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Overview

We start by discussing holographic model with hard-wall cutoff, which
is constructed to be dual to QCD with Nf = 2 at low energies and in
the chiral limit.

Then we show how to reproduce the Skyrme model and its
generalization including vector mesons.

We extend this model to incorporate isosinglet vector mesons and CS
term, required to generate appropriate QCD anomaly and coupling
between the isosinglet (ωµ) and (topological) baryon (Bµ) currents.

Although this approach is bottom-up, it reproduces results which are
very similar to ones applying top-down “stringy” setups.

We also discuss that our soliton is only localized in 4D and can’d be
viewed as a 5D localized instanton.



Introduction

The AdS/CFT correspondence conjectures the equivalence of weakly
coupled gravity theory (Type IIB string theory) on AdS5 × S5, and
strongly coupled (N = 4 SYM) CFT4 (Maldacena ’97).

AdS/CFT states that for ∀O(x) ∈ {CFT4 operator},
∃!φ(x, z) ∈ {5D bulk field} s.t. φ(x, 0) = φ0(x), x ∈ ∂AdS5.

If S5[φ0(x)] is the gravity or string action of φ(x, z) with
φ(x, 0) = φ0(x), then the correspondence takes the form

〈exp(i
∫

d4xφ0(x)O(x))〉CFT = exp(iS5[φ0(x)]) ,

(Witten ’98; Gubser, Klebanov & Polyakov ’98)

For small z, the solution of EOM is: φ(x, z) ∼ z4−∆φ0 + 1
2∆−4 z∆〈O〉,

where ∆ – conformal dimension of O(x) and m2
φ = ∆(∆− 4).



Addition of IR Brane

Since QCD is not CFT, direct application of AdS/CFT is meaningless.

To fix the problem the IR brane is introduced which breaks the
conformal symmetry in the 5D bulk, allowing to have both particles
and S-matrix elements.

5D KK modes are interpreted as 4D QCD resonances at large Nc.

AdS/QCD suggests that 5D theory with IR brane and certain field
content is dual to 4D QCD at low energies.
We work with QCD in the limit, where both Nc and λ are large.



Holographic Dictionary

The 5D field content is specified by holographic dictionary:

Ja
Lµ(x) = q̄Lγµtaq(x)L ↔ La

M(x, z)

Ja
Rµ(x) = q̄Rγµtaq(x)R ↔ Ra

M(x, z)

so that La
µ(x, 0) is the source for Ja

Lµ(x) (same for L↔ R).

The ChSB occurs due to IR BC: Lµ(x, z0)− Rµ(x, z0) = 0.

Chiral fields are expressed through the Wilson lines.

This holographic construction is discussed in (Hirn & Sanz ’05) and is
similar to models in (Erlich, Katz, Son & Stephanov ’05; Da Rold &
Pomarol ’05).



5D Action

The 5D action corresponds to SU(2)L × SU(2)R YM theory in the bulk
of the sliced AdS space:

SYM = − 1
4g2

5

∫
d5x
√

g Tr
[

LMNLMN + RMNRMN
]
,

LMN = ∂M LN − ∂N LM − i[LM , LN ], L = Lata , ta ∈ SU(2), a = 1, 2, 3 and M, N = 0, 1, 2, 3, z (L↔ R).

The local gauge invariance in 5D will produce 4D global chiral
symmetry of QCD.

The sliced AdS metric is defined by:

ds2 =
1
z2

(
ηµνdxµdxν − dz2) , 0 < z ≤ z0 ,

ηµν = Diag (1,−1,−1,−1) and z0 ∼ 1/ΛQCD is the IR scale.



Two-point Function

AdS/QCD predicts that the 2-point function is∫
d4x eiq·x〈Jµ(x)Jν(0)〉 =

(
gµν −

qµqν
q2

)
Σ(q2)

Σ(q2) =
∞∑

n=1

f 2
n

q2 −M2
n
, Mn =

γ0,n

z0
, f 2

n =
2M2

n

g2
5z2

0J2
1(γ0,n)

Σ(q2 � 1/z2
0) ∼ 1

2g2
5

q2 ln(q2ε2) ,

by matching with QCD (Erlich et al ’05): g2
5 = 12π2/Nc.

To get M1 ≡ Mexp
ρ = 775.8 MeV, for Nc = 3, one takes z0 = 1/(323 MeV) .

As a result: f1 ≡ fρ = (392 MeV)2 , cnf. to f exp
ρ = (401± 4 MeV)2 (PDG, 2007)



The Emergence of Global Chiral Symmetry

In terms of flat Minkowski indices the 5D action is:

SYM = − 1
4g2

5
Tr
∫

d4x
∫ z0

0

dz
z

[
LµνLµν + 2LµzLµz + (L↔ R)

]
For SYM to be finite at z = 0 ⇒ LM (and RM) should satisfy

LM(x, z→ 0) = i U†L(x)∂MUL(x) , UL(x) ∈ SU(2)L

Partially fixing the gauge: LM(x, z→ 0) = 0 , RM(x, z→ 0) = 0

Under additional gauge transformations gL(x, z) ∈ SU(2)L

LM(x, z→ 0)→ ig†L∂MgL(x, z→ 0)



The Emergence of Global Chiral Symmetry

LM(x, z→ 0) = 0 remains unaltered under the residual gauge
transformations gres

L (x, z) s.t.

∂Mgres
L (x, z→ 0) = 0

The same is true when L↔ R ⇔ gres
L,R(x, z) become constant matrices

gL,R ∈ SU(2)L,R at z = 0.

In the holographic model (gL, gR) ∈ SU(Nf )L × SU(Nf )R corresponds
to global chiral symmetry of QCD, at z = 0.

Defining vector field as VM ≡ (LM + RM)/2 and axial-vector field as
AM ≡ (LM − RM)/2, the UV BC that produce appropriate global
symmetry of QCD can be written as:

Vµ(x, 0) = 0 , Aµ(x, 0) = 0



Axial-like Gauge

Gauge tr. that generates the axial-like gauge Lz(x, z) = 0 is

WL(x, z) = P exp
{

i
∫ z

z0

dz′Lz(x, z′)
}

since Lz(x, z)→ W†LLzWL + iW†L∂zWL = 0.

In the axial-like gauge the UV BC Lµ(x, 0) = 0 changes to:

Lµ(x, 0) = iξ†L(x)∂µξL(x)

where ξL(x) = WL(x, 0) (similarly for Rµ).

This is equivalent to having sources in UV:

Aµ,Vµ(x, 0) =
i
2

[
ξ†L(x)∂µξL(x)± ξ†R(x)∂µξR(x)

]



Separation to Dynamical and Source Fields

Writing VM(x, z) and AM(x, z) in the axial-like gauge (Lz = Rz = 0) as
V̂µ (x, z) and Âµ (x, z), separate these into dynamical and source parts as:

V̂µ (x, z) ≡ Vµ (x, z) + V̂µ (x, 0) ,

Âµ (x, z) ≡ Aµ (x, z) + α (z) Âµ (x, 0) .

and require dynamical fields Vµ (x, z) and Aµ (x, z) to satisfy BC:

Vµ(x, 0) = 0 , Aµ(x, 0) = 0 ⇔ Lµ(x, 0) = Rµ(x, 0) = 0

∂zVµ(x, z0) = 0 ⇔ Vzµ(x, z0) = 0

Aµ(x, z0) = 0 ⇔ Lµ(x, z0) = Rµ(x, z0)

These BC + absence of a1π-like mixing give: α(z) = 1− z2/z2
0.

N.B. Vzµ(x, z0) = V̂zµ(x, z0) = 0 and Aµ(x, z0) = Âµ(x, z0) = 0.



Source Fields

In the axial-like gauge the sources can be written as:

Âµ (x, 0) ≡ 1
2
αµ (x) ≡ i

2

{
ξ†L∂µξL − ξ†R∂µξR

}
,

V̂µ (x, 0) ≡ βµ (x) ≡ i
2

{
ξ†R∂µξR + ξ†L∂µξL

}
,

where

ξL(x) = P exp
{
−i
∫ z0

0
dz′Lz(x, z′)

}
,

ξR(x) = P exp
{
−i
∫ z0

0
dz′Rz(x, z′)

}
are Wilson lines from UV to IR boundaries by left or right fields.



Chiral Symmetry Breaking by BC

From IR BC: Lµ(x, z0) = Rµ(x, z0) ⇒

h(x) = gres
L (x, z0) = gres

R (x, z0) ∈ SU(2)V

Then, the Wilson lines ξL,R should transform as

ξL,R → gres
L,R(x, 0) ξL,R h(x)†

This allows to define a chiral field as:

U(x) = ξR(x)ξ†L(x) → gRU(x)g†L .

This chiral field transforms exactly the same way as in the non-linear
sigma model with respect to the global chiral transformations.



Dynamical Fields

The dynamical vector fields can be written as:

Vµ(x, z) =
∞∑

n=1

V(n)
µ (x)ψn(z)

where ψn(z) satisfy EOM[
z2∂2

z − z∂z + M2
nz2]ψn(z) = 0 ,

with BC ψn(0) = ∂zψn(z0) = 0 (Vµ(x, 0) = ∂zVµ(x, z0) = 0).

The dynamical axial-vector fields can be written as:

Aµ(x, z) =
∞∑

n=1

A(n)
µ (x)ψA

n (z)

where ψA
n (z) satisfy same EOM as ψn(z) but with different BC

ψA
n (0) = ψA

n (z0) = 0 (Aµ(x, 0) = Aµ(x, z0) = 0).



Dynamical Fields

In particular: V(1)
µ (x) = g5ρµ(x) and A(1)

µ (x) = g5a1µ(x).

The solution for ψn(z) is

ψn(z) =
√

2
z0J1(γ0,n)

zJ1(Mnz)

where Mn is determined from J0(Mnz0) = 0. It is normalized as∫ z0

0

dz
z
|ψn(z)|2 = 1

The solution for axial-vector sector is

ψA
n (z) ∝ zJ1(MA

n z)

where MA
n is determined from IR BC: J1(MA

n z0) ' 0.



Emerging Skyrmion Model

In case dynamical fields vanish Aµ = Vµ = 0, the action after integrating
over the z becomes:

SYM =
∫

d4x Tr
{

f 2
π

4
(
∂µU†∂µU

)
+

1
32e2

[
U†∂µU,U†∂νU

]2
}
,

The coefficients fπ and e are given by the integrals:

f 2
π =

1
g2

5

∫ z0

0

dz
z

(∂zα)2 =
2

g2
5z2

0
,

1
e2 =

1
g2

5

∫ z0

0

dz
z

(
1− α2)2

=
11

24g2
5
.

This establishes the relation between the 5D AdS/QCD and the 4D Skyrme
model for two flavors.



Baryon as a Skyrmion

In order for the Skyrmion action to be finite, the chiral fields should
satisfy the following conditions at spacial infinity |x| → ∞: U(x)→ 1.

These conditions describe topologically non trivial mapping
R3 → S3 → SU(2) which is characterized by the homotopy group
π3(SU(2)) = Z.

Defining Li = U†∂iU, the topological charge = baryon number B is

B =
1

24π2

∫
d3xεijk Tr (LiLjLk) .

The ansatz for the chiral field with B = 1 is:

U(x) = eiτa x̂aF(r) ,

where x̂a = xa/r, r =
√
|x|2, F(0) = π and F(∞) = 0 (Skyrme ’54).



Masses of Nucleon and Delta

Substituting the ansatz into the energy functional we get:

E[F] =
2πfπ

e

∫ ∞
0

dx
{(

∂F
∂x

)2 [x2

2
+ 4 sin2 F

]
+ sin2 F +

2 sin4 F
x2

}
Let F∗(x) minimizes E[F], then Mcl = E[F∗].

Quantizing the skyrmion, we get masses of nucleon and delta

MN = 73
fπ
e

+
fπe3

142.3
, M∆ = 73

fπ
e

+
fπe3

28.5
.

It is also convenient to use the mass difference as a parameter

∆M ≡ M∆ −MN =
fπe3

35.6
.

These are the results from ANW model (Adkins, Nappi, Witten ’83)



Results for Skyrmion

We take z0 = 1/(323 MeV) and g5 = 2π (Nc = 3) from Model A of (Erlich et al ’05).

Quantity Prediction ANW Experiment

Mρ (MeV) 776 (input) – 776

fπ (MeV) 72.7 64.5 92.4

e 9.3 5.44 –

EANW ≡
fπ
2 e (MeV) 3.92 5.93 –

rANW ≡ 1
e fπ

(fm) 0.29 0.56 –

Mcl (MeV) 572 864.3 –√
〈r2〉 =

√
2rANW (fm) 0.41 0.8 0.6-0.8

MN (MeV) 980 938.9 (input) 938.9

M∆ − MN (MeV) 1632 ?! 293.1 (input) 293.1

N.B. If we take g5 = 1.17π, z0 = 1/(168 MeV) ⇒ exactly ANW results.



Turning on the ρ-meson

In case Aµ = 0 and Vµ(x, z) = g5ρµ(x)ψ1(z), the YM lagrangian becomes:

−LYM =
f 2
π

4
Tr
(
∂µU†∂µU

)
− 1

32e2 Tr
([

U†∂µU,U†∂νU
]2)

+
1
2

Tr
(
ρ2
µν

)
+ M2

ρ Tr
(
ρ2
µ

)
+ ik3ρ Tr (ρµν [ρµ, ρν ])− 1

2
k4ρ Tr

(
[ρµ, ρν ]2

)
− ik1 Tr (ρµν [αµ, αν ]) + k2 Tr {[αµ, αν ][ρµ, ρν ]}

+ k1 Tr {[αµ, αν ]([βµ, ρν ] + [ρµ, βν ])}

+ i Tr {ρµν([βµ, ρν ] + [ρµ, βν ])} − k3ρ Tr {[ρµ, ρν ]([βµ, ρν ] + [ρµ, βν ])}

− 1
2

k3 Tr ([αµ, ρν ] + [ρµ, αν ])2 − 1
2

Tr ([βµ, ρν ] + [ρµ, βν ])2

This lagrangian, is identical in form to the lagrangian obtained in a
Sakai-Sugimoto like setup by (Nawa et al ’06).
N.B. To agree with their conventions we made the following substitutions: g5 ↔ −g5 , β ↔ −β and ηµν ↔ −ηµν .



Turning on the ρ-meson

The 4 independent couplings ki in the lagrangian are defined as:

k3ρ = g5

∫ z0

0

dz
z
ψ3

1(z) ' g5 , k4ρ = g2
5

∫ z0

0

dz
z
ψ4

1(z) ' 1.3g2
5 ,

k1 =
1

4g5

∫ z0

0

dz
z

(1− α2)ψ1 '
1

6g5
, k2 =

1
4

∫ z0

0

dz
z

(1− α2)ψ2
1 '

3
16

.

The table comparing the corresponding couplings in two different models is
presented below:

Coefficients ki

• k3ρ k4ρ k1 k2

Our Model 6.28 51 0.03 0.19
Nawa et al 5.17 29.7 0.03 0.18



Ansatz for the Solution.

For the chiral field we choose the following Skyrme ansatz:

U(x) = eiτa x̂aF(r) , with F(0) = π , F(∞) = 0 .

For the ρ-meson we choose the following hedgehog ansatz (ρ0(x) = 0)

ρi(x) = εiabτax̂b
G(r)

r
,

where G(r) is a profile function.

Substituting these into the energy functional, we get

E[F(r),G(r)] ≡ 4π
∫ ∞

0
dr r2 E [F(r),G(r)] .

Minimizing the energy E with given BC, we obtain F and G describing
Skyrmion-like soliton.



Skyrmion with ω-mesons

The non-linear σ model contains topologically stable but not
energetically stable soliton-like solutions.

To stabilize the solitons the higher derivative terms should be included
to overcome Hobart-Derrick’s theorem. One such term is Skyrme term.

However, as is shown in (Adkins & Nappi ’84) the vector mesons are
sufficient to stabilize the soliton, even without the Skyrme term. This is
demonstrated on the example of isoscalar vector mesons.

In order to incorporate ω-meson the symmetry group has to be
extended and CS term has to be added.

This is also important in order to reproduce correct QCD anomaly.



Extending Dictionary

Since the CS (WZW) term for SU(2) gauge (global) group is
vanishing, the flavor symmetry is extended to U(2)L × U(2)R.
Therefore, we can write fields as: Bµ = taBa

µ + 1
2 B̂µ.

The 4D isovector J{I=1},a
µ (x) and isosinglet vector J{I=0}

µ (x) currents
correspond to:

J{I=1},3
µ =

1
2
(
ūγµu− d̄γµd

)
= q̄γµ

σ3

2
q→ V3

µ(x, z)

J{I=0}
µ =

1
2
(
ūγµu + d̄γµd

)
=

1
2

q̄γµ1q→ V̂µ(x, z)

The EM current

JEM
µ = J{I=1},3

µ +
1
3

J{I=0}
µ

has both isovector (“ρ-type”) and isosinglet (“ω-type”) terms.



Holographic Action with CS Term

The O(B3) part of the 5D CS action, in the axial gauge Bz = 0 is

S(3)
CS [B] =

Nc

24π2 ε
µνρσTr

∫
d4x dz (∂zBµ)

[
FνρBσ + BνFρσ

]
In holographic model (cnf. Domokos & Harvey ’07) the CS term is:

SAdS
CS [BL,BR] = S(3)

CS [BL]− S(3)
CS [BR]

In the absence of dynamical axial-vector fields:

Aa
µ(x, z) = α(z)∂µ

∫ z0

0
dz′ Aa

z (x, z′) ≡ α(z)(∂µπa)

Substituting BL,R = V ±A and taking appropriate care on IR:

Sanom =
Nc

4π2 ε
µνρσ

∫ z0

0
dz (∂zα)

∫
d4x πa (∂ρVa

µ

) (
∂σV̂ν

)
N.B. α(z) = 1− z2/z2

0 corresponds to ψA
0 (z) for m0 = 0.



Correct Anomaly

In QCD the π0γ∗γ∗ form factor is defined by∫
d4x e−iq1x〈π, p|T {JµEM(x) JνEM(0)} |0〉 = εµναβq1αq2 β Fγ∗γ∗π0

(
Q2

1,Q
2
2

)
where p = q1 + q2 and q2

1,2 = −Q2
1,2.

Varying Sanom we get the 3-point function:

Tαµν(p, q1, q2) =
Nc

12π2

pα
p2 εµνρσ qρ1 qσ2 K(Q2

1,Q
2
2)

QCD anomaly requires that KQCD(0, 0) = 1.

Indeed, in this extended holographic model, we get:

K(0, 0) = −
∫ z0

0
J 2(0, z)∂zα(z)dz = −

∫ z0

0
∂zα(z) dz = α(0) = 1 !

N.B. K(Q2
1,Q2

2) = −
∫ z0

0 dzJ (Q1, z)J (Q2, z)∂zα, whereJ (Q, z) is NN-mode s.t. J (0, z) = 1.



Turning only ω-meson

In case Aµ = Vµ = 0 and V̂µ(x, z) = g5ωµ(x)ψ1(z), we have

LYM =
f 2
π

4
Tr
(
∂µU†∂µU

)
+

1
32e2 Tr

([
U†∂µU,U†∂νU

]2)
− 1

4
ω2
µν +

1
2

M2
ω Tr

(
ω2
µ

)
− i

2
k1ωµν Tr

[
U†∂µU,U†∂νU

]
+ κωµBµ

where

Bµ =
1

24π2 ε
µναβ Tr

[
(U†∂νU)(U†∂αU)(U†∂βU)

]
is the conserved, normalized CS current (κ is determined from z0 and g5).

N.B. This lagrangian is similar to one in (Adkins & Nappi ’84) in the chiral limit but with Skyrme term and with term∼ k1 .



Instanton Number

From 5D point of view, the Chern-Pontryagin index is

QL,R =
1

32π2

∫
d3xdz εMNPQ Tr(FMN

L,R FPQ
L,R) .

where z is very much like compact 4D Euclidean time.

This topological characteristic is diffeomorphism invariant and is not
sensitive to the local small perturbations around current value of fields.

The topological charges can be also written as

QL =
i

24π2

∮
dσρεραβµ Tr[`α`β`µ] ,

QR =
i

24π2

∮
dσρεραβµ Tr[rαrβrµ] = −QL ,

`µ(x) = iU∂µU†(x) , rµ(x) = iU†∂µU(x)



Baryon and Instanton Numbers

In Az = 0 gauge, for the solutions which interpolate between the UV
degenerate classical vacua Li = Ri = 0 and Li = `i, Ri = ri we have:

QL = − i
24π2

∫
d3xεijk Tr[`i`j`k] + QIR ,

QR = − i
24π2

∫
d3xεijk Tr[rirjrk] + QIR ,

where QIR is some integral over the h(x) fields on the IR brane.

The instanton number N is defined as

N ≡ 1
2

(QL − QR) = − i
24π2

∫
d3xεijk Tr[`i`j`k] = B .

⇒ the instanton number N is the same as the baryon number B:
Does this mean that the skyrmion is a “preimage” of 5D instanton?



Witten’s ansatz

The fields of minimum action for fixed BC are solutions of F = F̃
(BPST). We will seek the solutions which are invariant under
combined isospin and spin symmetries.

This symmetry is called a cylindrical symmetry, since it determines the
dependence of the fields on the 3D polar angles and leaves the
unknown only the dependence on the 3D radius r and Euclidean time,
which in our case (effectively) is z.

The most general gauge field with this cylindrical symmetry is given
by (Witten ’76)

Aa
j (x, z) =

1 + φ2(r, z)
r2 εjakxk +

φ1(r, z)
r3

[
δjar2 − xjxa

]
+ A1(r, z)

xjxa

r2 ,

Aa
z (x, z) =

A2(r, z)xa

r
.

N.B. This is true for general gauge.



Witten’s ansatz for two YM fields

Witten found general solution of Fab = F̃ab (a, b = 1, 2, 3, z) that can
be written in the above form in case of the unbounded Euclidean space.

The same problem for space with bounded z was discussed by
(Pomarol & Wulzer ’08), and the solution was obtained using
numerical calculations.

Since we have two fields in the bulk, some simplifications can be made:

φ1 ≡ −φL
1 = φR

1 , φ2 ≡ φL
2 = φR

2 ,

A1 ≡ AR
1 = −AL

1 , A2 ≡ AR
2 = −AL

2



Witten’s ansatz for two YM fields

As a result: Vz(x, z) = 0,

Va
j (x, z) =

1 + φ2(r, z)
r2 εjakxk

and

Aa
j (x, z) = −φ1(r, z)

r3

[
δjar2 − xjxa

]
− A1(r, z)

xjxa

r2

Aa
z (x, z) = −A2(r, z)xa

r
In order to satisfy the BC of the original gauge fields, we have to require:

φ1(r, z0) = 0 , ∂zφ2(r, z0) = 0 ,

A1(r, z0) = 0 , ∂zA2(r, z0) = 0 ,

φ1(r, 0) = 0 , φ2(r, 0) = −1 ,

A1(r, 0) = 0 , ∂zA2(r, 0) = 0 .



Absence of Instanton

The condition Fab = F̃ab is equivalent to Witten’s duality equations:

∂zφ1 + A2φ2 = ∂rφ2 − A1φ1

∂rφ1 + A1φ2 = −∂zφ2 + A2φ1

∂zA1 − ∂rA2 =
1
r2

(
1− φ2

1 − φ2
2

)
Expressing our ansatz for vector and chiral fields in terms of φ1,2 and
A1,2, we find that the letter don’t satisfy Witten’s equations

⇒ our soliton can’t be a 5D localized instanton

Notice that in our case the soliton consists of ρ-mesons only, since:
φ2(r, z) = g5G(r)ψ1(z)− 1

One can show that to have an instanton the whole tower of vector
resonances should be incorporated



Naive Soliton-like Solution from Vector Fields

Let Aa
j (x, z) = 0 ⇔ φ1 = A1 = 0. This is true e.g. on IR boundary.

As a result Witten’s duality equations become:

∂rφ2 = A2φ2 ,

∂zφ2 = 0 ,

∂rA2 =
1
r2

(
φ2

2 − 1
)
.

From 2nd equation ⇒ no z dependence for vector fields.

Substituting: φ2(r) = reρ(r), we will get:

∂2
r ρ = e2ρ ,

A2(r) = ∂rρ+
1
r
.



Soliton-like Solution

The equation ∂2
r ρ = e2ρ is Liouville’s equation, with general solutions:

ρ(r) = − ln
[
− i

a
cosh(ar + b)

]
.

Substituting this back to φ2 and A2, we get

φ2(r) =
iar

cosh(ar + b)
,

A2(r) =
1
r
− a tanh(ar + b) .

To make the solution for A2 regular at r = 0, we demand b = −iπ/2 so that

φ2(r) = − ar
sinh(ar)

,

A2(r) =
1
r
− a coth(ar) .

N.B. For r → 0, we have A2 → −a2r/3 and φ2 → −1 + a2r2/6.



Topological Charge and Mass

The topological charge in terms of Witten’s ansatz is:

Q =
1

2π

∫ ∞
0

dr
∫ z0

0
dzεµ̄ν̄

[
∂µ̄ (−iφ∗Dν̄φ+ h.c.) + Fµ̄ν̄

]
,

where Dµ̄φi = ∂µ̄ + εijAµ̄φj, µ̄, ν̄ = 1, 2, φ = φ1 + iφ2 and Fµ̄ν̄ = ∂[µ̄Aν̄].

For our case, we have:

Q =
1

2π

∫ ∞
0

drεµ̄ν̄Fµ̄ν̄ = − 1
π

A2(r →∞) =
a
π

To get Q = 1, we choose a = π ⇒ the classical mass of this object will be

M =
8π2

g2
5z0

=
2
z0

= 646 MeV

N.B. This soliton has to be further quantized in order to find MN,∆ .



Solution with Unit Topological Charge

The solution with Q = 1, Va
z (x, z) = Aa

i (x, z) = 0 is given by

Va
j (x, z) =

[
1− πr

sinh(πr)

]
εjakxk

r2 ≡ Ḡ(r)
εjakxk

r

Aa
z (x, z) = [πr coth(πr)− 1]

xa

r2 ≡ F̄(r)
xa

r

U(x) =P exp
(

iτa

∫ z0

0
dz′Aa

z (x, z′)
)

= exp (ix̂aτa F(r))

Near the origin: Ḡ/r → π2/6 and F̄/r → π2/3

At infinity: Ḡ(∞)→ 0 and F̄(∞)→ π

If the solution is localized at IR ⇒ F(r) = F̄(r), and F(0) = 0, F(∞) = π

⇒ we have anti-skyrmion with B = −1.





IR localized soliton

It is easy to see that since, (F − F̃)2/2 = F2 − FF̃ ≥ 0,

E =
1

4g2
5

∫
d3x
∫ z0

0
dz

1
z

Tr
[
LabLab + RabRab]

≥ 1
4g2

5

∫
d3x
∫ z0

0
dz

1
z
εabcd Tr [LabLcd + RabRcd]

≥ 1
4g2

5z0

∫
d3x
∫ z0

0
dzεabcd Tr [LabLcd + RabRcd]

=
8π2

g2
5z0

(QL + QR) ,

where a, b, c, d ∈ (1, 2, 3, z). If we take g2
5 = 4π2, QL = 1 and QR = 0, then:

E ≥ 2
z0

= 646 MeV



IR localized soliton

The bound

E ≥ 8π2

g2
5z0

(QL + QR)

is saturated, when

Lab(x, z) = ±L̃ab(x, z) and Rab(x, z) = ±R̃ab(x, z)

the center of the solution is localized at z = z0

This describes 4D instanton localized at IR

It was shown by (Pomarol & Wulzer ’08) that if ρ is the instanton size:

E ≥ 8π2

g2
5z0

(
1 +

ρ

2z0

)
⇒ instanton will shrink to a point.
N.B. P&W also showed that addition of IR localized gauge kinetic term can stabilize the soliton.



Summary

We showed how to extract Skyrme model from AdS/QCD.

We also generalized to include vector meson fields (like ρ-meson),
isosinglets (like ω-meson) and ωµBµ interaction.

In this AdS/QCD model baryon looks like 4D soliton and is not
localized in 5D.

Our ansatz doesn’t correspond to instanton in 5D because we have only
ρ-mesons that contribute to baryon.

To have 5D instanton, the whole tower of vector meson resonances
should be included.

We discussed a simple solution, where soliton is made of vector fields
and is localized at IR.



THE END


