Eq. #8$ can be generalized to
!33,35,46"

F2
A#x ,Q2$!! dy! dp2%#y ,p2,Q2$F2

N#x!,p2,Q2$,

#44$

where x!!x/y and the function %(y ,p2,Q2) depends on the

nuclear wave functions. In the absence of p2 dependence in

F2
N , the light-cone momentum distribution f (y ,Q2) in Eq.

#8$ would correspond to the p2 integral of %(y ,p2,Q2). In

the approach of Ref. !35", the medium modified nucleon

structure function F2
N(x!,p2,Q2) can be evaluated in terms

of a relativistic quark spectral function &N as

F2
N#x!,p2,Q2$!

x!2

1"x!
'
X

!
kmin
2

dk2

4#2($3
&N#k2#p $,pX

2 $,

#45$

where &N depends on the virtualities of the struck quark, k
2,

and spectator system, pX
2 , and the limit kmin!kmin(x!,p

2,pX
2)

follows from the positivity constraint on the struck quark’s

transverse momentum k!
2)0. The dependence of kmin on p

2

(*M 2) generates an off-shell correction which grows with A

due to the A dependence of the virtuality p2 of the bound

nucleon. This serves to enhance the EMC effect at large x in

comparison with naive binding model calculations which do

not take into account nucleon off-shell effects !45". Assum-
ing that the spectator quarks can be treated as a single system

with a variable mass mX
2 , the off-shell structure function in

Eq. #45$ can be related to the on-shell function by a

p2-dependent rescaling of the argument x!, namely !35",

F2
N#x!$"p2*M2→F2

N#x!#p2$#x!$"p2!M2. #46$

It is this #further$ rescaling in x that is responsible for the
larger effect at large x.

The effect of the off-shell correction on the ratio R, illus-
trated in Fig. 9, is a small ($1%) increase in the ratio at x
+0.6. Off-shell effects of this magnitude can be expected in
models of the EMC effect where the overall modification of

the nuclear structure function arises from a combination of

conventional nuclear physics phenomena associated with

nuclear binding, and a small medium dependence of the

nucleon’s intrinsic structure !1,33,46,78".
Other models of the EMC effect, such as the color screen-

ing model for suppression of pointlike configurations #PLC$
in bound nucleons !79", attribute most or all of the EMC
effect to a medium modification of the internal structure of

the bound nucleon, and consequently predict larger devia-

tions of R from unity !77". However, recent 4He(e! ,e!p! )
polarization transfer experiments !80" indicate that the mag-
nitude of the off-shell deformation is indeed rather small.

The measured ratio of transverse to longitudinal polarization

of the ejected protons in these experiments can be related to

the medium modification of the electric to magnetic elastic

form factor ratio. Using model-independent relations derived

from quark-hadron duality, the medium modifications in the

form factors were related to a modification at large x of the

deep inelastic structure function of the bound nucleon in Ref.

!81". In 4He, for instance, the effect in the PLC suppression

model was found !81" to be an order of magnitude larger
than that allowed by the data !80", and with a different sign
for x%0.65. The results therefore place rather strong con-
straints on the size of the medium modification of the struc-

ture of the nucleon, suggesting little room for large off-shell

corrections, and support a conventional nuclear physics de-

scription of the 3He/3H system as a reliable starting point for

nuclear structure function calculations.

FIG. 8. Neutron to proton structure function ratio extracted from

the F2
3He/F2

3H ratio via the iteration procedure. The input is F2
n/F2

p

!1, and the ratio after +3 iterations is indistinguishable from the

exact result.

DEEP INELASTIC SCATTERING FROM A!3 NUCLEI . . . PHYSICAL REVIEW C 68, 035201 #2003$

035201-11

Afnan, Bissey, Gomez, Liuti, WM, Thomas et al., 
Phys. Rev. C68 (2003) 035201

good convergence after several iterations
resulting       independent of starting assumptionsF

n

2

depends only on smearing function fN/d

Unsmearing



WM, Thomas, Phys. Lett. B 377 (1996) 11

A similar result is also obtained in the treatment of Brodsky et al. [21] (based on
counting-rules), where the large-x behavior of the parton distribution for a quark polar-
ized parallel (∆Sz = 1) or antiparallel (∆Sz = 0) to the proton helicity is given by:
q↑↓(x) = (1 − x)2n−1+∆Sz , where n is the minimum number of non-interacting quarks
(equal to 2 for the valence quark distributions). In the x → 1 limit one therefore predicts:

F n
2

F p
2

→ 3

7
,

d

u
→ 1

5
[Sz = 0 dominance]. (11)

Note that the d/u ratio does not vanish in this model. Clearly, if one is to understand the dy-
namics of the nucleon’s quark distributions at large x, it is imperative that the consequences
of these models be tested experimentally.

The reanalyzed SLAC [7,22] data points themselves are plotted in Fig.3, at an average
value of Q2 ≈ 12 GeV2. The very small error bars are testimony to the quality of the SLAC p
and D data. The data represented by the open circles have been extracted with the on-shell
deuteron model of Ref. [6], while the filled circles were obtained using the off-shell model of
Refs. [4,5]. Most importantly, the F n

2 /F p
2 points obtained with the off-shell method appear

to approach a value broadly consistent with the Farrar-Jackson [20] and Brodsky et al. [21]
prediction of 3/7, whereas the data previously analyzed in terms of the on-shell formalism
produced a ratio that tended to the lower value of 1/4.

FIG. 3. Deconvoluted Fn
2 /F p

2 ratio extracted from the SLAC p and D data [7,22], at an average

value of Q2 ≈ 12 GeV2, assuming no off-shell effects (open circles), and including off-shell effects
(full circles).

The d/u ratio, shown in Fig.4, is obtained by inverting F n
2 /F p

2 in the valence quark
dominated region. The points extracted using the off-shell formalism (solid circles) are

7
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“Cleaner” methods of determining d/u

e∓ p → ν(ν̄)X need high luminosity

ν(ν̄) p → l∓ X low statistics

p p(p̄) → W±X need large lepton rapidity

!eL(!eR) p → e X low count rate

e p → e π± X need z ~ 1, factorization 

e
3He(3H) → e X tritium target



“Cleaner” methods of determining d/u

“Spectator Tagging”
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neutron nearly on-shell JLab Hall B experiment (‘‘BoNuS’’)
completed run Dec. 2005
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Nuclear shadowing

Interference of multiple scattering amplitudes

!*!*!* !*

N

N

N

X

N

N

N

N

d dd d
(b)(a)

Fig. 5.1. Single (a) and double (b) scattering contribution to virtual photon-deuteron scattering.
The corresponding cross sections are obtained from the imaginary part of the forward scattering
amplitude indicated by the dashed line.

where the photon flux (2.32) is taken in the limit x ! 1. The leading contribution to
nuclear shadowing comes from double scattering. Its mechanism is best illustrated for a
deuterium target on which we focus next.

5.1.1 Shadowing in deuterium

In this section we review the basic mechanism of shadowing in real and virtual photon-
deuteron scattering at high energies ν, or equivalently, small x. The γ∗-deuteron cross
section can be written as the sum of single and double scattering parts as illustrated in
Fig.5.1:

σγ∗d = σγ∗p + σγ∗n + δσγ∗d. (5.5)

The first two terms describe the incoherent scattering of the (virtual) photon from the
proton or neutron, while

δσγ∗d =
1

2Mdν
ImA(2)

γ∗d (5.6)

accounts for the coherent interaction of the projectile with both nucleons.

For large energies, ν > 3 GeV, or small values of the Bjorken variable, x < 0.1, the
double scattering amplitude A(2)

γ∗d is dominated by the diffractive excitation of hadronic
intermediate states (Fig.5.1 b) described by the amplitude Tγ∗N→XN. At the high energies
involved it is a good approximation to neglect the real part of this amplitude. In fact,
we expect Re Tγ∗N→XN

<∼ 0.15 ImTγ∗N→XN by analogy with high-energy hadron-hadron

52
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e.g. Piller, Weise, Phys. Rep. 330 (2000) 1 



Nuclear shadowing

Interference of multiple scattering amplitudes
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Fig. 5.1. Single (a) and double (b) scattering contribution to virtual photon-deuteron scattering.
The corresponding cross sections are obtained from the imaginary part of the forward scattering
amplitude indicated by the dashed line.

where the photon flux (2.32) is taken in the limit x ! 1. The leading contribution to
nuclear shadowing comes from double scattering. Its mechanism is best illustrated for a
deuterium target on which we focus next.

5.1.1 Shadowing in deuterium

In this section we review the basic mechanism of shadowing in real and virtual photon-
deuteron scattering at high energies ν, or equivalently, small x. The γ∗-deuteron cross
section can be written as the sum of single and double scattering parts as illustrated in
Fig.5.1:

σγ∗d = σγ∗p + σγ∗n + δσγ∗d. (5.5)

The first two terms describe the incoherent scattering of the (virtual) photon from the
proton or neutron, while

δσγ∗d =
1

2Mdν
ImA(2)

γ∗d (5.6)

accounts for the coherent interaction of the projectile with both nucleons.

For large energies, ν > 3 GeV, or small values of the Bjorken variable, x < 0.1, the
double scattering amplitude A(2)

γ∗d is dominated by the diffractive excitation of hadronic
intermediate states (Fig.5.1 b) described by the amplitude Tγ∗N→XN. At the high energies
involved it is a good approximation to neglect the real part of this amplitude. In fact,
we expect Re Tγ∗N→XN

<∼ 0.15 ImTγ∗N→XN by analogy with high-energy hadron-hadron
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Fig. 4.7. Deep-inelastic scattering at small x ! 1 in the laboratory frame proceeds via hadronic
fluctuation present in the photon wave function.

When analyzing the spectral representation of the scattering amplitude one observes that
the bulk contribution to process (b) results from those hadronic components in the photon
wave function which have a squared mass µ2 ∼ Q2 (see Section 5.4.1). The ratio in
Eq.(4.18) is evidently small for x ! 0.1. Hence pair production, Fig.4.6b, is the leading
lab frame process in the small-x region. On the other hand, at x > 0.1, both mechanisms
(a) and (b) contribute.

In process (b) the photon couples to a quark pair which can form a complex (hadronic
or quark-gluon) intermediate state and then scatters from the target. At small x deep-
inelastic scattering can therefore be described in the laboratory frame in terms of the
interaction of quark-gluon components present in the wave function of the virtual photon
(Fig.4.7). The longitudinal propagation length λ of a specific photon-induced quark-gluon
fluctuation with mass µ is given by the inverse of the energy denominator (4.17):

λ ∼ 1

∆Eb
=

2ν

µ2 + Q2

µ2∼Q2−−−→ 1

2xM
, (4.19)

which coincides with the longitudinal correlation length l of Eq.(4.4). For x < 0.05 the
propagation length λ exceeds the average distance between nucleons in nuclei, λ > d %
2 fm. For a nuclear target, coherent multiple scattering of quark-gluon fluctuations of the
photon from several nucleons in the nucleus can then occur, and this is clearly seen in the
coordinate space analysis discussed in the previous section.

For larger values of the Bjorken variable, x > 0.2, the propagation length of intermediate
hadronic states is small, λ < d. At the same time the process in Fig.4.6a becomes promi-
nent, i.e. the virtual photon is absorbed directly by a quark or antiquark in the target.
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Shadowing in deuterium

vector meson dominance

Q2
= 4 GeV
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Shadowing in deuterium

Pomeron exchange



Anti-shadowing in deuterium

meson (pion) exchange



VMD important even at moderate Q2



FIG. 3. (a) Model prediction for the Q2 dependence of the structure function ratio of Sn to C,

for x = 0.0125 (lowest curve), 0.0175, 0.025, 0.035, 0.045 and 0.055 (highest curve). (b) Slope in

log Q2 of the Sn/C ratio as a function of x — solid curve is the full result, dashed is the Pomeron

contribution only.
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Shadowing in nuclei

Fig. 5.11. The slope b = d(F Sn
2 /FC

2 )/d ln Q2 indicating the Q2 dependence of the shadowing
ratio Sn/C. The calculation is described in [169]. Data are taken from [82].

the spectral ansatz (5.38) the given value of Q2 selects that part of the hadron mass
spectrum around µ2 ∼ Q2 which dominates the interaction, and hence determines which
cross sections σhN(µ2) contribute significantly to the multiple scattering series. While the
interaction cross sections decrease as 1/µ2 with increasing mass as required by Bjorken
scaling, pairs which are aligned with the photon momentum interact with large cross
sections, even for large µ, and therefore produce strong shadowing. This is the reason for
the very weak overall Q2-dependence of shadowing in this framework. A comparison of
results from Ref.[169] with NMC data for the slope b of the ratio F Sn

2 /FC
2 ≈ a + b ln Q2

is presented in Fig.5.11. For a more detailed discussion of these issues including QCD
corrections, see Ref.[1].

5.4.2 Vector meson dominance and pomeron exchange

As indicated in Eqs.(5.11,5.18), nuclear shadowing is directly related to the diffractive pro-
duction cross section dσdiff

γ∗N /dM2
X dt or, equivalently, to the diffractive structure function

F D(4)
2 .

Diffractive production at Q2 <∼ 1 GeV2 is dominated by the excitation of the vector
mesons ρ, ω and φ. Their contributions can be described within the framework of vector
meson dominance (see e.g. [25]). Neglecting transitions between different vector mesons
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FIG. 4. x dependence of the slope α from the structure function ratio FA
2 /FC

2 ∝ Aα, compared

with NMC data on A = D,Li,Be,Al, Ca, Fe and Sn.

FIG. 5. x dependence of the D/p structure function ratio, compared with the low-x E665 data

[4] and NMC data [37] at larger x. The dashed curve is the result without any shadowing correction.
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Comparison with data

WM, Thomas, Phys. Rev. C 52 (1995) 3373
- see also Badelek, Kwiecinski (1992),
Nikolaev, Zoller (1992)



Effect on neutron structure function at small x
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1-2% enhancement at x ~ 0.01

Effect on neutron structure function at small x



Gottfried sum rule

Integrated difference of p and n structure functions

SG =

∫ 1

0

dx
F

p
2
(x) − Fn

2 (x)

x

flavor asymmetric sead̄(x) != ū(x)

NMC, Phys. Rev. D 50 (1994) 1

Experiment: SG = 0.235 ± 0.026

=
1

3
+

2

3

∫ 1

0

dx (ū(x) − d̄(x))



Saturation of Gottfried sum rule

SG(x, 1) =

∫ 1

x

dx′
F

p
2
(x′) − Fn

2 (x′)

x′



Saturation of Gottfried sum rule

~ 10% decrease due to shadowing

correction to SG(0, 1) ≈ −0.02
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Lattice QCD

Solve QCD equations of motion numerically
on discretized space-time grid

quarks on lattice nodes

gluons as links between nodes

Wilson (1974)

U (x)

U (x)
!

µ

x x+

x+!

µ

µ

!

Figure 1: A schematic of a lattice showing the association of the SU(3) matrices Uµ(x) with
the links of the lattice.

TrT aT b =
1

2
δab. (4)

We now introduce the field-strength tensor

F a
µν ≡ ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν , (5)

in terms of which the Euclidean continuum action is

S =
1

4

∫
d4x sF a

µνF a
µν . (6)

As we will see later, the crucial property of Euclidean space QCD for the
formulation of lattice gauge theories is that the action is real. Gauge invariance
is manifest through invariance under the transformation

Aµ(x) → Λ(x)Aµ(x)Λ−1(x) − 1

ig
(∂µΛ(x))Λ−1(x). (7)

We proceed to the lattice formulation of QCD by replacing a finite region
of continuum space-time by a discrete four-dimensional lattice, or grid, of
points. The gluon degrees of freedom are represented by SU(3) matrices Uµ(x)
associated with the links connecting the grid points, as shown in Figure 1.
We work with the elements of the group, rather than elements of the algebra,

3

and the SU(3) matrices Uµ(x) are related to the usual continuum gauge fields
through

Uµ(x) = exp ig a

∫ 1

0
dt Aµ(x + taµ̂), (8)

where g is the coupling constant, and a the lattice spacing. Under a gauge
transformation Λ(x), the link variables transform as

Uµ(x) → Λ(x)Uµ(x + µ̂)Λ−1(x), (9)

in analogy with Eq. 7. Wilson’s form of the lattice gauge action is constructed
from the elementary plaquettes 1

U!µν (x) = Uµ(x)Uν(x + µ̂)U †
µ(x + ν̂)U †

ν (x). (10)

The plaquettes are clearly gauge invariant, and the action is then written

SG =
2Nc

g2

∑
x

∑
µ>ν

[
1 − 1

Nc
#TrU!µν (x)

]
≡ − β

Nc

∑
x

∑
µ>ν

#TrU!µν , (11)

where we have ignored the constant term, and introduced

β =
2Nc

g2

with, for QCD, Nc = 3. It is straightforward to show that the Wilson lattice
gauge action is related to the continuum counterpart, Eq. (6), by

SG =
1

4

∫
d4xF a

µνF a
µν + O(a2), (12)

so that the lattice gauge action has O(a2) discretisation errors.

1.3 Observables and Lattice Gauge Simulations

Within lattice gauge theory, the expectation value of an observable O is given
by the path integral

〈O〉 =
1

Z

∫
DU O(U)e−SG(U) (13)

where
DU =

∏
x,µ

dUµ(x) (14)

4



Observables calculated from path integrals in Euclidean space 
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these uncertainties decrease as the square root of the number of configura-
tions, providing successive configurations are sufficiently widely separated to
be statistically independent.

Systematic Uncertainties

Of even greater delicacy than the statistical uncertainties are the system-
atic uncertainties that enter our computations. These arise from a variety
of sources, including:

• Finite Volume: Our box must be sufficiently large that finite volume
effects are under control. For light hadron spectroscopy, box sizes of at
least 2 fm are necessary to ensure that the hadron is not “squeezed”, but
for excited states even larger volumes may be required. In addition, the
requirement that the spatial extent of the lattice be large compared with
the correlation length, set by the pseudoscalar mass, sets a still more
stringent constraint at the physical pion mass.

• Discretisation Effects: Increasing the inverse coupling β corresponds to
progressing to weaker coupling, and hence smaller lattice spacing a. We
must ensure that β is sufficiently large that the scale-breaking discreti-
sation errors are under control, and in practice we perform calculations
at several values of a and extrapolate to the limit a = 0.

We will encounter several other potential sources of systematic errors when we
discuss the inclusion of the quarks.

1.5 Including the Quarks

The full generating functional for lattice QCD with a single flavour of quark is

Z =

∫
DU DψDψe

−SG(U)+
∑

x,y
ψ(x)M(x,y,U)ψ(y)

, (17)

where M(x, y, U) is the fermion matrix which, in its “näive” form, is

M(x, y, U) = m δx,y +
1

2

∑
µ

γµ

(
Uµ(x)δy,x+µ̂ − U †

µ(x − µ̂)δy,x−µ̂

)
(18)

with m the quark mass. Because the fermion fields are represented by Grass-
man variables, we can integrate out the fermion degrees of freedom, to obtain

Z =

∫
DU det M(U) e−SG(U). (19)
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generating functional
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Fermion mass matrix

Approximations
- finite lattice spacing a (→ 0)

- finite lattice volume V (→ ∞)

cost ∝ m
−4

q- large quark mass  mq (→ m
phys
q

)

- “quenching” - suppression of 
background       loopsqq̄

detM → 1



I. INTRODUCTION

Parton distribution functions (PDFs) contain a wealth of information on the nonper-
turbative structure of the nucleon. Quark and gluon distributions probed in deep inelastic
scattering and other high energy processes have provided valuable insights into the workings
of QCD in the low energy domain. The observation of an asymmetry between d̄ and ū quarks
in the proton sea [1,2], to take just one example, has served to highlight the important role
that the pion cloud of the nucleon and the chiral symmetry of QCD [3] plays in hadronic
structure, even at high energies.

More generally, studies of PDFs can help with the task of identifying the appropriate
effective degrees of freedom of QCD at low energies. Through the application of the operator
product expansion (OPE) to QCD, high energy processes such as deep inelastic scattering
can be factorized into short and long distance contributions, allowing one to calculate the
former in perturbation theory, while isolating all of the nonperturbative physics in the
latter. Over the past two decades considerable experience has been accumulated with various
nonperturbative, low energy models of the nucleon which have been used to study PDFs
[4]. Initial studies focused on the valence quark distributions as a means of constraining
valence quark model parameters, although recently more ambitious efforts have attempted
to describe sea quark and gluon distributions from low energy models.

Although the model studies have been helpful in exploring the relationship between
high energy processes and low energy phenomenology, ultimately one would like a more
exact connection of PDFs with QCD. A mathematically more rigorous approach is provided
through lattice QCD. Indeed, the determination of the moments of the PDFs is one of the
benchmark calculations of hadron structure in lattice QCD. Modern computational advances
have allowed large scale simulations to be undertaken which are progressively improving the
errors associated with finite lattice spacings and finite volume effects. However, until recently
[5] large differences between lattice results and experiment have remained.

Because PDFs are light cone correlation functions, it is not possible to calculate them
directly on the lattice in Euclidean space. Instead one calculates moments of PDFs, defined
(for Björken x) as:

〈xn〉q =
∫ 1

0
dx xn

(
q(x) + (−1)n+1q̄(x)

)
, (1)

which are related through the OPE to matrix elements of local twist-two operators. A num-
ber of calculations of PDF moments have been performed over the last decade, most notably
by the QCDSF group [6] in the quenched approximation. More recently, the MIT group
[7] has confirmed the earlier quenched results, and in addition made the first unquenched
simulations. These results indicate that at the relatively large quark masses at which the
calculations were made, the unquenched results are indistinguishable from the quenched
within the current errors.

Despite the impressive progress of lattice calculations of moments of PDFs, there has
been a long standing problem in reconciling the lattice data with experiment, which has
posed a serious threat to the credibility of current lattice calculations. Namely, for the un-
polarized moments all of the calculations to date, which have been made at quark masses
of between 30 and 190 MeV, have yielded results which are typically 50% larger than the

2

Cannot calculate x-distribution on lattice
(no light-cone in Euclidean space) - only moments

PDFs from Lattice QCD

use OPE to relate moments of PDFs
to matrix elements of local operators

〈xn〉 pµ1
· · · pµn+1

= 〈N | O{µ1···µn+1}|N〉

twist-2 operators
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Chiral extrapolation of lattice moments

Even though structure functions are measured at high energies
   their moments have chiral expansion

ZN
2 Z∆

2

ZNN
1,U/P Z∆∆

1,U/P ZN∆
1,P Z∆N

1,P

ZNWT
1,P Z∆WT

1,P Ztad
1,U/P

FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN

1,U + Z∆∆
1,U + Ztad

1,U , (18a)

Z−1
∆q = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P + Ztad

1,P + ZNWT
1,P + Z∆WT

1,P , (18b)

Z−1
δq = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P +

1

2
Ztad

1,P +
1

2
ZNWT

1,P +
1

2
Z∆WT

1,P . (18c)

The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized
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〈xn〉u−d = an

(
1 + cLNAm2

π log
m2

π

m2
π + µ2

)
+ bn

m2
π

m2
π + m2

b,n

Even though structure functions are measured at high energies
   their moments have chiral expansion

  Detmold et al., Phys. Rev. Lett. 87 (2001) 172001

Arndt, Savage (2001)
Ji, Chen (2001)

Chiral extrapolation of lattice moments

cLNA = −(1 + 3g2
A)/(4πfπ)2

calculated from chiral perturbation theory

Leading non-analytic coefficient (non-analytic in                )mq ∼ m
2

π



PDF in heavy quark limit

u(x) − d(x)
mq→∞

−→ δ(x −

1

3
)

Moment

〈xn〉u−d

mq→∞

−→
1

3n

bn =
1

3n
− an

(
1 − µ2cLNA

)
Coefficient ensures correct                 behaviormπ → ∞

Parameter     determines amount of curvature at lowµ m
2

π

(m2

π
∝ mq)



Extraction of parton distributions from lattice QCD 5
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Fig. 1. Moments of the unpolarized u − d distribution in the proton, for n = 1, 2 and 3. Lattice
data10 include both quenched (solid symbols) and unquenched (open symbols) results. The solid
line represents the full chiral extrapolation, while the inner (darkly shaded) error band shows
variation of µ by ± 20%, with the outer band (lightly shaded) showing the additional effects of
shifting the lattice data within the extent of their error bars. Linear extrapolations are indicated
by dashed lines, and the phenomenological values20 are shown as large stars at the physical pion
mass.

bn is simply bnm2
π) and bn is a third fitting parameter,7 are indistinguishable from

those in Fig. 1.
Note that the majority of the data points (filled symbols) are obtained from

simulations employing the quenched approximation (in which background quark
loops are neglected) whereas Eq. (4) is based on full QCD with quark loop effects
included. On the other hand, recent calculations with dynamical quarks suggest that
at the relatively large pion masses (mπ > 0.5–0.6 GeV) where the full simulations
are currently performed, the effects of quark loops are largely suppressed, as the data
in Fig. 1 (small open symbols) indicate. Further details of the lattice data,2,3,4,5

and a more extensive discussion of the fit parameters, can be found elsewhere.10

A similar analysis leads to analogous lowest order LNA parameterizations of the
mass dependence of the spin-dependent moments17

〈xn〉∆u−∆d = ∆an

(
1 + ∆cLNAm2

π log
m2

π

m2
π + µ2

)
+ ∆bn

m2
π

m2
π + m2

b,n

, (6)

and

〈xn〉δu−δd = δan

(
1 + δcLNAm2

π log
m2

π

m2
π + µ2

)
+ δbn

m2
π

m2
π + m2

b,n

, (7)

Detmold, WM, Thomas, Mod. Phys. Lett. A18 (2003) 2681

Chiral physics vital for understanding lattice data



Odds and evens

q + q̄

q − q̄

For unpolarized parton distributions

      - n even          total 
                                             
      - n odd           valence               

qv ≡ q − q̄ = q + q̄ − 2q̄

If have sufficient number of moments

     - fit odd and even moments separately
       to obtain both valence and total

     - subtract 2 x empirical sea from odd moments
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FIG. 3. The lowest four moments of the valence uv − dv distribution (scaled by 3n) at the
physical quark mass, extracted from the fit to the lattice data using a linear extrapolation (di-
amonds) and the improved chiral extrapolation, Eq. (7) (stars). The solid and dot-dashed lines

are χ2 fits to the improved and linearly extrapolated moments respectively using Eq. (3), with ε

and γ constrained to their average values. The shaded region represents a 1 standard deviation of

the fit parameters about the optimal values for the improved extrapolation. The short-dashed line
represents the heavy quark limits of the moments.
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Chiral extrapolation of valence moments

Moments of uv − dv (scaled by 3n)



FIGURES
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FIG. 1. Quality of reconstruction of the valence x(uv(x)− dv(x)) distribution from several low
moments: the shaded region represents the spread between different next-to-leading order distri-

butions from global parameterizations [11–13] (at Q2 = 4 GeV2 in the MS scheme), while the
long–dashed line represents a parameterization of the average of the three distributions, Eq. (4).
The short–dashed line (which is almost indistinguishable from the long–dashed, average parame-

terization) is the distribution reconstructed from the lowest six moments of the average parameter-
ization using Eq. (3) with ε and γ unconstrained. The dotted curve indicates the fit obtained when

only four moments are used with the same fitting form. In contrast, the solid lines represent the
distribution reconstructed from the lowest three moments (n = 0, 1, 2) using Eq. (3) with ε and γ

constrained to the values obtained from direct fits to the average distribution, ε = ε∆ and γ = γ∆.
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How well can one reconstruct PDFs 
from a few moments?

Test case:

xq(x) = ax
b(1 − x)c(1 + ε

√
x + γx)

fit(i) : 4 unconstrained parameters (b, c, ε, γ)

fit(vii) : 2 unconstrained parameters (b, c)
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FIG. 4. The physical valence x(uv(x)−dv(x)) distribution, extracted using the improved chiral
extrapolation of the lattice moments (solid), and a linear extrapolation, scaled by a factor 1/2
(dot–dashed). The lighter shaded region indicates a 1σ variation of the fit parameters about the

optimal values for the improved extrapolation, while the dark shaded region represents the spread
between global parameterizations [11–13].
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xq(x) = ax
b(1 − x)c(1 + ε

√
x + γx)

Reconstructed distribution

resembles
‘‘constituent quark’’

distribution
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FIG. 5. The nonsinglet valence distribution x(uv(x) − dv(x)) extracted from the improved
extrapolation formula, Eq. (7), for various pion masses: mπ = 0 (short-dashed), mπ = 0.139 GeV
(solid), mπ = 0.5, 1 and 5 GeV (long-dashed). The fit parameters are tabulated in Table II.
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Quark mass dependence of PDFs

Looks like ‘‘constituent quark’’ distribution 
in heavy quark limit !



3

Figure 1. Two-flavour, dynamical fermion lattice
QCD data for the ∆, N and vector meson (ρ)
mass data from UKQCD [9] (open circles) and
CP-PACS [10] (filled circles). The solid lines are
the continuum limit, infinite volume predictions
of Eqs. (4), (3) and (5). The squares (barely dis-
cernable from the data) are the predicted masses
on a lattice of the same dimensions as the data
at that pion mass.

would reduce the uncertainty in the extrapolated
value to the 5% level.

3. OTHER QUANTITIES

The advantage of calculating the mass of the
hadrons in the manner described above is that the
form allows the direct extraction of other proper-
ties of the hadron that depend upon the quark
mass dependence of the hadron mass.

3.1. The Sigma Commutator
The sigma commutator is a direct source of in-

formation about chiral symmetry breaking within
QCD [11]. As such it is a quantity of considerable
importance to extract from lattice QCD calcula-
tions. The form of the commutator is

σN = m̄〈N |ūu + d̄d|N〉 (7)

= m̄
∂mN

∂m̄
, (8)

Figure 2. Analysis of the lattice data for the vec-
tor meson (ρ) mass calculated by CP-PACS [10]
as a function of m2

π. The shaded area is bounded
below by a 1σ error bar. The upper bound is
limited by a physical constraint discussed in [2].

where m̄ is the average mass of the up and down
quarks.

σN is not directly accessible via experiment,
however world data suggests a value of 45 ± 8
MeV [12]. Early attempts at evaluating Eq. (8)
found results in the range 15 to 25 MeV, and the
attention soon changed to evaluating the matrix
element, Eq. (7), directly. In quenched calcula-
tions the results were in the 40–60 MeV range,
but a two flavour dynamical fermion calculation
by the SESAM collaboration [13] found a value
of 18 ± 5 MeV. The difficulties associated with
these approaches are two-fold. Firstly, the scale
independent quantity of σN must be constructed
from the renormalisation depended quantities m̄
and 〈N |ūu+ d̄d|N〉. Additionally there still is the
need to extrapolate the quantities to the physical
pion mass.

Our recent work showed that provided the ex-
trapolation method is under control the evalua-
tion of σN at mπ = 140 MeV, is a straightforward
calculation. The important advantage of this ap-
proach is that one need only work with renormal-
isation group invariant quantities.

We discussed previously how a chirally moti-

Young, Wright, Leinweber, Thomas et al.

Connecting models with lattice QCD 

ρ

N

∆



Connecting models with lattice QCD 

• At large quark masses, observables display 
“constituent quark” behavior                               

MB ∼ 3mq

Mmeson ∼ 2mq

Mbaryon ∼ 3mq

- construct ‘‘constituent quark’’ model
  at large quark masses

- extrapolate to physical quark mass using
  known chiral behavior

suggests new approach to modeling QCD



Summary - quark distributions

Sea quarks 

asymmetry            arises from nonperturbative QCD
effects such as pion cloud of the nucleon

d̄ > ū

similarly, strong indications that s != s̄

Valence quarks 

d quark poorly known at large x

n structure obscured by nuclear effects in deuteron
(also nuclear shadowing at small x)

Progress in extracting quark distributions from lattice QCD

need to extrapolate lattice data to physical regime



3.
Quark-hadron duality



Quark-hadron duality

Complementarity between quark and 
hadron descriptions of observables

∑

hadrons

=

∑

quarks

Can use either set of complete basis states
to describe all physical phenomena



• Duality between quarks (high energy) and hadrons 
(low energy) manifests itself in many processes 

• e+ e- annihilation                                                  
- total hadronic cross section at high energy                 
averages resonance cross section

• Heavy meson decays                                              
- duality between hadronic & quark descriptions   
of decays in                   limit

• Duality between s-channel resonances and            
t-channel (Regge) poles in hadronic reactions 

mQ → ∞

Duality in Nature
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Voloshin, Shifman, Sov. J. Nucl. Phys. 41 (1985) 120
Isgur, Phys. Lett. B448 (1999) 111



s channel resonances
R s t channel poles αj t

∑
R

AR s, t ≈ ∑
j
Aj s, t

R(s)
j

!=
j

"! (t)

R

s =

t

= =

Finite energy sum rules

Igi (1962),  Dolen, Horn, Schmidt (1968)

“Finite energy sum rules”

σ
π

+
p
− σ

π
−

p



3.
Quark-hadron duality

- Bloom-Gilman duality



Resonances

As W decreases, DIS region gives way to
 region dominated by nucleon resonances

“DIS”

resonance
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Bloom, Gilman, Phys. Rev. Lett. 85 (1970) 1185

148 W. Melnitchouk et al. / Physics Reports 406 (2005) 127–301

Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.

scaling curve

resonance - scaling duality in
proton                 structure function νW2 = F2



2Average over (strongly Q  dependent) resonances 
     Q   independent scaling function2
≈

Quark-hadron duality

“Finite energy sum rule” for eN scattering

Bloom, Gilman, Phys. Rev. Lett. 85 (1970) 1185

2M

Q2

∫
νm

0

dν F2(ν, Q2) =

∫
ω

′

1

dω′ F2(ω
′)

ω′
= 1/x + M2/Q2



ξ = 2x/(1 +
√

1 + 4M2x2/Q2)

Bloom-Gilman duality

2

Average over
(strongly Q   dependent)
resonances 
     Q   independent
     scaling function

2

≈

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182
Jefferson Lab (Hall C)
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

Local Bloom-Gilman duality

∆

S11

ξ =
2x

1 +
√

1 + 4M2x2/Q2
Nachtmann scaling variable
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Fig. 14. Proton F
p
2 structure function in the resonance region for several values of Q2, as indicated. Data from Jefferson Lab

Hall C [65,66] are compared with some recent parameterizations of the deep inelastic data at the same Q2 values (see text).

Comparison of resonance region data with PDF-based global fits allows the resonance–scaling com-

parison to be made at the same values of (x, Q2), making the experimental signature of duality less

ambiguous. Such a comparison is presented in Fig. 14 for F
p
2 data from Jefferson Lab experiment E94-

110 [65,66], with the data bin-centered to the values Q2 = 1.5, 2.5 and 3.5 GeV2 indicated. These F
p
2

data are from an experiment capable of performing longitudinal/transverse cross section separations, and

so are even more precise than those shown in Figs. 11–13.

The smooth curves in Fig. 14 are the perturbative QCD fits from the MRST [67] and CTEQ [68]

collaborations, evaluated at the same Q2 values as the data. The data are shown with target mass (TM)

corrections, which are calculated according to the prescription of Barbieri et al. [16]. The SLAC curve

is a fit to deep inelastic scattering data [69], which implicitly includes target mass effects inherent in

the actual data. The target mass corrected pQCD curves appear to describe, on average, the resonance

strength at each Q2 value. Moreover, this is true for all of the Q2 values shown, indicating that the

resonance averages must be following the same perturbative Q2 evolution [60] which governs the pQCD

parameterizations (MRST and CTEQ). This demonstrates even more emphatically the striking duality

between the nominally highly nonperturbative resonance region and the perturbative scaling behavior.

An alternate approach to quantifying the observation that the resonances average to the scaling curve

has been used recently by Alekhin [70]. Here the differences between the resonance structure func-

tion values and those of the scaling curve, !F
p
2 , are used to demonstrate duality, as shown in Fig. 15,
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Fig. 26. As in Fig. 25, but for the longitudinal structure function FL.

the integrated resonance region strength forQ2!1GeV2 is similar to the integrated perturbative strength
over the same range in x. This strongly suggests that, at least for the unpolarized structure functions,

duality is a fundamental property of nucleon structure.

4.2.2. Moments of F1 and FL
In this section we present moments of new, LT-separated, spin-averaged, structure function data.

Previously, F2 moments were constructed using assumed values for R. Since hardly any measurements
of R existed in the nucleon resonance region before the Jefferson Lab E94-110 experiment [65,66], one

may expect small changes to the low-Q2 moments of F2 constructed from the earlier data.
At lower values of Q2 (< 5GeV2), the region of the nucleon resonances covers larger intervals of x,

and consequently resonances provide increasingly dominant contributions to structure function moments.

Since bound state resonances are associated with nonperturbative effects in QCD, one expects deviations

fromperturbative behavior to be strongest in this regime.This is especially true in the longitudinal channel,

where long-range correlations between quarks are expected to play a greater role, as discussed in Section

4.2.1, above.

As can be seen in Figs. 27 and 28, nonperturbative effects (other than the elastic contribution) appear

to be small in the new Jefferson Lab data above Q2 = 0.7GeV2. Here, the n = 2 and 4 moments of the

F
p
2 (top), 2xF

p
1 (center), and F

p
L (bottom) structure functions are extracted from fits to the Jefferson Lab

Hall C [65,66] and SLAC [95,98] data. This moment analysis is still preliminary [99], and is ultimately

E. Christy et al. (2005)

duality in F  and F  structure functions
(from longitudinal-transverse separation)

2 L

importance of target mass corrections
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measurements at higher Q2 —data which are planned but
not yet available [24].

Figure 3 shows the same duality integral ratio as in
Fig. 2, but here obtained more locally, in restricted j
ranges around the three prominent resonance enhancement
regions observed in inclusive nucleon resonance electro-
production, i.e., around the masses of the D P33(1232)
(1.3 # W2 , 1.9 GeV2), the S11(1535) (1.9 # W2 ,
2.5 GeV2), and the F15(1680) (2.5 # W2 , 3.1 GeV2)
resonances, and in the higher W2 region above these
(3.1 # W2 # 3.9 GeV2). The uncertainties shown were
computed as in Fig. 2. The latter higher mass ratios,
which compare near deep inelastic data to deep inelastic
data are essentially one and similar to the results in Fig. 2.
It has been pointed out [25] that the D resonance form
factor decreases faster in Q2 than the leading order pertur-
bative QCD Q24 behavior which the scaling curve should
reflect. A similar observation may possibly be made from
Fig. 3 where the ratio (res!DIS) drops below unity in the
region 1 , Q2 , 3.5 "GeV!c#2. The S11 region, on the
other hand, appears systematically higher than the others.
Generally, however, the lower mass resonances appear to
average to the deep inelastic strength, manifesting duality
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FIG. 3. The ratios of integrated data strength in limited ranges
of j around the prominent resonance enhancement mass regions,
to the strength from the resonance fit (stars) and NMC (squares)
scaling curves integrated over the same j regions.

behavior even in these limited ranges of j at low Q2

where higher twist effects might be expected to be large.
By utilizing new inclusive data in the resonance region

at large x, it has been possible to revisit quark-hadron dual-
ity experimentally for the first time in nearly three decades.
These new data, combined with the extensive global mea-
surements of the F2 structure function from deep inelastic
scattering, allow for precision tests of duality in electron-
nucleon scattering. The original duality observations are
verified, and the QCD moment explanation indicates that
higher twist contributions to the n ! 2 moment of the F2
structure function are small or canceling, even in the low
Q2 regime of Q2 $ 0.5 "GeV!c#2. Duality is observed
to hold for local resonance enhancements individually, as
well as for the entire 1 # W2 # 4 GeV2 resonance region.
In all cases, duality appears to be a nontrivial dynamic
property of the nucleon structure function.
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Fig. 16. Ratios of the resonance to scaling integrals of the proton structure functions F
p
2 , F

p
L , 2xF

p
1 , and Rp integrated over x.

The integration limits are defined by the pion threshold at the highest x, and by W = 2GeV at the lowest x, for the Q2 values

of the resonance data. The scaling functions in the ratios are the SLAC parameterization [69] (squares) and the target mass

corrected MRST fit [67] (triangles) at the same (x, Q2) values.

other from a parameterization of SLAC deep inelastic data [69]. In most cases, the integrated perturbative

strength is equivalent to the resonance region strength to better than 5% aboveQ2= 1GeV2. This shows
unambiguously that duality is holding quite well on average in all of the unpolarized structure functions;

the total resonance strength over a range in x is equivalent to the perturbative, PDF-based prediction.

Of some concern is the seeming deviation from this observation in the MRST ratio at the highest

values of Q2 in Fig. 16, where the ratio rises above unity. This rise is not a violation of duality, but

rather is most likely due to an underestimation of large-x strength in the pQCD parameterizations. Higher

Q2 corresponds to large x here and, for comparison with resonance region data at the larger Q2 values,

accurate predictions at large x are crucial. There exists uncertainty in the PDFs at large x, largely due to

the ambiguity in the d/u quark distribution function ratio beyond x ∼ 0.5, which arises from the model
dependence of the nuclear corrections when extracting neutron structure information from deuterium data

(see Refs. [72–75]). Even if nominally deep inelastic data at higher W 2 and Q2, rather than resonance

region data, are compared to the available pQCD parameterizations, the scaling curves do not show

enough strength at large x (x!0.5) and fall uniformly below the data points.

Jefferson Lab (Hall C)

Moments
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Fig. 22. F2 structure function per nucleon as a function of ! for hydrogen, deuterium, and iron. The curves are the GRV
parameterization [81] atQ2 = 1GeV2, corrected for the nuclear EMC effect. Errors shown are statistical only.

Because nucleons in the deuteron have the smallest Fermi momentum of all nuclei, ! scaling is not
expected to work in deuterium as well as in heavier nuclei at low W 2 and Q2. However, ! scaling is
observed even in deuterium at extremely low values of W 2 and relatively low momentum transfers.

For Q2!3GeV2, the resonance structure is completely washed out, so that even the most prominent "
resonance is no longer visible.

A compilation of recent F2 structure function data above W 2 = 1.2GeV2 is shown in Fig. 22 for
hydrogen, deuterium, and iron as a function of !, for a variety of momentum transfers ranging from

Q2=0.5GeV2 at low ! toQ2=7GeV2 at the higher ! values.Also shown is the F2 scaling curve for the
nucleon (from the GRV parameterization [81]), corrected for the known nuclear medium modifications

to the structure function. For the proton, the resonance structure is clearly visible and F2 is seen to
oscillate around the scaling curve. For deuterium, and even more so for iron, the resonances become less

pronounced, being washed out by the Fermi motion of the nucleons inside the nucleus. The prominent

peak present in the deuterium data in Fig. 22 (center panel) corresponds to the " resonance. This peak
follows the scaling curve as for the proton, but the other resonance peaks are smeared so much as to be

Nuclear structure 
functions

for larger nuclei, 
Fermi motion 
does resonance
averaging 
automatically !
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3.
Quark-hadron duality

- duality in QCD



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

2

Operator product expansion

expand moments of structure functions
in powers of 1/Q

τ

matrix elements of operators 
with specific “twist”

τ = dimension − spin

Duality and QCD



(a) (b) (c)

τ = 2

single quark
scattering

τ > 2

qq and qg
correlations

Higher twists



Operator product expansion

expand moments of structure functions
in powers of 1/Q

Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

2

If moment      independent of Q

     

≈
2

higher twist terms            smallA
(τ>2)
n

Duality and QCD



Operator product expansion

expand moments of structure functions
in powers of 1/Q

Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

2

     

de Rujula, Georgi, Politzer, Ann. Phys. 103 (1975) 315

Duality ⇐⇒ suppression of higher twists

Duality and QCD



If higher twists are small (duality “works”)

can use single-parton approximation
to describe structure functions

extract leading twist parton distributions

If duality is violated, and if violations are small

can use duality violations to
extract higher twist matrix elements
learn about nonperturbative
qq or qg correlations 

Applications of duality



Lowest moment of g1

Γ1(Q
2) =

∫ 1

0

dx g1(x, Q2)

= µ2 +
µ4

Q2
+

µ6

Q4
+ · · ·

Twist 2

µ
p(n)
2 =

(
±

1

12
gA +

1

36
a8

)
Cns(Q

2) +
1

9
∆Σ Cs(Q

2)

triplet octet RGI singlet 
axial charge

Example:



Higher twist terms

1/Q   correction to g   moment 2
1

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

target mass
correction

quark-gluon
correlations



Higher twist terms

1/Q   correction to g   moment 2
1

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

f2 → 〈N | ψ̄ G̃µνγν ψ |N〉

d2 → 〈N | ψ̄ G̃µ{νγα} ψ |N〉
twist 3

twist 4



Color polarizabilities

11/Q   correction to g   moment 2

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

 color electric polarizability

χE =
1

3
(4d2 + 2f2) ∼ 〈"ja × "Ea〉z

Ji (1995), Schafer, Mankiewicz, ... (1995)

 color magnetic polarizability

χB =
1

3
(4d2 − f2) ∼ 〈j0

a
"Ba〉z

jµ

a = gsψγµ
taψ



Color polarizabilities

response of collective color electric and magnetic fields
to spin of nucleon
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Proton g  moment1

Nachtmann
moment

= µ2 +
4M2

9Q2
f2 + · · ·M1 =

∫ 1

0

dx
ξ2

x2

[
g1

(
x

ξ
−

M2xξ

9Q2

)
− g2

4M2x2

3Q2

]



χ
p
E = 0.026 ± 0.015 (stat) ± 0.021 (sys)

χ
p
B = −0.013 ± 0.007 (stat) ± 0.011 (sys)

Compare with theoretical  calculations:

χ
p
E χ

p
B

Instanton −0.03 0.02

MIT bag 0.05 0.02

QCD sum rules −0.04 0.01

Lattice ? ?



3

high-precision An
1 data of the Jefferson Lab E99-117 ex-

periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
the statistical and systematic uncertainties. The Jeffer-
son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
In all cases the data include both the inelastic and elas-
tic contributions, with the latter taken from the fit in
Ref. [20].
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FIG. 1: Q2 dependence of Γn

1 from various experiments. The
error bars are a quadratic sum of statistical and systematic
uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.

The twist-2 contribution µn
2 is determined by fitting

the neutron data in Fig. 1 assuming there are no higher
twists in the data beyond Q2 = 5 GeV2, from which we
obtain ∆Σ = 0.35±0.08, where the uncertainty is statis-
tical. Using this central value, the twist-2 contribution is
illustrated in Fig. 1 by the shaded band, with the extrema
representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
∆Σ depends somewhat on the x → 0 behavior assumed
in the extrapolation beyond the measured region. How-
ever, since the higher-twist contributions are determined
from the relative variation in Γn

1 from high to low Q2, the
absolute normalization of the leading-twist contribution
does not play a major role in determining fn

2 .
The higher-twist contribution ∆Γn

1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
of 1/Q2 for ∆Σ = 0.35. Here we have used an

2 =
−0.0031(20) for the target mass corrections, obtained
from a fit to the world neutron data [19] at Q2 = 5 GeV2,
and the value dn

2 = 0.0079(48) for the twist-3 matrix el-

ement obtained from SLAC experiment E155X [21]. At
this Q2 value an

2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
fn
2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.

Meziani, WM et al,
Phys. Lett. B613 (2005) 148

Neutron g  moment1

extracted from          dataΓ
n

1 Γ
3
He

1

correcting for nuclear effects



χ
n
B = −0.001 ± 0.016

χ
n

E = +0.033 ± 0.029

χ
n

E χ
n
B

Instanton 0.03 −0.01

MIT bag 0.00 0.00

QCD sum rules −0.04 −0.02

Lattice ? ?

Compare with theoretical  calculations:
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periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
the statistical and systematic uncertainties. The Jeffer-
son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
In all cases the data include both the inelastic and elas-
tic contributions, with the latter taken from the fit in
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1 from various experiments. The
error bars are a quadratic sum of statistical and systematic
uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.

The twist-2 contribution µn
2 is determined by fitting

the neutron data in Fig. 1 assuming there are no higher
twists in the data beyond Q2 = 5 GeV2, from which we
obtain ∆Σ = 0.35±0.08, where the uncertainty is statis-
tical. Using this central value, the twist-2 contribution is
illustrated in Fig. 1 by the shaded band, with the extrema
representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
∆Σ depends somewhat on the x → 0 behavior assumed
in the extrapolation beyond the measured region. How-
ever, since the higher-twist contributions are determined
from the relative variation in Γn

1 from high to low Q2, the
absolute normalization of the leading-twist contribution
does not play a major role in determining fn

2 .
The higher-twist contribution ∆Γn

1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
of 1/Q2 for ∆Σ = 0.35. Here we have used an

2 =
−0.0031(20) for the target mass corrections, obtained
from a fit to the world neutron data [19] at Q2 = 5 GeV2,
and the value dn

2 = 0.0079(48) for the twist-3 matrix el-

ement obtained from SLAC experiment E155X [21]. At
this Q2 value an

2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
fn
2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.

Higher twist contribution to neutron moment



nonperturbative interactions between
quarks and gluons not dominant
at these scales 

suggests strong cancellations between 
resonances, resulting in dominance 
of leading twist

Total higher twist     zero at Q2
∼ 1 − 2 GeV

2
∼

OPE does not tell us why higher twists 
are small !



Can we understand this
behavior dynamically?

How do cancellations between 
coherent resonances produce
incoherent scaling function?



3.
Quark-hadron duality

- local duality



Coherence vs. incoherence

Exclusive form factors
coherent scattering from quarks

dσ ∼

(∑
i

ei

)2

dσ ∼

∑

i

e
2

i

Inclusive structure functions

incoherent scattering from quarks

How can the square of a sum
become the sum of squares?



Pedagogical model

Two quarks bound in a harmonic oscillator potential
exactly solvable spectrum

Structure function given by sum of squares of 
transition form factors

F (ν,q2) ∼

∑

n

∣∣G0,n(q2)
∣∣2 δ(En − E0 − ν)

Charge operator                          excites
∝ (e1 + e2)

2

∝ (e1 − e2)
2

Σi ei exp(iq · ri)

odd  partial waves with strength 
even partial waves with strength



Pedagogical model

Resulting structure function

F (ν,q2) ∼

∑

n

{
(e1 + e2)

2 G2
0,2n

+ (e1 − e2)
2 G2

0,2n+1

}

If states degenerate, cross terms
cancel when averaged over nearby even and odd 
parity states 

(∼ e1e2)

Minimum condition for duality:

at least one complete set of even and odd 
parity resonances must be summed over

Close, Isgur,  Phys. Lett. B509 (2001) 81



Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

Simplified case:  magnetic coupling of      to quarkγ
∗

expect dominance over electric at large Q2

Quark model



Quark model

Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2

SYMMETRY BREAKING AND QUARK-HADRON DUALITY . . . PHYSICAL REVIEW C 68, 035210 !2003#

035210-3

λ (ρ) = (anti) symmetric component of ground state wfn.



as in quark-parton model !

SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence

7

Summing over all resonances in 56   and 70   multiplets+ -

Ap

1
=

gp

1

F p

1

=
5

9
An

1 =
gn

1

Fn

1

= 0R
np

=
Fn

1

F
p

1

=
2

3

Quark model



cancellations within multiplets for g
n

1

g
n

1earlier onset for      than g
p

1

expect duality to appear earlier for      thanF
p

1
F

n

1

SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
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states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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hence one may expect that at large enough Q2 these would

be constrained by perturbative QCD. In particular, at high Q2

perturbative arguments suggest that the interaction of the

photon !or W boson" should be predominantly with quarks
with the same helicity as the nucleon #23,24$. Since the pho-
ton (W boson" scattering from a massless quark conserves

helicity, the %3/2 cross section would be expected to be sup-
pressed relative to the %1/2 #19$. The question then arises
whether duality can exist between parton distributions at

large x and resonance transitions classified according to

quark helicity rather than spin.

In general, if the relative strengths of the %1/2 and %3/2
contributions to the cross section are weighted by cos2&h and
sin2&h , respectively, then from Table I the ratio of the neu-

tron to proton F1 structure functions can be written as

Rnp!
3

7"5sin2&h
, !18"

while the proton and neutron polarization asymmetries be-

come

A1
p!
7"9 sin2&h
7"5sin2&h

, !19"

A1
n!1"2 sin2&h . !20"

Similarly for neutrino scattering, one has

R'!
1#sin2&h
5"4 sin2&h

!21"

for the unpolarized structure functions, and

A1
'p!

1"3 sin2&h
1#sin2&h

, !22"

A1
'n!

5"6 sin2&h
5"4 sin2&h

!23"

for neutrino-induced polarization asymmetries. The depen-

dence of these ratios on the mixing angle &h is illustrated in
Figs. 2 and 3 !solid curves". For &h!(/4 the SU!6" results in

Eqs. !7" and !8" are once again recovered. In the phenom-
enologically favored region of 0)&h)(/4 the predictions
for A1

p and for A1
'n are very similar to those derived on the

basis of quark spin, which reflects the fact that the ratios

*u/u are predicted to be similar in both cases. Both the %3/2
and S3/2 suppression scenarios give rise to the same predic-

tions for A1
n in the &→0 limit, although the approach to the

maximum values is faster in the case of %3/2 suppression. For
the unpolarized ratios, %3/2 suppression gives rise to larger
values of Rnp and R' than for S3/2 suppression. This is also

evident from the modified transition strengths for F1 and g1
displayed in Tables IV and V for the case of %1/2 dominance
at large x. Summing up the coefficients for the neutron and

proton, one has in the limit x→1:

Rnp!
3

7
, A1

p!1, A1
n!1 #&h!0$ , !24"

for the electromagnetic ratios, and

R'!
1

5
, A1

'p!1, A1
'n!1 #&h!0$ , !25"

for neutrino scattering.

Fitting the x dependence of the mixing angle &h(x) to the
Rnp data with the above x→1 constraint !Fig. 4", the result-
ing predictions for A1

p ,n are shown in Figs. 5 and 6, respec-

tively. Compared with the S1/2 dominance scenario, the %1/2
dominance model predicts a faster approach to the

asymptotic limits. The values for the ratios in Eqs. !24" and
!25" correspond exactly to those calculated at the quark level
on the basis of perturbative QCD counting rules #23,24$.
There, the deep inelastic scattering at x+1 requires the ex-
change in the initial state of two hard gluons, which prefer-

entially enhances those configurations in the nucleon wave

function in which the spectator quarks have zero helicity.

The structure function at large x is then determined by com-

ponents of the nucleon wave function in which the helicity of

the interacting quark matches that of the nucleon. For an

initial state SU!6" wave function, Eq. !9", suppression of the
helicity antialigned configurations leads to the unpolarized

ratio d/u!1/5, and the polarization ratio *q/q!1 for all

TABLE IV. Relative strengths of electromagnetic N→N* transitions corresponding to %1/2 dominance.
These values can be obtained from Table I by adding the F1 and g1 contributions.

SU!6" representation 2
8#56#$ 4

10#56#$ 2
8#70"$ 4

8#70"$ 2
10#70"$ Total

F1
p!g1

p 9 2 9 0 1 21

F1
n!g1

n 4 2 1 1 1 9

TABLE V. Relative strengths of N→N* transitions in neutrino scattering corresponding to %1/2
dominance.

SU!6" representation 2
8#56#$ 4

10#56#$ 2
8#70"$ 4

8#70"$ 2
10#70"$ Total

F1
'p!g1

'p 0 6 0 0 3 9

F1
'n!g1

'n 25 2 16 1 1 45
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transitions for helicity-1/2 dominanceN → N
∗
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2 /F p

2
→ 3/7neutron to proton ratio

cf.  “helicity retention” model
Farrar, Jackson, Phys. Rev. Lett. 35 (1975) 1416

polarization asymmetries AN

1 → 1

cf.  pQCD “counting rules”

hard gluon exchange between quarks



SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?

R!!
1

2
, A1

!p!"
1

3
, A1

!n!
2

3
"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"
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!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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In the other extreme limit as !s→"/2, the polarization asym-
metries approach !1, while Rnp→3/2. Neither of these sce-

narios are supported phenomenologically, as we shall discuss

below, and the physical region appears to correspond to 0

"!s"9"/32.
In analogy with Eqs. #10$–#12$, the ratio of the unpolar-

ized proton and neutron structure functions for neutrino scat-

tering is

R%#
1$7sin2!s
14!10sin2!s

, #14$

and the neutrino polarization asymmetries:

A1
%p#

1!5sin2!s
1$7sin2!s

, #15$

A1
%p#

7!8sin2!s
7!5sin2!s

. #16$

The dependence on the angle !s for the neutrino observables
is shown in Fig. 3 #dashed curves$. The trends of the ratios
are similar to those of the electromagnetic ratios in Fig. 2

#with the neutron and proton reversed$. Once again the

SU#6$ symmetric limit, Eq. #8$, is reproduced when !s
#"/4. The phenomenologically favored scenario in which
S3/2 contributions are suppressed in the limit x→1 gives rise

to

R%#
1

14
, A1

%p#1, A1
%n#1 &!s#0' . #17$

From the relations between the structure functions and par-

ton distributions in the Appendix one can verify that the

results for d/u extracted from Rnp are consistent with those

from R% &Eqs. #A5$ and #A12$', and those for (q/q extracted
from A1

N consistent with those from A1
%N &Eqs. #A6$–#A7$

and Eqs. #A13$–#A14$'.
The dependence of the structure function ratios in Eqs.

#10$–#12$ and Eqs. #14$–#16$ on one parameter !s means

that the SU#6$ breaking scenario with S3/2 suppression can be
tested by simultaneously fitting the n/p ratios and the polar-

ization asymmetries. In general, data on unpolarized struc-

ture functions are more abundant, especially at high x, than

on spin-dependent structure functions, so it is more practical

to fit the x dependence of !s(x) to the existing data on un-
polarized n/p ratios, which can then be used to predict the

polarization asymmetries.

Unfortunately, data on F1 neutrino structure functions at

x%0.4–0.5 are essentially nonexistent, and there have been
no experiments at all to measure spin-dependent structure

functions in neutrino scattering. The most precise data on the

electromagnetic neutron to proton ratio Rnp come from

SLAC experiments &20,21'. The absence of free neutron tar-
gets has meant that neutron structure information has had to

be inferred from inclusive deuteron and proton structure

functions. Because of uncertainties in the treatment of
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breaking: helicity )1/2 dominance #solid$; spin S1/2 dominance

#dashed$; *+ dominance #dot-dashed$. Various theoretical predic-
tions for the x→1 limit are indicated on the ordinate. The data are

from SLAC &20,21', analyzed under different assumptions #see text$
about the size of the nuclear EMC effects in the deuteron &22'.
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nuclear corrections in the deuteron at large x, however,

which is more sensitive to the high momentum components

of the deuteron wave function, the results beyond x!0.6 are
somewhat model dependent "22#, as indicated in Fig. 4. The
difference between the two sets of points is representative of

the theoretical uncertainty in the extraction. In particular, the

lower set of points corresponds to an analysis which ac-

counts for Fermi motion in the deuteron "28#, while the up-
per set of points includes Fermi motion and binding effects

"22# $see also Ref. "29#%. A fit to the weighted average of the
extrema of the two sets of data points, constrained to ap-

proach Rnp!6/19 as x→1, is indicated by the dashed curve

"a polynomial of degree two is used to fit the x dependence
of &s(x) in Eq. $10%#. The fit is clearly compatible with the
current data on Rnp, but could be further constrained by

more accurate data at large x. Several proposals for obtaining

the neutron to proton ratio at large x with reduced nuclear

uncertainties are discussed in Refs. "30,31#.
Using the mixing angle &s(x) fitted to R

np, the resulting

polarization asymmetries for the proton and neutron are

shown in Figs. 5 and 6, respectively, compared with a com-

pilation of large-x data from SLAC "32#, SMC "33#, and

HERMES "34#. The predicted x dependence of both A1
p and

A1
n in the S3/2 suppression scenario is relatively strong; the

SU$6% symmetric results which describe the data at x!1/3
rapidly give way to the broken SU$6% predictions as x→1.

Within the current experimental errors, the S3/2 suppression

model is consistent with the x dependence of both the Rnp

ratio and the polarization asymmetries.

Using the neutrino ratios R', A1
'p , and A1

'n , the indi-

vidual quark flavor and spin distribution ratios can be deter-

mined $or equivalently, extracted from the electromagnetic

ratios as discussed in the Appendix%. The unpolarized d/u
ratio in the S1/2 dominance scenario is shown in Fig. 7

$dashed%, and the spin-flavor ratios (u/u and (d/d are illus-
trated in Figs. 8 and 9, respectively.

C. Helicity 3Õ2 suppression

The above discussion has demonstrated how duality be-

tween the parton model and a sum over low-lying resonances

can arise on the basis of classifying transitions to excited

states according to the total spin of the quarks, with either

equal weighting of S1/2 and S3/2 components in the case of

SU$6% symmetry, or suppression of the latter at large x. Ac-
cording to duality, structure functions at large x are deter-

mined by the behavior of transition form factors at high Q2;
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• Remarkable confirmation of quark-hadron 
duality in structure functions                              
-    higher twists “small” down to low                   

• Use duality violations to extract higher twist 
matrix elements       color polarizabilities

• Quark models provide clues to origin of 
resonance cancellations      local duality                                                

• Practical applications                                                
-     broaden kinematic region for studying                     
-     (leading and higher twist) quark-gluon structure             
-     of nucleon                                               -              
-     

Summary - quark-hadron duality

Q2(∼ 1 GeV2)
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Form factors
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ε =
(
1 + 2(1 + τ) tan2 (θ/2)

)
−1

N

σMott =
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4E3 sin
4 θ
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cross section for scattering
from point particle
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τ
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E(Q2) reduced cross section

GE , GM Sachs electric and magnetic form factors
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cf. classical (Non-Relativistic) current density
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FIG. 6. Charge (ρch) and magnetization (ρm) densities for the neutron fitted using the LGE
parametrization with λE = λM = 2.

FIG. 7. Comparison between proton charge and magnetization densities using a factor of r2 to

emphasize the surface and tail regions. The fits used the LGE parametrization with λE = λM = 2.
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FIG. 4. Comparison between data for GE/GM obtained from polarization measurements with
fits made to the entire data sets employed for nucleon electromagnetic form factors. Results for the
LGE parametrization λE = λM = 2 are shown as bands. Also shown are the linear parametrization

proposed by [14] for the proton and a fit based upon the Galster parametrization for the neutron.

FIG. 5. Comparison between charge (ρch) and magnetization (ρm) densities for the proton
fitted using the LGE parametrization with λE = λM = 2. Both densities are normalized to∫

dr r2ρ(r) = 1.
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M → Q2FIG. 4. Comparison between data for GE/GM obtained from polarization measurements with
fits made to the entire data sets employed for nucleon electromagnetic form factors. Results for the
LGE parametrization λE = λM = 2 are shown as bands. Also shown are the linear parametrization

proposed by [14] for the proton and a fit based upon the Galster parametrization for the neutron.

FIG. 5. Comparison between charge (ρch) and magnetization (ρm) densities for the proton
fitted using the LGE parametrization with λE = λM = 2. Both densities are normalized to∫

dr r2ρ(r) = 1.
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implies very different proton charge and 
magnetization densities at small r
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II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:

d!

d"
!!Mott!GEp

2 "#GMp

2

1"#
"2#GMp

2 tan2$%/2&" , $1&

where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,

!R'
d!

d"

($1"#&

!Mott
!#GMp

2 $Q2&"(GEp

2 $Q2&, $2&

where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:

GEp

GMp

!#
Pt

Pl

$Ee"Ee!&tan$%/2&
2Mp

, $3&

where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.

J. ARRINGTON PHYSICAL REVIEW C 68, 034325 $2003&

034325-2
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form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:

GEp

GMp

!#
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$Ee"Ee!&tan$%/2&
2Mp

, $3&

where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.
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II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.
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form factors are constant and !R depends only on ( . A
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energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp
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tercept. Note that because the GMp
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2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for
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Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of
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2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
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, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:
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where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.
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FIG. 2: Difference between the full two-photon exchange correction to the elastic cross section

(using the realistic form factors in Eq. (26)) and the commonly used expression (23) from Mo &

Tsai [13] for Q2 = 1–6 GeV2. The numbers labeling the curves denote the respective Q2 values in

GeV2.
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Effect on cross section

Born cross section with PT form factors

including TPE effects 
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FIG. 4: Reduced cross section σR (scaled by the dipole form factor G2
D) versus ε for several values

of Q2: (a) SLAC data [27] at Q2 = 3.25 (open squares), 4 (filled circles), 5 (open circles) and

6 GeV2 (filled squares); (b) JLab data [4] at Q2 = 2.64 (filled squares), 3.2 (open squares) and

4.1 GeV2 (filled circles). The dotted curves are Born cross sections evaluated using a form factor

parameterization [26] with Gp
E fitted to the polarization transfer data [5], while the solid curves

include 2γ contributions. The curves in the bottom panel have been shifted by (+1.0%, +2.1%,

+3.0%) for Q2 = (2.64, 3.2, 4.1) GeV2.
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6 GeV2 (filled squares); (b) JLab data [4] at Q2 = 2.64 (filled squares), 3.2 (open squares) and

4.1 GeV2 (filled circles). The dotted curves are Born cross sections evaluated using a form factor

parameterization [26] with Gp
E fitted to the polarization transfer data [5], while the solid curves

include 2γ contributions. The curves in the bottom panel have been shifted by (+1.0%, +2.1%,

+3.0%) for Q2 = (2.64, 3.2, 4.1) GeV2.
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Two-photon exchange in elastic scattering
TABLE I: Parameters for the proton and neutron form factor fits in Eq. (26) used in this work,

with ni and di in units of GeV2.

F p
1 F p

2 Fn
1 Fn

2

N 3 3 3 2

n1 0.38676 1.01650 24.8109 5.37640

n2 0.53222 –19.0246 –99.8420

d1 3.29899 0.40886 1.98524 0.76533

d2 0.45614 2.94311 1.72105 0.59289
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FIG. 1: Two-photon exchange box and crossed box diagrams for elastic electron–proton scattering.
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shown assuming a linear slope for ε = 0.2 − 0.9 (filled squares) and ε = 0.5 − 0.8 (filled circles)

(offset for clarity).
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how does TPE affect polarization transfer ratio?

R̃= R

(
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)
where                                   is finite part of       
contribution relative to IR part of Mo-Tsai

∆L,T = δ
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FIG. 8: Ratio of the finite part (with respect to the IR contribution in Eq. (22)) of the Born+2γ

correction relative to the Born term, for (a) longitudinal and (b) transverse recoil proton polariza-

tion, at Q2 = 1 (dotted), 3 (dashed) and 6 GeV2 (solid). Note the different scales on the vertical

axes.
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Lowest mass excitation is           resonance P33 !

to divide dσ by the well-known factor describing the scattering from a structureless “proton”
(see, e. g., [11]) and thus use the reduced cross section

dσR =
[
G2

M(Q2) +
ε

τ
G2

E(Q2)
]
(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(
M†

B Mγγ
N,∆

)

|MB|
2 . (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.

1
p p
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p
4

p
2

k q!k
!

FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{
g1 [ gναp/q/ − pνγαq/ − γνγαp · q + γνp/qα ]

+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}
γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form

F∆(q2) =
Λ4

∆

(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.
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the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
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2, we derive
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The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.
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FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{
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+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}
γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form
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(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.
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where Λ∆ is the cutoff. The form factor entails some model-dependence of our results, which
is unavoidable in any dynamical hadronic calculation. The isospin transition operator T3 is
defined by the relations

∑3
α=1 T †

αTα = 1 and TαT †
β = δαβ − τατβ/3, where τ1,2,3 are the usual

Pauli matrices. The vertex with an outgoing ∆ is given by the Dirac conjugate of Eq. (3),

Γαν
γN→∆(p, q) ≡ iV αν

∆out(p, q) = γ0

[
Γνα

γ∆→N(p, q)
]†

γ0, with pα and qν the four-momenta of
the outgoing ∆ and incoming photon, respectively. The γN∆ vertex is orthogonal to the
four-momenta of both the photon and the ∆:

qνΓ
να
γ∆→N(p, q) = 0, pαΓνα

γ∆→N(p, q) = 0 . (5)

The first of these equations ensures the usual electromagnetic gauge invariance of the cal-
culation while the second allows us to use only the physical spin 3/2 component,

S∆
αβ(p) =

−i

p/ − M∆ + i0
P3/2

αβ (p) , P3/2

αβ (p) = gαβ −
1

3
γαγβ −

1

3p2
(p/γαpβ + pαγβp/) , (6)

of the Rarita-Schwinger propagator [13], the background spin 1/2 component vanishing when
contracted with the adjacent γN∆ vertices [14]. At present we do not include a width in
the ∆ propagator as its influence on the unpolarised cross section should be small.

The loop integrals corresponding to the box and crossed-box diagrams in Fig. 1 can be
written as

Mγγ
∆ = −e4

∫ d4k

(2π)4

N∆
box(k)

D∆
box(k)

− e4

∫ d4k

(2π)4

N∆
x−box(k)

D∆
x−box(k)

, (7)

with the numerators and denominators given by

N∆
box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γµ [p/1 − k/ + me] γνu(p1) , (8)

N∆
x−box(k) = U(p4)V
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∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γν [p/3 + k/ + me] γµu(p1) , (9)

D∆
box(k) =

[
k2 + i0

] [
(k − q)2 + i0

] [
(p1 − k)2 − m2

e + i0
] [

(p2 + k)2 − M2
∆ + i0

]
, (10)

D∆
x−box(k) = D∆

box(k)
∣∣∣
p1−k→p3+k

, (11)

where U and u denote the proton and electron four-spinor wave functions, respectively.
Compared to the case of the nucleon [6], the presence of a ∆ in the intermediate state entails
a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
infrared divergent, in contrast with the nucleon contribution where the infrared part is very
important [10, 15]. The evaluation of Eq. (7) involves preliminary algebraic manipulations
to effect cancellations between terms in the numerators and denominators and subsequent
integration of the thus simplified expressions. The result is obtained analytically in terms of
the standard Passarino-Veltman dilogarithm functions [16]. In the calculation we used the
computer package “FeynCalc” [17].

The first and second loop integrals in Eq. (7) must be mutually related by crossing sym-
metry, which can be formulated in terms of the numerator of Eq. (2) using the Mandelstam
variables s = (p1 + p2)2, t = (p1 − p3)2 and u = (p2 − p3)2 = 2M2

N + 2m2
e − t − s. Denoting
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Γαν
γN→∆(p, q) ≡ iV αν

∆out(p, q) = γ0

[
Γνα

γ∆→N(p, q)
]†

γ0, with pα and qν the four-momenta of
the outgoing ∆ and incoming photon, respectively. The γN∆ vertex is orthogonal to the
four-momenta of both the photon and the ∆:

qνΓ
να
γ∆→N(p, q) = 0, pαΓνα

γ∆→N(p, q) = 0 . (5)

The first of these equations ensures the usual electromagnetic gauge invariance of the cal-
culation while the second allows us to use only the physical spin 3/2 component,

S∆
αβ(p) =

−i

p/ − M∆ + i0
P3/2

αβ (p) , P3/2

αβ (p) = gαβ −
1

3
γαγβ −

1

3p2
(p/γαpβ + pαγβp/) , (6)

of the Rarita-Schwinger propagator [13], the background spin 1/2 component vanishing when
contracted with the adjacent γN∆ vertices [14]. At present we do not include a width in
the ∆ propagator as its influence on the unpolarised cross section should be small.

The loop integrals corresponding to the box and crossed-box diagrams in Fig. 1 can be
written as

Mγγ
∆ = −e4

∫ d4k

(2π)4

N∆
box(k)

D∆
box(k)

− e4

∫ d4k

(2π)4

N∆
x−box(k)

D∆
x−box(k)

, (7)

with the numerators and denominators given by

N∆
box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γµ [p/1 − k/ + me] γνu(p1) , (8)

N∆
x−box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γν [p/3 + k/ + me] γµu(p1) , (9)

D∆
box(k) =

[
k2 + i0

] [
(k − q)2 + i0

] [
(p1 − k)2 − m2

e + i0
] [

(p2 + k)2 − M2
∆ + i0

]
, (10)

D∆
x−box(k) = D∆

box(k)
∣∣∣
p1−k→p3+k

, (11)

where U and u denote the proton and electron four-spinor wave functions, respectively.
Compared to the case of the nucleon [6], the presence of a ∆ in the intermediate state entails
a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
infrared divergent, in contrast with the nucleon contribution where the infrared part is very
important [10, 15]. The evaluation of Eq. (7) involves preliminary algebraic manipulations
to effect cancellations between terms in the numerators and denominators and subsequent
integration of the thus simplified expressions. The result is obtained analytically in terms of
the standard Passarino-Veltman dilogarithm functions [16]. In the calculation we used the
computer package “FeynCalc” [17].

The first and second loop integrals in Eq. (7) must be mutually related by crossing sym-
metry, which can be formulated in terms of the numerator of Eq. (2) using the Mandelstam
variables s = (p1 + p2)2, t = (p1 − p3)2 and u = (p2 − p3)2 = 2M2

N + 2m2
e − t − s. Denoting

4

Two-photon exchange amplitude with     intermediate state          !

numerators

spin-3/2 projection operator

to divide dσ by the well-known factor describing the scattering from a structureless “proton”
(see, e. g., [11]) and thus use the reduced cross section

dσR =
[
G2

M(Q2) +
ε

τ
G2

E(Q2)
]
(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(
M†

B Mγγ
N,∆

)

|MB|
2 . (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.

1
p p

3

p
4

p
2

k q!k
!

FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{
g1 [ gναp/q/ − pνγαq/ − γνγαp · q + γνp/qα ]

+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}
γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form

F∆(q2) =
Λ4

∆

(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.

3



coupling dominates the ∆ two-photon exchange correction whereas the electric coupling
has a much smaller effect. Since the contribution of the Coulomb component is strongly
suppressed (not exceeding 0.2%) we will omit it from further discussion, setting gC = 0 in
the rest of the paper.

The ε dependence of the sum of the ∆ and nucleon two-photon exchange corrections is
shown in Fig. 2, for two fixed values of Q2. The dependence on the γN∆ form factor can
be seen by comparing the results obtained with the cutoffs Λ∆ = 0.84 GeV and Λ∆ = 0.68
GeV (the latter choice corresponds to a ∆ which is spatially “bigger” than the nucleon).
The purely nucleon contribution, shown for comparison, was calculated as in Ref. [6] using

-0.02

-0.01

0.0

Q
2
=1 GeV

2

0.0 0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.0

Q
2
=3 GeV

2

2 [N + ] =0.84 GeV

2 [N + ] =0.68 GeV

2 [N]

FIG. 2: Sum of the nucleon (N) and ∆ contributions to the two-photon exchange correction to the
electron-proton scattering cross section, using two values of the cutoff Λ∆.

the γNN form factors extracted from the PT experiments [3, 4]. The ∆ correction is more
prominent at higher momentum transfers. The ∆ tends to reduce the effect of the nucleon
two-photon exchange, making the modulus of the negative nucleon correction somewhat
smaller at backward angles (i. e. at low ε). The combined effect of the nucleon and ∆ two-
photon exchanges produces a negative correction to the cross section at small ε, decreasing
in magnitude as ε increases.2 The main features of the ∆ contribution – its smallness and its
tendency to attenuate the nucleon contribution at backward angles – are insensitive to the
γN∆ form factor, being to that extent model-independent. The detailed interplay between

2 The diminishing of the two-photon exchange correction at forward angles is consistent with the analysis

of electron-proton and positron-proton scattering data [19].

6

has opposite slope to N!

cancels some of  TPE correction from N

Kondratyuk, Blunden, WM, Tjon
Phys. Rev. Lett.  2006



the ∆ and the nucleon contributions can be more complicated, especially at forward angles,
as can be seen from Fig. 2.

The calculated differential cross section is shown by the solid lines in Fig. 3, including the
Born term and the sum of the two-photon exchange corrections δN +δ∆ with the nucleon and
the ∆ intermediate states. The reduced cross section Eq. (1), scaled for convenience by the

0.0 0.2 0.4 0.6 0.8 1.0

7.5

8.0

8.5

9.0

9.5

d
R
/G

D
2

Q
2
=2.64 GeV

2

Q
2
=4 GeV

2

Q
2
=6 GeV

2

Born + 2 [N + ] =0.84 GeV

Born

FIG. 3: Effect of adding the two-photon exchange (with the indicated choice of the γN∆ form

factor) to the Born cross section, the latter evaluated with the nucleon form factors from the PT
experiment [3, 4]. The reduced cross section is scaled as described in the text. The curves for
Q2 = 2.64, 4 and 6 GeV2 have been shifted vertically by −0.04, +0.04 and +0.09, respectively.

The data points at three fixed momentum transfers are taken from Refs. [1, 2].

square of the standard dipole form factor GD(Q2) = 1/(1+Q2/0.842)2, is compared in Fig. 3
with the LT separation measurements from SLAC [1] (at Q2 = 4 and 6 GeV2) and JLab [2]
(at Q2 = 2.64 GeV2). The dotted lines show the Born contribution alone, using the nucleon
form factors GE,M(Q2) taken from the analysis of the JLab PT experiment [3, 4]. One can
see that including only the Born term is inadequate in the analysis of the data. The addition
of the two-photon exchange correction increases the slope of the cross section, also exhibiting
some nonlinearity in ε. Thus the results of the PT and LT separation experiments become
essentially compatible by including the nucleon and ∆ two-photon exchange corrections.

To summarise, we calculated the correction to the electron-proton scattering cross section
due to the two-photon exchange with a ∆ intermediate state, treated on the same footing
as the intermediate nucleon contribution. For realistic choices of the γN∆ vertex we found
that the ∆ contribution alters the cross section by an amount from −1% to +2%, and is
largest at backward scattering angles. For the cross section obtained using the LT separation
technique, the ∆ two-photon exchange contribution slightly reduces the magnitude of the
(negative) nucleon correction. Generally, the cross section including the nucleon and ∆
two-photon exchange corrections has the angular dependence which can accommodate the

7

weaker    dependence than with N alone!

better fit to JLab data!
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4.
Form factors
- effect on neutron



Neutron correction 
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FIG. 12: 2γ contribution to the unpolarized electron–neutron elastic scattering cross section, at

Q2 = 1 (dotted), 3 (dashed) and 6 GeV2 (solid and dot-dashed). The dot-dashed curve corresponds

to the form factor parameterization of Ref. [41], while the others are from Ref. [16] (as fitted by

the parameters in Table I).
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full correction
- no IR contribution

Blunden, WM, Tjon
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Effect on neutron LT form factors
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FIG. 13: Effect of 2γ exchange on the ratio of neutron form factors µnGn
E/Gn

M using LT separation.

The uncorrected points (open circles) are from the form factor parameterization in Ref. [16], while

the points corrected for 2γ exchange are obtained from linear fits to δfull in Fig. 12 for ε = 0.2−0.9

(filled squares) and ε = 0.5 − 0.8 (filled circles) (offset for clarity).
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Effect on neutron PT form factors
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FIG. 14: Effect of 2γ exchange on the ratio of neutron form factors µnGn
E/Gn

M using polarization

transfer. The uncorrected points (open circles) are from the parameterization in Ref. [16], and the

points corrected for 2γ exchange correspond to ε = 0.3 (filled squares) and ε = 0.8 (filled circles)

(offset for clarity).

37

small correction for PT

Q2
= 6 GeV

2

4% (3%) suppression at                    for  Q2
= 3 GeV

2
ε = 0.3 (0.8)

10% (5%) suppression at                    for  ε = 0.3 (0.8)



proton neutron
El

ec
tri

c
M

ag
ne

tic
Next 5 years

Proton Neutron

Electric

Magnetic

To 9 GeV2

To 3.5 GeV2

Planned Extensions w/ 6 GeV beams (next 5 years)

JLab data on the EM form factors provide a testing ground
for theories constructing nucleons from quarks and glue



4.
Form factors

- strangeness in the nucleon



Operated by the Southeastern Universities Research Association for the U.S. Department of  Energy

 Thomas Jefferson National Accelerator Facility

Strangeness Widely Believed to
Play a Major Role – Does It?

• As much as 100 to 300 MeV of proton mass:

45 § 8 MeV (or 70?)

y=0.2 § 0.2

Hence 110 § 110 MeV  (increasing to 180 for higher !N)

• Through proton spin crisis: 

       As much as 10% of the spin of the proton

• HOW MUCH OF THE MAGNETIC FORM FACTOR?

∆M
strange

N
=

y ms

mu + md

σN

y = 0.2 ± 0.2
σN = 45 ± 8 MeV

∆M
strange

N
∼ 110 ± 110 MeV

Operated by the Southeastern Universities Research Association for the U.S. Department of  Energy

 Thomas Jefferson National Accelerator Facility

Strangeness Widely Believed to
Play a Major Role – Does It?

• As much as 100 to 300 MeV of proton mass:

45 § 8 MeV (or 70?)

y=0.2 § 0.2

Hence 110 § 110 MeV  (increasing to 180 for higher !N)

• Through proton spin crisis: 

       As much as 10% of the spin of the proton

• HOW MUCH OF THE MAGNETIC FORM FACTOR?



Strangeness in the Nucleon
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Strangeness in the Nucleon
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Strangeness in the Nucleon

Experimental Asymmetries

• em form factors: Kelly PRC 70 (2004) 068202

• “no vector strange” asymmetry, ANVS, is A(     ,      = 0)

• inside error bars: stat, outside: stat & pt-pt
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Strangeness in the Nucleon

Parity-violating e scattering

dependence of 
“zero-point” on
e.m. form factors

Armstrong et al. [G0 Collaboration]
nucl-ex/0506021

4

timated from the range of elastic asymmetries generated
from a variety of different background yield and asymme-
try models. These models are bounded by the measured
slopes of background yields and asymmetries on either
side of the elastic peak and varied continuously between
these limits. The uncertainty in the background asym-
metry for detector 15 is conservatively taken to be the
difference between interpolated background asymmetries
in successive detectors as described above. We have also
estimated the global and point-to-point contributions to
these uncertainties from the extent to which a change in,
e.g., the background asymmetry functional form, consis-
tently changes the asymmetries in all the affected detec-
tors.

The results of the experiment are shown as a function
of momentum transfer in Fig. 2. The quantity

Gs
E + ηGs

M =
4
√

2πα

GF Q2

D
εGγ

E

(Aphys − ANV S) , (5)

(where η
(
Q2

)
= τGp

M/εGp
E) is determined from the dif-

ference between the experimental asymmetry and the
“no-vector-strange” asymmetry, ANV S . ANV S is calcu-
lated from Eqn. 3 with Gs

E = Gs
M = 0 for all values of Q2,

and using the electromagnetic form factors of Kelly [15].
Also shown is the excellent agreement with the HAPPEX
measurements [16, 17] made at nearly the same kinematic
points (with small corrections to the asymmetries, < 0.2
ppm, to adjust them to the G0 beam energy). The error
bars include the statistical uncertainty (inner) and statis-
tical plus point-to-point systematic uncertainties added
in quadrature (outer). The error bands represent, for the
G0 experiment, the global systematic uncertainties: from
the measurement (upper) and from the uncertainties in
the quantities entering ANV S (lower). These quantities
are: the calculated value of the axial-vector form factor
normalization [18] (differing from gA/gV by electroweak
radiative corrections), the same dipole momentum trans-
fer dependence for Ge

A(Q2) as is deduced for GA(Q2) [19],
the axial vector strangeness contribution ∆s [20], and
the electroweak radiative corrections [21]. The sensitiv-
ity of the result to electromagnetic form factors is shown
separately by the lines on the plot. For the alternative
form factor parameterizations of Friedrich and Walcher
(FW) [22] (dashed) and the combination (dotted): Ar-
rington “Rosenbluth” [23] - proton, and Kelly [15] - neu-
tron, the effective ANV S is shown (e.g., for the FW pa-
rameterization, the value of Gs

E + ηGs
M at Q2 = 0.63

GeV2 increases from 0.059 to 0.072). Alternately, the
uncertainties in the Kelly form factor fits would increase
the width of the uncertainty band (lower) for ANV S at
each Q2 by about 25% if included there.

The Gs
E + ηGs

M data shown in Fig. 2 have a system-
atic and intriguing Q2 dependence. For reference we note
that Gs

E + ηGs
M = 0 at Q2 = 0 and that η ∼ 0.94Q2

(Kelly form factors) for our kinematics. First, to charac-

FIG. 2: The combination Gs
E + ηGs

M for the present mea-
surement. The gray bands indicate systematic uncertainties
(to be added in quadrature); the lines correspond to different
electromagnetic nucleon form factor models (see text).

terize our result with a single number, we tested the hy-
pothesis Gs

E + ηGs
M = 0 by generating randomized data

sets with this constraint, distributed according to our
statistical and systematic uncertainties (including corre-
lated uncertainties). The fraction of these with χ2 larger
than that of our data set was 11%, so we conclude that
the non-strange hypothesis is disfavored with 89% con-
fidence. More important is the Q2 dependence of the
data. The initial rise from zero to about 0.05 is consis-
tent with the finding that Gs

M (Q2 = 0.1 GeV2) ∼ +0.5
from the SAMPLE [24], PVA4 [25] and HAPPEX [17]
measurements. Because η increases linearly throughout,
the apparent decline of the data in the intermediate re-
gion up to Q2 ∼ 0.3 indicates that Gs

E may be negative

in this range. There is also some support for this conclu-
sion from the combination of G0 and PVA4 [26] results
at Q2 = 0.23 GeV2. There is a significant trend, consis-
tent with HAPPEX [16], to positive values of Gs

E + ηGs
M

at higher Q2. Experiments planned for Jefferson Lab,
including G0 measurements at backward angles, and
MAMI (Mainz) will provide precise separations of Gs

E

and Gs
M over a range of Q2 to address this situation.

In summary, we have measured forward angle parity-
violating asymmetries in elastic electron-proton scatter-
ing over a range of momentum transfers from 0.12 to 1.0
GeV2. These asymmetries determine the neutral weak
interaction analogs of the ordinary charge and magneti-
zation form factors of the proton. From the asymmetries
we have determined combinations of the strange quark
contributions to these form factors, Gs

E + ηGs
M , which,

together with other experiments, indicate that both Gs
M

and Gs
E are non-zero.

We gratefully acknowledge the strong technical contri-
butions to this experiment from many groups: Caltech,
Illinois, LPSC-Grenoble, IPN-Orsay, TRIUMF and par-
ticularly the Accelerator and Hall C groups at Jefferson
Lab. This work is supported in part by CNRS (France),

η = τGM/εGE

∼ 0.94 Q2

intriguing      dependence !Q2

trend to positive values at larger Q2



Strangeness in the Nucleon

combined world data at Q2
= 0.1 GeV
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Lattice Results
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Charge Symmetry Constraint
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u-quark in the proton

Leinweber, RDY et al. PRL(2005)



u-quark in the Sigma

Leinweber, RDY et al. PRL(2005)



Final Result

Gs
M =−0.046±0.019µN

up

u!
= 1.092±0.030

u
n

u!
= 1.254±0.124



Magnetic Moments

Leinweber et al. PRL(2005)



Compare expt’l status
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Repeat analysis for strange electric form factor 

u-quark in proton

Leinweber, RDY et al. hep-lat/0601025

Gs
E(Q

2 = 0.1) = +0.001±0.004±0.003



Summary - Form Factors

Surprisingly different behavior for       andG
p
E G

p
M

different charge and magnetization distributions

     exchange needed to resolve discrepancy 
between LT and PT measurements of                  Gp

E/Gp
M

2γ

reached limit of applicability of      exchange
in elastic eN scattering

1γ

Strange magnetic moment large and positive

cf. lattice QCD/phenomenology,  which gives very
small and negative value

G0 backward angle run in 2006-2007 will determine
      and        separatelyG

s

E G
s
M



Thank you students - good luck!

Thank you Bruce!

slides at  www.jlab.org/div_dept/theory/talks/index.html


