Simulations with $N_f=2+1$ Flavors of Anisotropic Clover Fermions

Huey-Wen Lin

Perspectives and Challenges for Full-QCD Lattice Calculations
ECT, Trento, Italy
May 07, 2008
Physics Research Directions

Wanted:

Spectrum:

- Excited-state baryon resonances (Hall B)
- Conventional and exotic (hybrid) mesons (Hall D)

Example: N, P_{11}, S_{11} spectrum

Huey-Wen Lin — ECT Workshop, May 08
Physics Research Directions

Wanted:

- **Spectrum:**
 - Excited-state baryon resonances (Hall B)
 - Conventional and exotic (hybrid) mesons (Hall D)

- **Form factors:** ground-state and excited-state form factors and transition form factors

Experiments at Jefferson Laboratory (CLAS), MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8

Many models disagree (a selection are shown here)

Example: $N-P_{11}$ transition FF
Physics Research Directions

Wanted:

- **Spectrum:**
 - Excited-state baryon resonances (Hall B)
 - Conventional and exotic (hybrid) mesons (Hall D)

- Form factors: ground-state and excited-state form factors and transition form factors

Solution: increase resolution
- Anisotropic lattices \(a_t < a_{x,y,z} \)
Going to larger t does not always work well with three-point correlators

Example:

Quark helicity distribution
LHPC & SESAM

50% increase in error budget at $t_{\text{sep}} = 14$

Confronting the excited states might be a better solution than avoiding them.
Actions

- Anisotropic Symanzik gauge action with bare anisotropy γ_g

$$S_G = \frac{\beta}{N_c \gamma_g} \left\{ \sum_{x, s > s'} \left[\frac{5}{3} P_{ss'} - \frac{1}{12} R_{ss'} \right] + \sum_{x, s} \left[\frac{4}{3} P_{st} - \frac{1}{12} R_{st} \right] \right\}$$

(Morningstar, Peardon ’99)

- Anisotropic clover fermion action with 3d stout-link smeared U's (spatially smeared only)

$$S_{FW}^S = \bar{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \bar{\psi} \left[c_t \sum_s \sigma_{ts} F_{ts}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi$$

- Tree-level values for c_t and c_s

$$c_s = \frac{\gamma_g}{\gamma_f}, \quad c_t = \frac{1}{2} \left(\frac{\gamma_g}{\gamma_f} + \frac{1}{\xi} \right)$$

(P. Chen 2001)

- Tadpole improvement factors u_s (gauge) and u'_s (fermion)

- Coefficients to tune: γ_g, γ_f, m_0, β
Actions

- Anisotropic Symanzik gauge action with bare anisotropy γ_g

 \[S_G = \frac{\beta}{N_c \gamma_g} \left\{ \sum_{x,s,s'} \left[\frac{5}{3} P_{ss'} - \frac{1}{12} R_{ss'} \right] + \sum_{x,s} \left[\frac{4}{3} P_{st} - \frac{1}{12} R_{st} \right] \right\} \]

 (Morningstar, Peardon '99)

- Anisotropic clover fermion action with 3d stout-link smeared U's (spatially smeared only)

 \[S_{SW}^F = \bar{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \bar{\psi} \left[c_t \sum_s \sigma_{ts} F_{ts}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi \]

- Tree-level values for c_t and c_s

 \[c_s = \frac{\gamma_g}{\gamma_f}, \quad c_t = \frac{1}{2} \left(\frac{\gamma_g}{\gamma_f} + 1/\xi \right) \]

 (P. Chen 2001)

- Tadpole improvement factors u_s (gauge) and u'_s (fermion)

- Coefficients to tune: γ_g, γ_f, m_0, β

- “SLAC” = Stout Link Anisotropic Clover
3D Stout-Link Smearing

Morningstar, Peardon ’04

- Smoothes out dislocations; impressive glueball results
- Updating **spatial** links only
- Differentiable!
 Direct implementation for dynamical simulation

Why 3d Stout-link smearing?

i. Still have positive-definite transfer matrix in time (good for spectroscopy with multiple excited states)

ii. Light quark action (more) stable

iii. Tadpole $c_{s,t}$ is closer to nonperturbative one
3D Stout-Link Smearing

Morningstar, Peardon ‘04

- Smoothes out dislocations; impressive glueball results
- Updating \textit{spatial} links only
- Differentiable!
 - Direct implementation for dynamical simulation

Scaling Study:

with $n_\rho = 2$ and $\rho = 0.22$

- Quenched Wilson gauge comparison

- Clover: small scaling violations

\begin{equation}
\mathbf{U} = \mathbf{U} + \frac{1}{2} \sum_{\nu \neq \mu} \rho_{\mu \nu} \{ \mathbf{U} + \mathbf{U} + \mathbf{U} + \mathbf{U} \}
\end{equation}
Computational Facilities

Two major resources:

USQCD

7n cluster (13 TF) @ JLab

INCITE

Jaguar cluster (119 TF) @ ORNL
Algorithm

- Rational Hybrid Monte Carlo (RHMC)
- Multi-scale anisotropic molecular dynamics update
- Even-odd preconditioning for the clover term
- Stout-link smearing in fermion actions

\[
\frac{d\tilde{Q}}{dU_{\text{thin}}} = \frac{d\tilde{Q}}{dU_{\text{stout}}} \frac{dU_{\text{stout}}}{dU_{\text{thin}}}
\]

- Split gauge term
- Three time scales
 - \(\delta t_1\): Omelyan integrator for tr \(\log A_{ee}\) and \(\phi^+ r^{-\frac{1}{2}} (\tilde{Q}) \phi\)
 - \(\delta t_2\): Leapfrog integrator \(S_{G,(S)}\)
 - \(\delta t_3\): Leapfrog integrator \(S_{G,(T)}\)
 - Choice: \((\delta t_1, \delta t_2, \delta t_3) = (1/4, 1/4, 1/3)\) for \(12^3 \times 96\)
 \((1/5, 1/3, 1/2)\) for \(12^3 \times 32\)
- Acceptance rate: 60–70%
Dynamical Generation Costs

- Cost in terms of cost of producing one MD trajectory

\[\text{Cost}_{\text{traj}} = \xi^{1.25} \left(\frac{\text{fm}}{a_s} \right)^6 \left[\left(\frac{L_s}{\text{fm}} \right)^3 \left(\frac{L_t}{\text{fm}} \right) \right]^{5/4} \cdot [C_1 + C_2/m_l]. \]

- Extra cost – a dimension taken to (near) continuum limit!
- Improvement: Temporal preconditions of clover Dirac operator (Edwards, Joo, Peardon, work in progress)
- Gain factor of 2.5 in quenched study
- Ready to implement on next anisotropic runs
Tadpole Factors and Stout Smearing

Stout parameter study:

one-loop (Foley et al.)

Conservative choices: $n_\rho = 2$ and $\rho = 0.14$ ($< 1/2d$)

Padé approximation for u_s over a wide range of $g^2 = 6/\beta$

\[\langle P_s \rangle = 1 - e^{14} g^2 \]
$N_f=3$ Nonperturbative Tuning

Nonperturbatively determine γ_g, γ_f, m_0 on anisotropic lattice

$$S_{SW}^{SW} = \bar{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi \bar{\psi} \left[c_t \sum_s \sigma_{ts} F_{ts}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi$$

Three calculations:
- Background field in time: PCAC gives M_t
Nonperturbatively determine γ_g, γ_f, m_0 on anisotropic lattice

$$S_{SW}^F = \overline{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \overline{\psi} \left[c_t \sum_s \sigma_{ts} F_{ls}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi$$

Three calculations:
- Background field in time: PCAC gives M_t
- Background field in space: sideways potential gives $\gamma_{g,R}$

Klassen Method: ratio of Wilson loops

Wanted: $V_s(ya_s) = V_s(ta_s / \xi_R)$

\Rightarrow Condition: $R_{ss}(x,y) = R_{st}(x,t)$

$$L(\xi_g) = \sum_{x,y} \frac{(R_{ss}(x,y) - R_{st}(x,\xi_g y))^2}{(\Delta R_s)^2 + (\Delta R_t)^2}$$

Comparison with PBC result

Example:
$(\gamma_g = 4.4, \gamma_f = 3.4, m_0 = -0.0570, \beta = 1.5)$
Nonperturbatively determine γ_g, γ_f, m_0 on anisotropic lattice

$$S^{SW}_{F} = \bar{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \bar{\psi} \left[c_l \sum_s \sigma_{ts} F_{ts}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi$$

Three calculations:
- Background field in time: PCAC gives M_t
- Background field in space: sideways potential gives $\gamma_{g,R}$
- Antiperiodic in time: dispersion relation gives $\gamma_{f,R}$, $(m_0, r_0, \text{etc.})$
\(N_f=3 \) Nonperturbative Tuning

Nonperturbatively determine \(\gamma_g, \gamma_f, m_0 \) on anisotropic lattice

\[
S_{SW}^{SW} = \overline{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \overline{\psi} \left[c_t \sum_s \sigma_{ts} F_{ts}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi
\]

Three calculations:

- Background field in time: PCAC gives \(M_t \)
- Background field in space: sideways potential gives \(\gamma_g, R \)
- Antiperiodic in time: dispersion relation gives \(\gamma_f, R \), \((m_0, r_0, etc.) \)

<table>
<thead>
<tr>
<th>(m_0)</th>
<th>(\gamma_g)</th>
<th>(\gamma_f)</th>
<th>(M_t)</th>
<th>(\Delta M_t)</th>
<th>(\Delta M_t^{(0)})</th>
<th>(\xi_g)</th>
<th>(\xi_f)</th>
<th>(m_x)</th>
<th>(m_p)</th>
<th>(m_x/m_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0950</td>
<td>4.3</td>
<td>3.5</td>
<td>0.0122(9)</td>
<td>0.0083(10)</td>
<td>-0.001547</td>
<td>3.48(5)</td>
<td>-0.0743</td>
<td>4.3</td>
<td>3.4</td>
<td>3.43(4)</td>
</tr>
<tr>
<td>-0.0950</td>
<td>4.3</td>
<td>3.4</td>
<td>0.0121(9)</td>
<td>0.0083(9)</td>
<td>-0.001547</td>
<td>3.42(3)</td>
<td>-0.0618</td>
<td>4.3</td>
<td>3.5</td>
<td>3.62(5)</td>
</tr>
<tr>
<td>-0.0950</td>
<td>4.3</td>
<td>3.3</td>
<td>-0.0141(8)</td>
<td>0.0082(9)</td>
<td>-0.001708</td>
<td>3.40(3)</td>
<td>-0.0618</td>
<td>4.2</td>
<td>3.4</td>
<td>3.38(4)</td>
</tr>
<tr>
<td>-0.0734</td>
<td>4.3</td>
<td>3.5</td>
<td>0.0169(9)</td>
<td>-0.0007(9)</td>
<td>-0.001547</td>
<td>3.47(10)</td>
<td>-0.0734</td>
<td>4.3</td>
<td>3.4</td>
<td>3.18(3)</td>
</tr>
<tr>
<td>-0.0734</td>
<td>4.3</td>
<td>3.4</td>
<td>0.0149(7)</td>
<td>-0.0007(6)</td>
<td>-0.001547</td>
<td>3.46(4)</td>
<td>-0.0618</td>
<td>4.2</td>
<td>3.5</td>
<td>3.47(6)</td>
</tr>
<tr>
<td>-0.0734</td>
<td>4.3</td>
<td>3.3</td>
<td>0.0139(7)</td>
<td>0.0066(11)</td>
<td>-0.001708</td>
<td>3.48(4)</td>
<td>-0.0618</td>
<td>4.2</td>
<td>3.4</td>
<td>3.25(6)</td>
</tr>
<tr>
<td>-0.0618</td>
<td>4.2</td>
<td>3.5</td>
<td>0.0431(11)</td>
<td>0.0092(4)</td>
<td>-0.001427</td>
<td>3.41(3)</td>
<td>-0.0570</td>
<td>4.3</td>
<td>3.3</td>
<td>3.23(4)</td>
</tr>
<tr>
<td>-0.0618</td>
<td>4.2</td>
<td>3.4</td>
<td>0.0536(2)</td>
<td>-0.0004(8)</td>
<td>-0.001545</td>
<td>3.42(2)</td>
<td>-0.0570</td>
<td>4.3</td>
<td>3.2</td>
<td>3.19(5)</td>
</tr>
<tr>
<td>-0.0618</td>
<td>4.2</td>
<td>3.3</td>
<td>0.0339(11)</td>
<td>0.0004(8)</td>
<td>-0.001672</td>
<td>3.50(4)</td>
<td>-0.0570</td>
<td>4.3</td>
<td>3.1</td>
<td>2.99(4)</td>
</tr>
<tr>
<td>-0.0618</td>
<td>4.3</td>
<td>3.5</td>
<td>0.0321(9)</td>
<td>0.0003(5)</td>
<td>-0.001547</td>
<td>3.47(4)</td>
<td>-0.0570</td>
<td>4.4</td>
<td>3.3</td>
<td>3.43(6)</td>
</tr>
<tr>
<td>-0.0618</td>
<td>4.3</td>
<td>3.4</td>
<td>0.0303(6)</td>
<td>-0.0001(5)</td>
<td>-0.001672</td>
<td>3.44(4)</td>
<td>-0.0570</td>
<td>4.4</td>
<td>3.2</td>
<td>3.22(8)</td>
</tr>
<tr>
<td>-0.0618</td>
<td>4.3</td>
<td>3.3</td>
<td>0.0297(6)</td>
<td>-0.0003(4)</td>
<td>-0.001708</td>
<td>3.43(4)</td>
<td>-0.0570</td>
<td>4.4</td>
<td>3.1</td>
<td>2.91(6)</td>
</tr>
<tr>
<td>-0.0618</td>
<td>4.4</td>
<td>3.4</td>
<td>0.0218(5)</td>
<td>-0.0004(5)</td>
<td>-0.001791</td>
<td>3.47(4)</td>
<td>-0.0570</td>
<td>4.4</td>
<td>3.3</td>
<td>3.39(16)</td>
</tr>
</tbody>
</table>
$N_f=3$ Nonperturbative Tuning

Nonperturbatively determine γ_g, γ_f, m_0 on anisotropic lattice

$$S_{SW}^F = \bar{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \bar{\psi} \left[c_t \sum_s \sigma_{ts} F_{ts}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi$$

Three calculations:
- Background field in time: PCAC gives M_t
- Background field in space: sideways potential gives $\gamma_{g,R}$
- Antiperiodic in time: dispersion relation gives $\gamma_{f,R}$, $(m_0, r_0$, etc.)

Parametrize anisotropies and PCAC mass linearly:

$$\xi_g(\gamma_g, \gamma_f, m_0) = a_0 + a_1 \gamma_g + a_2 \gamma_f + a_3 m_0$$
$$\xi_f(\gamma_g, \gamma_f, m_0) = b_0 + b_1 \gamma_g + b_2 \gamma_f + b_3 m_0$$
$$M_t(\gamma_g, \gamma_f, m_0) = c_0 + c_1 \gamma_g + c_2 \gamma_f + c_3 m_0.$$

Use space & time BC simulations to fit a’s, b’s, c’s separately

Improvement condition: solve 3×3 linear system for each m_q with $\xi = a_s/a_t = 3.5$

$$\xi_g(\gamma_g^*, \gamma_f^*, m_0^*) \equiv \xi$$
$$\xi_f(\gamma_g^*, \gamma_f^*, m_0^*) \equiv \xi$$
$$M_t(\gamma_g^*, \gamma_f^*, m_0^*) \equiv m_q$$
Nonperturbatively determine γ_g, γ_f, m_0 on anisotropic lattice

$$S_{SW}^{SW} = \bar{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \bar{\psi} \left[c_t \sum \sigma_{ls} F_{ls}(U') + \frac{c_s}{\gamma_g} \sum \sigma_{rs} F_{rs}(U') \right] \psi$$

$N_f = 3$, $\xi = 3.5$, $\beta = 1.5$

Plot of γ_g and γ_f versus input current quark mass

Mild dependence on quark mass; fix γ_g and γ_f
Nonperturbatively determine γ_g, γ_f, m_0 on anisotropic lattice

$$S_F^SW = \bar{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \bar{\psi} \left[c_l \sum_s \sigma_{ls} F_{ls}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi$$

$N_f = 3$, $\xi = 3.5$, $\beta = 1.5$ \texttt{arxiv:0803.3960}

- Plot of γ_g and γ_f versus input current quark mass
- Mild dependence on quark mass; fixed γ_g and γ_f

PCAC mass measured in SF scheme: $m_{cr} = -0.0854(5)$
Nonperturbatively determine γ_g, γ_f, m_0 on anisotropic lattice

$$S_{SW}^c = \bar{\psi} \left[m_0 + D_t(U') + \frac{1}{\gamma_f} D_s(U') \right] \psi - \bar{\psi} \left[c_t \sum_s \sigma_{ts} F_{ts}(U') + \frac{c_s}{\gamma_g} \sum_{rs} \sigma_{rs} F_{rs}(U') \right] \psi$$

$N_f = 3$, $\xi = 3.5$, $\beta = 1.5$ [arxiv:0803.3960]

- Plot of γ_g and γ_f versus input current quark mass
- Mild dependence on quark mass; fixed γ_g and γ_f

PCAC mass measured in SF scheme: $m_{cr} = -0.0854(5)$

Check NP $c_{s,t}$ condition in SF scheme

![Graph showing ΔM_t vs. m_0 with data points and lines indicating different scenarios]
2+1-Flavor Runs

- Mass-independent scheme (fixed $\beta = 1.5$ approach)
- Scale and masses are defined in chiral limit

(Edwards, Joo, Lin, Peardon, work in progress)

<table>
<thead>
<tr>
<th>L_x</th>
<th>L_t</th>
<th>m_ℓ</th>
<th>m_s</th>
<th>L (fm)</th>
<th>m_π L</th>
<th>m_π (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>96</td>
<td>-0.0540</td>
<td>-0.0540</td>
<td>1.44</td>
<td>11.6</td>
<td>~1600</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>-0.0699</td>
<td>-0.0540</td>
<td>1.44</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>-0.0794</td>
<td>-0.0540</td>
<td>1.44</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>-0.0826</td>
<td>-0.0540</td>
<td>1.44</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>96</td>
<td>-0.0826</td>
<td>-0.0540</td>
<td>1.92</td>
<td>6.3</td>
<td>~660</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>-0.0618</td>
<td>-0.0618</td>
<td>1.44</td>
<td>9.7</td>
<td>~1340</td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>-0.0743</td>
<td>-0.0743</td>
<td>1.92</td>
<td>8.1</td>
<td>~850</td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>-0.0808</td>
<td>-0.0743</td>
<td>1.92</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>-0.0830</td>
<td>-0.0743</td>
<td>1.92</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>-0.0840</td>
<td>-0.0743</td>
<td>1.92</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>128</td>
<td>-0.0840</td>
<td>-0.0743</td>
<td>2.88</td>
<td>5.7</td>
<td>~390</td>
</tr>
</tbody>
</table>
Algorithm

- Rational Hybrid Monte Carlo (RHMC)
- Multi-scale anisotropic molecular dynamics update
- Even-odd preconditioning for the clover term
- Stout-link smearing in fermion actions

\[
\frac{d\tilde{Q}}{dU_{\text{thin}}} = \frac{d\tilde{Q}}{dU_{\text{stout}}} \frac{dU_{\text{stout}}}{dU_{\text{thin}}}
\]

- Split gauge term
- Three time scales
 - \(\delta t_1 \): Omelyan integrator for \(\text{tr} \log A_{ee} \) and \(\phi_i^+ r - \frac{1}{2} (\tilde{Q}) \phi \)
 - \(\delta t_2 \): Omelyan integrator \(S_{G,(S)} \)
 - \(\delta t_3 \): Omelyan integrator \(S_{G,(T)} \)
 - Choice: \(\delta t_1 = \delta t_2 \)
- Acceptance rate: 75%
Autocorrelation

- Example: $24^3 \times 128$ volume, with pion mass 315 MeV
- Plaquette history

Graphs showing spatial and temporal autocorrelation.
Lowest Eigenvalue

- Example: $24^3 \times 128$ volume, with pion mass 315 MeV
- Histogram distributions
2+1-Flavor Runs

- Preliminary spectroscopic measurements
 - 3 Gaussian smearing parameters + Point/Smeared sink
 - Average over 4 time sources
 (w/ eigcg solver 0707.0131 [hep-lat])
 \{0,0,0,0\}, \{8,8,8,32\}, \{0,0,64\}, \{8,8,8,128\}
 - Ground states obtained from 2-state fits
 - For example: 12 pion correlators
2+1-Flavor Runs

- Preliminary spectroscopic measurements
 - 3 Gaussian smearing parameters + Point/Smeared sink
 - Average over 4 time sources
 (w/ eigcg solver 0707.0131 [hep-lat])
 \{0,0,0,0\}, \{8,8,8,32\}, \{0,0,64\}, \{8,8,8,128\}
 - Ground states obtained from 2-state fits
 - For example: 6 Lambda correlators

More spectroscopy results by Saul Cohen
2+1-Flavor Runs

Meson strange-sea dependence

\[
\begin{align*}
\rho & & m_{1} = -0.0743 & & m_{2} = -0.0540 & & m_{3} = -0.0618 \\
\phi & & m_{1} = -0.0743 & & m_{2} = -0.0540 & & m_{3} = -0.0618 \\
\alpha & & m_{1} = -0.0743 & & m_{2} = -0.0540 & & m_{3} = -0.0618 \\
\beta & & m_{1} = -0.0743 & & m_{2} = -0.0540 & & m_{3} = -0.0618 \\
\end{align*}
\]
2+1-Flavor Runs

Meson strange-sea dependence

\[K, \eta_s, \rho, K^*, \phi, a_0, a_1, b_1 \]

\[m_s = -0.0743, m_s = -0.0618, m_s = -0.0540 \]
Baryon strange-sea dependence

2+1-Flavor Runs
Baryon strange-sea dependence

2+1-Flavor Runs

\[N \]
\[\Sigma \]
\[\Lambda \]
\[\Delta \]
\[\Sigma^* \]
\[\Xi^* \]
\[\Omega \]
Strange-Quark Mass

Difficult: Chiral extrapolation to obtain \(m_s \) and \(r_0/a_s \)

Strange-quark tuning

Candidates: kaon, \(\phi \), \(\Omega \) mass, etc.

Example: at a fixed \(m_s \), see 30% variation in phi mass

Need multiple 2+1 runs to obtain reasonable \(m_s \)
Better description for s-quark tuning
- Use ratio of hadron masses to eliminate lattice spacing
- **Leading-order XPT**
 \[l_\Omega = (9/4) \frac{m_\pi^2}{m_\Omega^2} \text{ and } \]
 \[s_\Omega = (9/4) \frac{2m_K^2 - m_\pi^2}{m_\Omega^2} \]
Better description for s-quark tuning

- Use ratio of hadron masses to eliminate lattice spacing

Leading-order XPT

\[l_\Omega = \left(\frac{9}{4} \right) \frac{m_\pi^2}{m_\Omega^2} \text{ and } s_\Omega = \left(\frac{9}{4} \right) \frac{(2m_K^2 - m_\pi^2)}{m_\Omega^2} \]

- Tune $N_f = 3$ quark mass until physical s_Ω achieved
Better description for s-quark tuning

- Use ratio of hadron masses to eliminate lattice spacing

Leading-order XPT

\[l_\Omega = \left(\frac{9}{4} \right) \frac{m_\pi^2}{m_\Omega^2} \text{ and} \]

\[s_\Omega = \left(\frac{9}{4} \right) \frac{2m_K^2 - m_\pi^2}{m_\Omega^2} \]

- Tune $N_f = 3$ quark mass until physical s_Ω achieved

- 2+1f comparison plot

 - Aniso-clover, $a_s = 0.13$ fm
 - DWF on asqtad, $a = 0.125$ fm (LHPC)
 - DWF on DWF, $a = 0.116$ fm (RBC+UKQCD)
Better description for s-quark tuning

- Use ratio of hadron masses to eliminate lattice spacing

Leading-order XPT

\[l_\Omega = \frac{(9/4) m_\pi^2}{m_\Omega^2} \quad \text{and} \quad s_\Omega = \frac{(9/4) (2m_K^2 - m_\pi^2)}{m_\Omega^2} \]

- Tune $N_f = 3$ quark mass until physical s_Ω achieved

- 2+1f comparison plot

 - Aniso-clover, $a_s \sim 0.13$ fm
 - DWF on asqtad, $a = 0.125$ fm (LHPC)
 - DWF on DWF, $a = 0.116$ fm (RBC+UKQCD)

LO Extrapolation

- Strange is off by 4–6%

NLO correction?

<table>
<thead>
<tr>
<th>Inputs</th>
<th>a_π^{-1} (GeV)</th>
<th>m_i^{phys}</th>
<th>m_s^{phys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_π^2, m_K^2, m_Ω</td>
<td>5.39(8)</td>
<td>-0.08668(11)</td>
<td>-0.0705(4)</td>
</tr>
<tr>
<td>m_π^2, m_K^2, m_ϕ</td>
<td>5.47(5)</td>
<td>-0.08651(8)</td>
<td>-0.0710(2)</td>
</tr>
</tbody>
</table>
Where we stand now:

- Scaling based on actual (24^3) runs down to ~170 MeV

 \[\text{Cost}_{\text{traj}} = \xi^{1.25} \left(\frac{\text{fm}}{a_s} \right)^6 \left[\left(\frac{L_s}{\text{fm}} \right)^3 \left(\frac{L_t}{\text{fm}} \right) \right]^{5/4} \cdot [C_1 + C_2/m] \]

- Currently, ~5k traj @ 875, 580, ~3k @ 456 MeV (16^3): ~6k by July 1
- 315 MeV (24^3), currently 3k traj, get ~1k traj/week
- 24^3 315 MeV ORNL runs underway now
- 24^3 and 32^3 250 MeV for the near future

Future plans:

- < 200 MeV generation possible within next year or two
- Excited single-particle state vs. multi-particle ones
- Multiple lattice spacings