Transversity and spin–orbit correlations in two–photon DIS

A. Afanasev, M. Strikman, Ch. Weiss
Exclusive Reactions, JLab, May 21–24, 2007

Transverse target single–spin asymmetry in inclusive $e N(\uparrow) \rightarrow e' X$

- “Pure” two–photon exchange effect!
- Probes helicity–flip amplitudes at quark level (h, g_T)
- Approved JLab Hall A experiment PR-07-013 [X. Jiang et al.] Sensitivity $\sim 10^{-4}$ cf. SLAC 1970 $\sim 10^{-2}$
Transverse target spin dependence in $eN \rightarrow e'X$

- Target spin dependence of cross section
 $$\sim S \cdot (k_1 \times k_2) \quad \text{“normal spin”}$$

- Relative asymmetry
 $$A_y = \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow}$$

- Classical analog: Scattering from magnetic dipole (Lorentz force)
 $$\rightarrow \text{Sign, } p/n \text{ ratio}$$
Spin dependence with two–photon exchange

- Transverse spin dependence zero in one–photon exchange [Christ, Lee 66]

 \[L_{\mu\nu} = L_{\nu\mu} \]

 leptonic tensor symmetric (unpol. beam)

 \[W_{\mu\nu}(S) = -W_{\mu\nu}(-S) \]

 hadronic tensor antisymmetric (P, T inv.)

- Nonzero at \(O(\alpha^3) \): Two–photon exchange and real emission

- Contributions individually IR-finite

 \[\rightarrow \text{No cancellations (cf. elastic FF)} \]

 \[\rightarrow \text{Clean two-photon exchange effect} \]
Example: Pointlike target

\[A_y = \frac{\alpha M}{\sqrt{s}} f(\Theta_{cm}) \quad (\Theta_{cm} \leftrightarrow Q^2/s) \]

- Only imaginary part of two-photon exchange enters; no IR divergences
- Photon virtualities \(-q_1^2, q_2^2 \sim Q^2 \)
- Include strong interactions:
 No QED collinear divergences thanks to gauge invariance

[Barut, Fronsdal 60; …]

[Afanasev, Strikman, CW 07]
Transverse spin dependence in QCD

- Dominance of scattering from same quark (no “anomalous” IR/collinear enhancement)

- Two contributions

 I) Quark helicity non-flip and interactions w. spectators
 [Goeke, Metz, Schlegel 06 . . . gauge invariance!]

 II) Quark helicity flip by interaction with vacuum fields:
 Chiral symmetry breaking

 No Sudakov suppression if
 IR cutoff $\sim \mu^2(\text{chiral}) \gg \Lambda_{QCD}^2$
Composite nucleon approximation

- Assume “composite” nucleon

\[R_N^{-2} \sim \langle p_T^2 \rangle \ll M_q^2 \]

→ Quark helicity flip dominates!
→ Light–front constituent quark model

[cf. Miller 02]

\[
A_y = \frac{\sum e_q^3 h_q(x)}{\sum e_q^2 f_q(x)} \times A_y(\text{quark})
\]

\[\propto M_q \approx 300 \text{ MeV} \]
Predictions for kinematic dependences

\[-A_y \, [10^{-4}] \]

\[s = 10 \text{ GeV}^2 \quad \text{[JLab 6 GeV]} \]

- Asymmetry vanishes in high-energy limit \(A_y \sim s^{-2} \quad (s \gg Q^2) \)
- cf. photon polarizations in \(2\gamma \) box \quad [Gribov, Lipatov, Frolov 70]
Summary

• Very interesting/challenging problem!
 – Higher–order QED corrections
 – QCD factorization
 – Vacuum structure

• “Cleanest” two–photon exchange observable
 – IR finite — no IR cancellations with real emission
 – How large are finite contributions from real emission?

• Probes helicity–flip amplitudes at quark level
 – Composite Nucleon Approximation $\to h(x)$ transversity
 – How large are helicity–conserving contributions?