Probing the two–component structure of the virtual photon in exclusive π^0 photo/electroproduction at JLab

Ch. Weiss (JLab) GPD/Exclusive Processes WG, JLab, Feb. 27, 2007

Aim: “Disentangle” components of virtual photon:

- hadronic size VDM, Regge
- size $1/Q$ GPDs

→ Energy dependence
→ t–slopes, dip structure
→ Azimuthal dependence

... No “explicit” L/T separation!

How do they change with Q^2?
Space–time picture of photo/electroproduction at $W \gg 1$ GeV

$Q^2 = 0$

$Q^2 \gg M_V^2$

$Q^2 \to \text{Infinity}$

$\frac{l_{coh}}{} = \frac{2v}{M_V^2}$

Vector dominance
Regge phenomenology

size $1/\nu$

size $1/Q$

GPDs
"Hard scattering"
W dependence — How does it change with Q^2

- Change of W dependence with Q^2 indicates presence of L components

- Vector dominance at $Q^2 > 0$:
 - No change in W–dependence of σ_T
 - \to Change due to $\sigma_L + \text{interf.}$

- Regge exchange at $Q^2 > 0$
 - Poles only: No change
 - Poles + absorption: Change

W–dependence in Q^2 bins

$Q^2 \sim \omega, \rho \rightarrow S$

(cf. “color transparency”)
t–dependence in forward peak — How does it change with Q^2?

- Δ_\perp–dependence of cross section (fixed x) reflects transverse size of interaction region

- $Q^2 \to \infty$: Pointlike probe
 $\Rightarrow \Delta_\perp$ slope becomes Q^2–independent

- Important: t_{min} depends on x, Q^2
 t–slope $\neq \Delta_\perp^2$–slope

- $x \to 1$: Shrinkage of target size
Dip in t–dependence — How does it evolve with Q^2?

- Regge phenomenology for $Q^2 = 0$:
 Two competing explanations for dip
 - Zeroes of residues (NWSZ) No Q^2–dep.
 - Pole + absorption Q^2–dep.

- DESY data: Large–t shoulder disappears at $\langle Q^2 \rangle \sim 0.28 \text{ GeV}^2$
 ... very strange! [Collins, Wilkie 81]
 ... Can we confirm these measurements?

$1.8 < W < 2.7 \text{ GeV}$, $0.1 < Q^2 < 0.7 \text{ GeV}$
[DESY: Berger et al. 77]
Azimuthal dependence — How does it change with Q^2?

$$\sigma = \sigma_T + \epsilon \cos 2\phi \sigma_{TT} + \epsilon \sigma_L + \sqrt{2\epsilon(\epsilon + 1)} \cos \phi \sigma_{LT}$$

Unpolarized beam/target

alt.: $\sigma_T = \frac{1}{2} (\sigma_\parallel + \sigma_\perp)$, $\sigma_{TT} = \frac{1}{2} (\sigma_\parallel - \sigma_\perp)$

- $Q^2 = 0$: $\sigma_\perp \gg \sigma_\parallel$, $\sigma_{TT} \approx -\sigma_T$ (natural parity exchange ω, ρ^0)
 Azimuthal dependence $\sigma \sim 1 - \epsilon \cos 2\phi$

- $Q^2 \to \infty$: σ_L dominates, no azimuthal dependence!

- Beam polarization: $h \sqrt{2\epsilon(\epsilon + 1)} \sin \phi \sigma_{LT}$

- Target polarization (longitudinal): $P_l \sqrt{2\epsilon(\epsilon + 1)} \sin 2\phi \sigma_{TT'}$
 Regge phenomenology: Interference of ω and ρ exchange

... How does it evolve with Q^2?
Summary

- Many interesting tests of two–component structure of virtual photon in π^0 production without explicit L/T separation

- Need to develop truly interpolating model for meson electroproduction

- What happens between $Q^2 = 0$ and 1 GeV2 is key to understanding approach to the hard regime and relating meson electroproduction data to GPDs!