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Overview

@ We start by discussing holographic model with hard-wall cutoff, which
is constructed to be dual to QCD with Ny = 2 at low energies and in
the chiral limit.

@ Then we show how to reproduce the Skyrme model and its
generalization including vector mesons.

@ We extend this model to incorporate isosinglet vector mesons and CS
term, required to generate appropriate QCD anomaly and coupling
between the isosinglet (w,,) and (topological) baryon (B,,) currents.

@ Although this approach is bottom-up, it reproduces results which are
very similar to ones applying top-down “stringy” setups.

@ We also discuss that our soliton is only localized in 4D and can’d be
viewed as a 5D localized instanton.



Introduction

@ The AdS/CFT correspondence conjectures the equivalence of weakly
coupled gravity theory (Type IIB string theory) on AdSs x S°, and
strongly coupled (N = 4 SYM) CFT, (Maldacena *97).

@ AdS/CFT states that for VO(x) € {CFTy operator},
N(x,z) € {5D bulk field} s.t. $(x,0) = ¢o(x), x € DAdSs.

@ If Ss[¢po(x)] is the gravity or string action of ¢(x, z) with
@(x,0) = ¢o(x), then the correspondence takes the form

(expli [ dxin()00))crr = expliSslon)])
(Witten °98; Gubser, Klebanov & Polyakov "98)

@ For small z, the solution of EOM is: ¢(x,z) ~ '~ ¢y + 372—2°(0),

where A — conformal dimension of O(x) and mi =A(A —4).




Addition of IR Brane

@ Since QCD is not CFT, direct application of AdS/CFT is meaningless.

@ To fix the problem the IR brane is introduced which breaks the
conformal symmetry in the 5D bulk, allowing to have both particles
and S-matrix elements.

@ 5D KK modes are interpreted as 4D QCD resonances at large N,.

@ AdS/QCD suggests that 5D theory with IR brane and certain field
content is dual to 4D QCD at low energies.
We work with QCD in the limit, where both N, and X are large.




Holographic Dictionary

@ The 5D field content is specified by holographic dictionary:
i (%) = quyut®q(x)e < Ly (x,2)
Jru(X) = qryut'q(x)r < Rjy(x,2)

so that L, (x, 0) is the source for J7 , (x) (same for L < R).

@ The ChSB occurs due to IR BC: L, (x,z0) — R, (x,20) = 0.

@ Chiral fields are expressed through the Wilson lines.

@ This holographic construction is discussed in (Hirn & Sanz ’05) and is
similar to models in (Erlich, Katz, Son & Stephanov *05; Da Rold &
Pomarol °05).



@ The 5D action corresponds to SU(2), x SU(2)g YM theory in the bulk
of the sliced AdS space:

1
5 MN MN
SYM =—73 d’x 8 Tr LMNL +RMNR y
4gs
Lyn = OmLy — OnLy — i[Ly, Ly), L= L, 1* € SU(2), a = 1,2,3and M, N = 0,1,2,3,z (L < R).

@ The local gauge invariance in 5D will produce 4D global chiral
symmetry of QCD.

@ The sliced AdS metric is defined by:
ds = dx'dx” — dz?) 0<z<
s_z—z(nwx x ), z< 2,

N = Diag (1,—1,—1,—1) and zg ~ 1/Agcp is the IR scale.



Two-point Function

AdS/QCD predicts that the 2-point function is

/ d*x €75(1,(x)J,(0)) = <g;w - q’; ZI”) 2(q%)

Y0,n 2 2M5
by q2 = z 5 M, = P f; =
(@) =2 q* — M2 " 2 " 832/ (Y0.)

n=1

1
2(q” > 1/z) ~ 55" In(g*e)
85

by matching with QCD (Erlich et al *05): gz = 127*/N,.
To get My = M,;"* = 775.8 MeV, for N. = 3, one takes zo = 1/(323 MeV) .

Asaresult: fi = f, = (392MeV)?, enf. to £, = (401 & 4 MeV)? (PDG, 2007)



The Emergence of Global Chiral Symmetry

@ In terms of flat Minkowski indices the 5D action is:
1 . 0 dz 5
Syw=——5Tr [ d* [ = |L,L" +2L,.L" + (L R)
4g5 0 Z
@ For Sy to be finite at z = 0 = Ly, (and Ry,) should satisfy
Ly(x,z — 0) =i U (x)OyUL(x), UL(x) € SUQ2),
@ Partially fixing the gauge: Ly(x,z —0) =0, Ry(x,z—0)=0
@ Under additional gauge transformations g, (x,z) € SU(2),

Ly(x,z — 0) — ig} Oygr(x,z — 0)



The Emergence of Global Chiral Symmetry

@ Ly(x,z — 0) =0 remains unaltered under the residual gauge
transformations g7 (x, z) s.t.

omg*(x,z—0)=0

The same is true when L < R < g[“z(x,z) become constant matrices
8L.R € SU(Z)LR at z=0.

@ In the holographic model (g;, gr) € SU(Ny) x SU(Ny)g corresponds
to global chiral symmetry of QCD, at z = 0.

@ Defining vector field as Vyy = (Ly + Ry)/2 and axial-vector field as
Ay = (Ly — Ry) /2, the UV BC that produce appropriate global
symmetry of QCD can be written as:

V,u(x,0) =0, A,(x,0)=0



Axial-like Gauge

@ Gauge tr. that generates the axial-like gauge L,(x,z) = 0 is

Wi(x,z) = Pexp {i/Z d7'L.(x, z')}

20
since L,(x,z) — WiL.W, + iW]0.W, = 0.
@ In the axial-like gauge the UV BC L, (x, 0) = 0 changes to:
Ly,(x,0) = i¢ (x),ué0(x)
where & (x) = Wi (x,0) (similarly for R,).

@ This is equivalent to having sources in UV:

A Vul,0) = 3 [100,63) % € 0)2u6n()



Separation to Dynamical and Source Fields

Writing Vi (x, z) and Ay (x, z) in the axial-like gauge (L; = R, = 0) as
V.. (x,2) and A, (x, z), separate these into dynamical and source parts as:

Vﬂ (x,2) = Vi (x,2) + ‘7# (x,0) ,

Auvd) = A, (0 +a (@A, (x0) .

and require dynamical fields V,, (x, z) and A, (x, z) to satisfy BC:
° V,(x,00=0, A,(x,00=0 < L,(x,0)=R,(x,0)=0
o 81‘/#()(, Z()) =0 & Vz#(x, Z()) =0
@ A,(x,20) =0 & Lu(x,20) = Ru(x,20)

These BC + absence of a;-like mixing give: a(z) = 1 —7%/2.

N.B. Vyy (¥, 20) = Vzu(x,zo) =0andA, (x,20) = AM(X, z9) = 0.



Source Fields

In the axial-like gauge the sources can be written as:
j _! _ LS i
A (,0) = Ja, (1) = 5 {€]0.6 — €108} |

¥ (5,0) = 6 () = 5 {ehdutn+ 0,60}

where

€4(x) = Pexp {—i Ja z’)} ,

0

£r(x) = Pexp {i/om d7'R.(x, z')}

are Wilson lines from UV to IR boundaries by left or right fields.



Chiral Symmetry Breaking by BC

@ From IR BC: L, (x,z0) = R.(x,20) =
h(x) = g1 (x,20) = g&"(x,20) € SU(2)v
@ Then, the Wilson lines &; g should transform as
L — 8 x(x,0) &L h(x)
@ This allows to define a chiral field as:
U(x) = &€l (1) — grU)g] -

@ This chiral field transforms exactly the same way as in the non-linear
sigma model with respect to the global chiral transformations.



Dynamical Fields

@ The dynamical vector fields can be written as:

oo

Va(e,2) = 3V (x)un(2)

n=1
where v, (z) satisfy EOM
(202 — 20, + M2 | u(2) = 0,
with BC 1,(0) = 9,¢(20) = 0 (V,u(x,0) = 9.V,,(x,29) = 0).

@ The dynamical axial-vector fields can be written as:

ZA(’!)

where 1% (z) satisfy same EOM as 1, (z) but with different BC
1 (0) = ¥ (20) = 0 (A,(x,0) = A,(x, 20) = 0).



Dynamical Fields

@ In particular: V,Sl)(x) = gspu(x) and Af})(x) = gsaiu(x).
@ The solution for ¢,(z) is

V2

vala) = 2001 (Y0,n)

zJ1(M,2)
where M, is determined from Jy (M, z9) = 0. It is normalized as

20 dZ 2
| Enr =1

@ The solution for axial-vector sector is
U (2) o< 21 (M'2)

where M4 is determined from IR BC: J;(M4zq) ~ 0.



Emerging Skyrmion Model

In case dynamical fields vanish A;, = V,, = 0, the action after integrating
over the z becomes:

2
I TR Lyt tg, U1
SYM—/d XTI'{4(8HU 8“U)+@[U a#U,U auU:I )
The coefficients f;; and e are given by the integrals:

1 [ dz 2
fr= /Oi(aza)zzﬁ>

- 2
85 < 8530

1 1 [*d 11

*:7/ j(l’az)zzﬁ-

e gy =z 24g2
This establishes the relation between the 5D AdS/QCD and the 4D Skyrme
model for two flavors.



Baryon as a Skyrmion

@ In order for the Skyrmion action to be finite, the chiral fields should
satisfy the following conditions at spacial infinity |x| — oo: U(x) — 1.

@ These conditions describe topologically non trivial mapping
R® — §° — SU(2) which is characterized by the homotopy group
m3(SU(2)) = Z.

@ Defining L; = U';U, the topological charge = baryon number B is

B

= 513 / dxegy Tr (LiLiLy)

@ The ansatz for the chiral field with B = 1 is:
U(X) — ei'rafch(r) ,

where %, = x,/r, r = \/|X|?, F(0) = 7 and F(c0) = 0 (Skyrme ’54).




Masses of Nucleon and Delta

@ Substituting the ansatz into the energy functional we get:

E[F]:zﬁf”/ dx{(gF) [2+4sm F}—Fsm F+251n F}
e Jo x x?

Let F*(x) minimizes E[F], then M., = E[F*].

@ Quantizing the skyrmion, we get masses of nucleon and delta

fw fx€® M fw fn

-7
Y Tims Ma= TR

@ It is also convenient to use the mass difference as a parameter

fr€?

These are the results from ANW model (Adkins, Nappi, Witten *83)



Results for Skyrmion

We take zo = 1/(323 MeV) and g5 = 27 (N, = 3) from Model A of (Erlich et al °05).

Quantity Prediction ANW Experiment

M, (MeV) 776 (input) - 776

fr (MeV) 727 64.5 92.4
e 9.3 5.44 -
Eavw = = (Mev) 3.92 5.93 -
ranw = ”'ﬂ (fm) 0.29 0.56 -
M, (MeV) 572 864.3 -

\/ (r2) = V2rpnw (fm) 0.41 0.8 0.6-0.8

My (MeV) 980 938.9 (input) 938.9

Ma — My (MeV) 1632 7! 293.1 (input) 293.1

N.B. If we take g5 = 1.17m, z9 = 1/(168 MeV) = exactly ANW results.



Turning on the p-meson

Incase A, = 0and V,(x,z) = gsp.(x)11(z), the YM lagrangian becomes:

2 1 2
Ly =Z Te (0°U19,U) — o5 Tr ([UT9,U, U9, U]
I , 1
+ ) Tr (p;zw) + M;Z) Tr (pi) + iksp Tt (ppw[pp, puo]) — §k4p Tr ([pua pv]z)

— iky Tt (ppuu[ag, o)) + ko Tr { [, @ )[py, po]}
+ ki Tr {[ay, @] ([Bu, ool + [ows o))}
+iTr {puu([ﬁua pu] + [Pw Bu])} — k3, Tr{[ﬂmﬂl/]([ﬁmpu} + [Pwﬁu})}
1 2 1 2
- §k3 Tr([au,p,,} + [pmau]) - gTr([BuapV] + [pu’ﬁV])
This lagrangian, is identical in form to the lagrangian obtained in a

Sakai-Sugimoto like setup by (Nawa et al ’06).

N.B. To agree with their conventions we made the following substitutions: g5 <> —gs, 8 += —fBand Ny, < —Nuw.



Turning on the p-meson

The 4 independent couplings k; in the lagrangian are defined as:

20 dZ 20 dZ

k3, = 85/ =i (z) ~gs, kap= g%/ =} (z) ~ 1.3g2,
o < o <

1 0 dz 1 1 [*dz 3

k= — 2l -~ — k= - 1 —a?)? ~ = .
=g | S e k=g [ Ea et

The table comparing the corresponding couplings in two different models is
presented below:

Coefficients k;

he | ks | kap | ki [ ko |
Our Model | 6.28 | 51 | 0.03 | 0.19
Nawaetal | 5.17 | 29.7 | 0.03 | 0.18




Ansatz for the Solution.

@ For the chiral field we choose the following Skyrme ansatz:
U(x) = ™% with F(0) =7, F(co) =0.
@ For the p-meson we choose the following hedgehog ansatz (py(x) = 0)

. G(r
pi(X) = €iapTaXp 5 ) ;

where G(r) is a profile function.

@ Substituting these into the energy functional, we get

E[F(r),G(r)] = 4n /000 drr? EIF(r),G(r)] .

@ Minimizing the energy E with given BC, we obtain F and G describing
Skyrmion-like soliton.



Skyrmion with w-mesons

@ The non-linear o model contains topologically stable but not
energetically stable soliton-like solutions.

@ To stabilize the solitons the higher derivative terms should be included
to overcome Hobart-Derrick’s theorem. One such term is Skyrme term.

@ However, as is shown in (Adkins & Nappi ’84) the vector mesons are
sufficient to stabilize the soliton, even without the Skyrme term. This is
demonstrated on the example of isoscalar vector mesons.

@ In order to incorporate w-meson the symmetry group has to be
extended and CS term has to be added.

@ This is also important in order to reproduce correct QCD anomaly.



Extending Dictionary

@ Since the CS (WZW) term for SU(2) gauge (global) group is
vanishing, the flavor symmetry is extended to U(2); x U(2)g.

Therefore, we can write fields as: B,, = 1B}, + 1B,

@ The 4D isovector J, ,{/2 1}a (x) and isosinglet vector J, F{/ZO} (x) currents
correspond to:

3

_ _ - _ ag
T3 = — (wy,u — dyud) = Tnq = Val:2)

N = N =

— — T ! a V
Jlgl—o} — (uryuu + d'yud) = Eq’yulq — Vp,(xa Z)

@ The EM current
1
EM 1=1},3 1=0
]u _Ji } +§";E }

has both isovector (“p-type”) and isosinglet (“w-type”) terms.



Holographic Action with CS Term

The O(B?) part of the 5D CS action, in the axial gauge B, = 0 is

SQIB) = pycze e [ dadz (0.5, {fupzag + B,,]—'M}

In holographic model (cnf. Domokos & Harvey *07) the CS term is:
SE8Br. Br] = Sc3[Be] — Scd (Bl
In the absence of dynamical axial-vector fields:
20
H5.2) = 0()0, [ d A2(x.2) = 0(2)(0,m)

Substituting B; g = V + A and taking appropriate care on IR:

N- 20 .
gonom = 22 g / dz (9.0) / dhem (9,v4) (9,V.)
ik 0
NB.a(z) =1 — Zz/zg corresponds to lbg(z) formy = 0.



Correct Anomaly

@ In QCD the 7%y*~* form factor is defined by
/d4x e (m, p|T {Jw (%) JEn (0)}10) = e ig, aq2 p Fyeyero (Q%, Q%)

where p = g1 + qx and g7, = —07 .

@ Varying S*"°™ we get the 3-point function:

Ne p
Topw (17a qi, q2) :T;gp% Cuvpo ‘]fqu(Q%a Q%)
@ QCD anomaly requires that K2P(0,0) = 1.

@ Indeed, in this extended holographic model, we get:

/jZOZaa /aa a(0) =1

N.B. K(Q' Qo)_* OdJ(Ql 2) T (Q2,2) 0, where T (Q, z) is NN-mode s.t. 7 (0,z) = 1.



Turning only w-meson

Incase A, =V, = 0and V,,(x,z) = gsw,(x)11(z), we have
T t 1 t te U1?

Lna =2 Te (9"UT0,U) + o5 Te ([UT0,U, UT0,U]°)

1 1

— -+ M2Tr( )

4 g 2 iklwuu Tr [UTaHU, UTa,/U] + KWHB‘M

2

where

BH = 2417726“”‘% Tr [(UT9,U) (U0, U)(U'95U)]

is the conserved, normalized CS current (k is determined from z, and gs).

N.B. This lagrangian is similar to one in (Adkins & Nappi ’84) in the chiral limit but with Skyrme term and with term ~ k.



Instanton Number

@ From 5D point of view, the Chern-Pontryagin index is

1

QLR = 3

/ d3de EMNPQ TI'(FIAI/I%FIIT’%) .
where z is very much like compact 4D Euclidean time.

@ This topological characteristic is diffeomorphism invariant and is not
sensitive to the local small perturbations around current value of fields.

@ The topological charges can be also written as
i
- 24n?
i
 24n2

oL ?{ do " PrTe[0,b50,,]

Or ?{ do " PH Tt[ryrar,] = —0r
0, (x) = iUD, U (x), r.(x) =iUT9,U(x)



Baryon and Instanton Numbers

@ In A, = 0 gauge, for the solutions which interpolate between the UV
degenerate classical vacua L; = R; = 0 and L; = {;, R; = r; we have:

i

- 24n2
i

2472

0L =

/deeijk Tr[é,-éjﬁk] + O,

Or =

/d3xeijk Tr[ririri] + Our

where Qg is some integral over the A(x) fields on the IR brane.

@ The instanton number N is defined as
i
2472

N =30 00 = / e T0] = B

@ = the instanton number N is the same as the baryon number B:
Does this mean that the skyrmion is a “preimage” of 5D instanton?



Witten’s ansatz

@ The fields of minimum action for fixed BC are solutions of F = F
(BPST). We will seek the solutions which are invariant under
combined isospin and spin symmetries.

@ This symmetry is called a cylindrical symmetry, since it determines the
dependence of the fields on the 3D polar angles and leaves the
unknown only the dependence on the 3D radius r and Euclidean time,
which in our case (effectively) is z.

@ The most general gauge field with this cylindrical symmetry is given
by (Witten ’76)

a 1+ (;52(7', Z) o (r7 Z) 2 XjXa
Af(x,z) = T2 Gak T T3 [0jar” = x5%a] + A1(r,2) 20
p Ay (r,z)x"
Al(x,2) = — -

N.B. This is true for general gauge.



Witten’s ansatz for two YM fields

@ Witten found general solution of F,, = F,, (a,b = 1,2,3,z) that can
be written in the above form in case of the unbounded Euclidean space.

@ The same problem for space with bounded z was discussed by
(Pomarol & Wulzer ’08), and the solution was obtained using
numerical calculations.

@ Since we have two fields in the bulk, some simplifications can be made:
¢1£7¢11‘: 11?’ ¢2£¢é:¢§a

A =AR = AL A, = AR = AL



Witten’s ansatz for two YM fields

As aresult: V,(x,z) =0,

. 1+ rz
Vi(x,2) = %%m
and
a 2z XiXq
Af(x,z) = —¢1(r3 ) [5jar2 —xjxa] — A (r, Z)Jr—2
a AZ(rv Z)'Xa
At(x,2) = — 22O

In order to satisfy the BC of the original gauge fields, we have to require:
¢1(F,Zo) =0, 8z¢2(",20) =0,
Ai(r,20) =0, 0Ax(r,20) =0,
01(r,0) =0, ¢(r,0)=—1,

Ai(r,0) =0, 0,A2(r,0)=0.



Absence of Instanton

@ The condition F,;, = F, is equivalent to Witten’s duality equations:
001 +Arpy = 0,0 — A1

0,91 +A1¢2 = 0,02 + Az
1
0.A1 — 0,Ar = 2 (1-¢7—¢3)

@ Expressing our ansatz for vector and chiral fields in terms of ¢; > and
A », we find that the letter don’t satisfy Witten’s equations

@ = our soliton can’t be a 5D localized instanton

@ Notice that in our case the soliton consists of p-mesons only, since:

$2(r,2) = g5G(r)Yr(z) — 1

@ One can show that to have an instanton the whole tower of vector
resonances should be incorporated



Naive Soliton-like Solution from Vector Fields

@ LetAf(x,z) =0 & ¢ =A; = 0. This is true e.g. on IR boundary.
As a result Witten’s duality equations become:

ar¢2 = A2¢2 ’
8Z¢2 =0 5

1
A2 = — (3-1) .

@ From 2" equation = no z dependence for vector fields.
@ Substituting: ¢ (r) = re?"), we will get:
9p=e",

1
As(r) = Orp + .



Soliton-like Solution

The equation 9?p = € is Liouville’s equation, with general solutions:
p(r) = —1In [—l cosh(ar + b)} .
a

Substituting this back to ¢, and A,, we get
iar

20) = oshar 1)

1
Ay(r) = - atanh(ar + b) .

To make the solution for A, regular at r = 0, we demand b = —im/2 so that

ar

$a(r) =

~ sinh(ar) ’
1
Ay(r) = ~- acoth(ar) .

N.B. For r — 0, wehave Ay — —a?r/3and ¢y — —1 + a*r> /6.



Topological Charge and Mass

The topological charge in terms of Witten’s ansatz is:
1 oo 20 L
Q = — / dr/ dZEMV [3,; (—l¢*D17(b =+ hC) + Fﬁp] 5

2 0 0
where Dﬁ¢)i = 8;1 + 6,:/'Aﬁ¢)j, w,v=172¢=¢+ip,and Fﬂp = 8[,114,;].
For our case, we have:

L[~ 1
0= —/ dre Fhp; = ——Ay)(r — o0) = ¢
27 Jo 7r 0

To get Q = 1, we choose a = m = the classical mass of this object will be
_ 872 2

= — = 646 MeV

M 2
g5Z0 20

N.B. This soliton has to be further quantized in order to find My A .



Solution with Unit Topological Charge

The solution with Q = 1, V¢(x,z) = A¢(x,z) = 0 is given by

r EiakXk — CiakXk
14 =|(1- j = 7
jx:2) { sinh(wr)} r? G(r) r
x4 B a
A%(x,2) = [rreoth(rr) — 1] 5 = F(r) =
r r

U(x) =Pexp <ira /010 d7'A¢(x, z’)) = exp (i%,7, F(r))

Near the origin: G/r — 72/6 and F/r — 7*/3
Atinfinity: G(co) — 0 and F(co) — 7

If the solution is localized at IR = F(r) = F(r),and F(0) =0, F(c0) =7
= we have anti-skyrmion with B = —1.



0.15

0.05

F(x)

10




IR localized soliton

It is easy to see that since, (F — F)?/2 = F> — FF > 0,

1
E= d’x / det Tr[ LapL™ + RypR™)
4g5

1
> — [ & / dz— e“b‘dTr[ abLed + RapRedl
4g5

> / dx / dze® Tr [LapLea + RapRed)
4g§ZO

8 2
= —— (0L + O&) ,
g5

where a, b, ¢, d € (1,2,3,z). If we take g2 = 47>, Q1 = 1 and Qg = 0, then:

E> 2 — 646 MeV
20



IR localized soliton

The bound
E> 8277r2 (OL + Qr)
8520
is saturated, when
® Lyy(x,2) = £Lap(x,z) and Rup(x,2) = +Rup(x, 2)
@ the center of the solution is localized at z = zg

This describes 4D instanton localized at IR

It was shown by (Pomarol & Wulzer *08) that if p is the instanton size:

8 2
E> <1 + ’0)
8520 270

= instanton will shrink to a point.

N.B. P&W also showed that addition of IR localized gauge kinetic term can stabilize the soliton.



@ We showed how to extract Skyrme model from AdS/QCD.

@ We also generalized to include vector meson fields (like p-meson),
isosinglets (like w-meson) and w,, B* interaction.

@ In this AdS/QCD model baryon looks like 4D soliton and is not
localized in 5D.

@ Our ansatz doesn’t correspond to instanton in 5D because we have only
p-mesons that contribute to baryon.

@ To have 5D instanton, the whole tower of vector meson resonances
should be included.

@ We discussed a simple solution, where soliton is made of vector fields
and is localized at IR.



THE END



