Dynamical coupled-channels study of photo- and electro-production reactions

Hiroyuki Kamano
(Excited Baryon Analysis Center, Jefferson Lab)

in collaboration with
B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama,
T. Sato, N. Suzuki

Joint DNP/JPS meeting Oct. 13-17
1. Excited Baryon Analysis Center (EBAC) @JLab

2. Recent results from EBAC-DCC analysis of $ep \rightarrow e'\pi N$ reactions

3. Current work on “Complete Experiment” of pseudoscalar meson photoproduction reactions
Excited Baryon Analysis Center @ Jefferson Lab

Objectives and goals:

Through the comprehensive analysis of world data of πN, γN, $N(e,e')$ reactions,

- Determine N^* spectrum (masses, widths)
- Extract N^* form factors, in particular the N-N^* electromagnetic transition form factors
- Develop a method to connect with hadron structure calculations and deduce the structure of N^* states

Reaction Data

$\pi N \rightarrow \pi N, \eta N, \pi\pi N, KY, \omega N...

\gamma^{(*)} N \rightarrow \pi N, \eta N, \pi\pi N, KY, \omega N...

Dynamical Coupled-Channels Analysis @ EBAC

Hadron Models

Lattice QCD

QCD

Founded in January 2006

http://ebac-theory.jlab.org/
Dynamical coupled-channels model @ EBAC

✓ Partial wave (LSJ) amplitude of a → b reaction:

\[
T^{(LSJ)}_{a,b}(p_a, p_b; E) = V^{(LSJ)}_{a,b}(p_a, p_b) + \sum_c \int_0^\infty q^2 dq V^{(LSJ)}_{a,c}(p_a, q)G_c(q; E)T^{(LSJ)}_{c,b}(q, p_b; E)
\]

coupled-channels effect

✓ Reaction channels:

\[
a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi\Delta, \sigma N, \rho N, K\Lambda, K\Sigma, \omega N)
\]

\[
\pi\pi N
\]

✓ Potential:

\[
V_{a,b} = v_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}
\]

ground meson-baryon exchange

bare N* state
2. Single pion electroproduction ($Q^2 > 0$)

Fit to the structure function data from CLAS

$$\frac{d\sigma^{5}}{dE_{e}d\Omega_{e}d\Omega_{\pi}^*} = \Gamma_{\gamma} \left[\sigma_{T} + c\sigma_{L} + \sqrt{2c(1+c)}\sigma_{LT}\cos\phi_{\pi}^* + c\sigma_{TT}\cos2\phi_{\pi}^* + h_{e}\sqrt{2c(1-c)}\sigma_{LT'} \sin\phi_{\pi}^* \right].$$

$Q^2 = 0.4 \text{ (GeV/c)}^2$

$Q^2 = 1.45 \text{ (GeV/c)}^2$

$W < 1.6 \text{ GeV}$

$Q^2 < 1.5 \text{ (GeV/c)}^2$

$\Gamma_{\gamma N \rightarrow N^*}$ is determined at each Q^2.

p (e,e' π^0) p
$\gamma^* N \rightarrow \Delta(1232)$ form factors

- G_M^*
- G_E^*
- G_C^*

- Full results
- $\Delta(1232)$ form factors

- Meson cloud
“Complete Experiment” of pseudoscalar meson photoproduction reactions

“Complete Experiment” = Measure ALL polarization observables needed to determine amplitudes (up to overall phase)

- unpolarized diff. crs. sec.
 → \(d\sigma /d\Omega \)

- single spin
 → \(P, \Sigma, T \)

- beam-target
 → \(E, F, G, H \)

- beam-recoil
 → \(C_{x'}, C_{z'}, O_{x'}, O_{z'} \)

- target-recoil
 → \(T_{x'}, T_{z'}, L_{x'}, L_{z'} \)

✓ Measurement of \(\gamma N \to KY \) pol. obs. is very active.

✓ OVER-COMPLETE experiment planned by CLAS for \(\gamma p \to K^+ Y, \gamma n \to KY \).

Provides critical information on \(N^* \to KY \) decays!!
“Complete Experiment” of pseudoscalar meson photoproduction reactions

“Complete Experiment” = Measure **ALL** polarization observables needed to determine amplitudes (up to overall phase)

unpolarized diff. crs. sec.
→ \(d\sigma/d\Omega\)

single spin
→ \(A_{1}\)

beam-target
→ \(C_{X'}, C_{Z'}, O_{X'}, O_{Z'}\)

beam-recoil
→ \(T_{X'}, T_{Z'}, L_{X'}, L_{Z'}\)

target-recoil

How much critical are the polarization observables on constraining reaction models and extracting N* parameters?

8 /16 observables needed!
Chiang, Tabakin PRC55 2054 (1997)

Provides critical information on N* \(\rightarrow\) KY decays!!
Comparison of all $\gamma N \rightarrow \pi N$ observables

$\gamma p \rightarrow \pi^0 p$

$W = 1232$ (MeV)

$W = 1481$ (MeV)

EBAC SAID MAID

Thomas Jefferson National Accelerator Facility
Polarization observables of K^+ Lambda photoproduction

Sandorfi, Hoblit, Kamano, Lee, in preparation

- The πN, $\gamma N \to KY$ data before 2006 are used for the model construction

- Necessity of new N^* states for explaining the data: D13, S11, P13 with mass 1800-1950 MeV
Polarization observables of \(K^+ \) Lambda photoproduction

Sandorfi, Hoblit, Kamano, Lee, in preparation

- The \(\pi N, \gamma N \rightarrow KY \) data before 2006 are used for the model construction
- Necessity of new \(N^* \) states for explaining the data: D13, S11, P13 with mass 1800-1950 MeV

\[\gamma p \rightarrow K^+ \Lambda \]
Summary

✓ Presented our recent analysis of $ep \rightarrow e'\pi N$ reaction.
 - Our model successfully describes the reaction at $Q^2 < 1.5 \text{ (GeV/c)}^2$.
 - N-N* e.m. transition form factors are extracted for the N* states up to the second resonance region.

✓ Examined significance of the polarization observables for construction of reaction models and extraction of N* parameters.
 - $\gamma p \rightarrow \pi N$ reaction:
 Provides useful information on constraining reaction models beyond the $\Delta(1232)$.
 - $\gamma p \rightarrow KY$ reaction:
 Will be crucial for extracting $N* \rightarrow KY$ information including recently suggested new N* states around 1.9 GeV.