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Plan: Each lecture will be accompanied by questions and 
problems, some requiring  original research

! Lecture 1:  Overview: discussion of relativistic methods

• Two schools  for the relativistic description of few nucleon systems
will be described.

• How do these approaches handle the problem of relativity and what
are the advantages and disadvantages of each?

! Lecture 2:  Theory: two and three nucleon systems

• Introduction to the Covariant Spectator Theory.

• How are the bound state and scattering equations obtained, what
are the normalization conditions?

Outline:



Outline (continued)

! Lecture 3:  Results: energies below the pion production
threshold

• New, high precision fits to np data below 350 MeV lab
energy, and the relativistic properties of the deuteron and
triton.

• What do these new results tell us about the nature of
nuclear forces?

! Lecture 4:  Electromagnetic interactions: gauge invariance
and effective current operators

• General method for doing gauge invariant calculations in
systems composed of composite particles.

• What can be learned from high energy electron scattering
experiments?

Lecture I:

Overview: Discussion of Relativistic

Methods



Outline

! Overview of relativistic methods: “Two schools”

! Field dynamics (also referred, in these lectures, to as “field form”)

• Relativistic interactions and equations in field theory

• Introduction to Bethe-Salpeter (BS) and Covariant Spectator© (CS)
equations

• Description of bound states in field dynamics

! Hamiltonian Dynamics

• Basic theory in “instant form”

• Comparison with field form

• Poincaré transformations

• Dirac’s forms of dynamics

• The Bakamjian-Thomas construction

• The mass operator

! Cluster separability

! Conclusions

First -- why use a relativistic theory?

! NOT because

• of size of (v/c)2 corrections
(although they may be large in some
applications)

• it is more accurate (it may not be)

• it is “better” than EFT (it
complements EFT)

! Use a covariant theory for the
following reasons

• Intellectual: to preserve an exact
symmetry (Poncare’ invariance)

• Practical: to calculate boosts and
Lorentz kinematics consistently to
all orders (essential when energies
are of the order of 1 GeV)

• Consistent:  to use field theory for
guidance in the construction of

" forces (2!3 body consistency)

" currents consistent with
forces

• Conceptual: for “phenomenological
economy”, and to understand the
non relativistic limit:

" spin 1/2 particles (Dirac
equation)

" interpretation of L•S forces
(covariant scalar-vector theory
of N matter)

" efficient one boson exchange
models of NN forces (?)



Overview of relativistic methods: Two “schools”

Relativity 

with a fixed number of particles

Hamiltonian dynamics

On-shell particles
+ no negative energy states

" loose locality and manifest covariance

Instant
form

Front
form

Point
form

BSLT* PWM† Spectator Bethe
Salpeter

Equal Time (ET) manifest covariance

*Blankenbecler & Sugar, Logunov & Tavkhelidze
†Phillips, Wallace, and Mandelzweig

Klink Strikman
Miller
Salme

Schiavilla
Arenhovel

Gross

Field dynamics

Off-shell particles
+ manifest covariance and locality

" must include negative energy states

FIELD DYNAMICS



Relativistic interactions in field theory

! Diagrammatic derivation for 2 body scattering:

• The exact scattering amplitude is the sum of all Feynman

diagrams

• Divide the sum into irreducible and 2-body reducible terms, and

collect the irreducible terms into a kernel, which is iterated

Scattering
amplitude

OBE TBE

ladder sum crossed
ladder

vertex
correction

self
energy

2-body reducible 2-body reducible

Kernel (potential) is the sum of all
two-body irreducible diagrams

Iteration  of this
equation gives an 
infinite sum

Field Theory: How are bound states described?

! What is a bound state in field theory?

! A bound state is a new particle (not in the Lagrangian) that arises
because of the interactions.  The vertex function # describes how it
couples to the elementary particles in the Lagrangian:

! The bound state produces a pole in the scattering amplitude which does
not correspond to one of the elementary particles in the theory:

! If the bound state is not elementary, no single Feynman diagram will
have the bound state pole; it must be generated from an infinite sum of
Feynman diagrams, much as the geometric series generates a pole at
z=1:
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! The scattering equation is

where V is the kernel (i.e. potential) and G is the propagator

! If the kernel is phenomenological, this is field dynamics instead of field theory.

! The bound state equation follows by assuming the M matrix has a pole, and

substituting

extracting the pole part gives the bound state equation uniquely

! This equation also insures that the non-pole parts of the scattering amplitude do

not contribute near the pole (next lecture)

M (p ', p;P) = V (p ', p;P) + V (p ',k;P)G(k;P)M (k, p;P)!
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Relativistic scattering equations in field theory

Two field dynamical equations

! The Bethe-Salpeter (BS) propagator depends on all four

components of the relative momentum, {k0,k}.  For two scalar

particles it is

! The Covariant Spectator© propagator depends on only three

components of the relative momentum, k.  One particle is on-

shell
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exercise: write the explicit form of these equations in a $4 theory



! The Bethe-Salpeter amplitude is a well defined field theoretic

matrix element:

! The Covariant Spectator© amplitude is also a well defined field

theoretic amplitude:

! Equations for the Bethe-Salpeter and the Spectator* amplitudes

can be derived from field theory

• Both are manifestly covariant under all  Poincaré transformations

(advantage)

• Both incorporate negative energy (antiparticle) states (disadvantage)

These equations both have a connection to field theory
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*O. W. Greenberg’s "n-quantum approximation"

HAMILTONIAN DYNAMICS*

*B. D. Keister and W. N. Polyzou, Ad. in Nucl. Phys. 20, 225 (1991)



! Start with a Hilbert space of free particle states

! Interactions described by the interaction Hamiltonian, HI

! Solve by iteration (perturbation theory)

! The scattering amplitude is then
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Hamiltonian dynamics: basic theory (in “instant” form)
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exercise: check these relations 

! Consider scattering from the 2nd order bubble

! In field theory (Feynman diagrams) this is

! Conclusion 1:  Manifest covariance obtained when BOTH positive and
negative energy contributions are included.

! Conclusion 2: ONE Feynman diagram is the sum of ALL possible
time-ordered graphs.
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Comparison with Field form: $4 theory in 1+1 dimensions
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The Poincaré group and Dirac forms of dynamics

! The Poincaré group are unitary operators on the Hilbert space, with 10
generators: P0, P, J, and K, satisfying the following 45 CR’s:

! Forms of dynamics: The Poincaré group has three subgroups:

• The instant-form is based on the subgroup

• The point-form is based on the Lorentz subgroup

• The front-form is based on the subgroup constructed from 7 generators

J
i
, J

j!" #$ = i%
ijk
J
k
, J

i
, P

j!" #$ = i%
ijk
P
k
, P

i
, P

j!" #$ = 0

J
i
, J

j!" #$ = i%
ijk
J
k
, J

i
, K

j!" #$ = i%
ijk
K

k
, K

i
, K

j!" #$ = &i% ijk J k

 
P

+
= P

0
+ P

3
, P

!
= P

1
,P

2{ }, J
3
, K

3
, E

!
= K

!
"
!
z # J

!

J
i
, J

j!" #$ = i%
ijk
J
k
, J

i
, K

j!" #$ = i%
ijk
K

k
, J

i
, P

j!" #$ = i%
ijk
P
k
, K

i
, K

j!" #$ = &i% ijk J k

K
i
, P

j!" #$ = &i' ij
P
0
, K

i
, P

0!" #$ = &iPi
, P

µ
, P

(!" #$ = 0, J
i
, P

0!" #$ = 0

exercise: prove that the commutation relations for these 7 
generators close. 

Definition of generators

! Finite transformations “generated” by the generators
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Kinematic surfaces and generalized hamiltonia

! Instant-form:

States with definite momentum and spin (eigenstates of P and J):

defined on a surface connected by translations and rotations (the

t=0 surface).  P 0 and K are dynamical; evolving the states away

from the t=0 surface

! Point-form:

States with definite four-velocity (eigenstates of J and K):

defined on a hyperboloid with xµ xµ =1.  The 4 components of P µ  are

dynamical.

! Front-form:

States defined on a light-front, x" = t " z = 0.  The dynamical

generators are P " = P 0 - P 3, F% =K% +z & J%

Dirac Hamiltonian classifications

! Plane forms t " a z = 0

"1 ' a ' 1

! Hyperbolic forms

r

t

light front light front

t

z

a = 0.5

light front light front

a = 0.5

a = 1

a = 1.5

t = !(r2 + a2) 

a = 0:  point form on the light cone

a = !: instant form

Some of the Poincaré transformations are
kinematic; others involve the dynamics

a ' 1:  instant form

a = 1:  front form
Limit not
continuous

6+4

7+3



The Bakamjian-Thomas construction (in instant-form)*

! The commutation relations can be automatically satisfied if the

operators P, J, K, and H = P 0 are replaced by P, r, s, and M.

! For a single particle, (, the generators are written in lower case:

with inverse relations

with non-zero commutators

*B. Bakamjian and H. L. Thomas, Phys. Rev. 92, 1300 (1953)
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Bakamjian-Thomas for n>1

! Proceed in 4 steps

1. Construct total P µ, J and K by adding generators for each

particle

2. Construct the operators M0, R and S (together with P, already

constructed) using the inverse relations (previous slide)

3. Add the interactions to M0, M = M0 + V.  Require that V
commute with M0, P, R and S

4. Construct the new generators H, J and K as functions of M, P, R
and S.  This completes the construction.  All interactions are in

the mass operator.
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Exercise: think about this and work through the relations



The mass operator

! To achieve manifest covariance without negative energy states,
introduce the mass operator

where

! Following the steps we used with the hamiltonian, we have

! Solving by iteration, the scattering amplitude becomes

where, for the second order bubble

! This agrees with the covariant result.
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Comparison with Field form: $4 theory in 1+1 dimensions

! Consider scattering from the 2nd order bubble

! In field theory (Feynman diagrams) this is

! Conclusion 1:  Manifest covariance obtained when BOTH positive and
negative energy contributions are included.

! Conclusion 2: ONE Feynman diagram is the sum of ALL possible
time-ordered graphs.
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Overview of relativistic methods: Two “schools”

Relativity 

with a fixed number of particles

Hamiltonian dynamics

On-shell particles
+ no negative energy states

" loose locality and manifest covariance

Instant
form

Front
form

Point
form

BSLT* PWM† Spectator Bethe
Salpeter

Equal Time (ET) manifest covariance

*Blankenbecler & Sugar, Logunov & Tavkhelidze
†Phillips, Wallace, and Mandelzweig

Klink Strikman
Miller
Salme

Schiavilla
Arenhovel

Gross

Field dynamics

Off-shell particles
+ manifest covariance and locality

" must include negative energy states

! Definition: when one particle is far away, the interaction between
the other two is the same as it would be without the third particle

! If P = p1 + p2 + p3 = 0, and p1 ! 0, then the 23 amplitude is in a moving
frame.  The boost depends on the mass of the 2-body system.

! Hamiltonian dynamics is off-energy shell,                                .  The
energies of particles and subsystems do not match the free particle
energies, and under boosts the cluster property is not easy to
implement.

! Field dynamics is off-mass shell,                      .  Energy is conserved
so boosts and cluster properties are easily satisfied, but off-mass
shell ) negative energy states.

Cluster separability -- 3-body example
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Research study: How is separability handled by the two schools; Can you
support my claim that here off-mass shell techniques work better?



Conclusions and comparison

! Hamiltonian dynamics

• Advantages:

" Real quantum mechanics

" No negative energy states

• Disadvantages

" More ambiguities; no direct connection to field theory

" Difficulties with cluster separability (?)

! Field Dynamics

• Advantages

" Manifest covariance and cluster separability easily implemented

" Close connection to field theory guides the construction of
interactions and currents

• Disadvantages

" Not conventional quantum mechanics; a new approach (if you think
that 1951 is new?) still requiring conceptual development

" Singularities, and need to treat negative energy states is more
work

Exercise:  What’s your opinion?


