New global analysis of PDFs
- exploring the large-x domain

Wally Melnitchouk

“CTEQX”

A. Accardi, E. Christy, C. Keppel,
P. Monaghan, J. Morfin, J. Owens
Outline

- Why is nucleon structure at large x important?

- Navigating the large-x landscape
 - nuclear corrections
 - target mass corrections & higher twists

- New global analysis (CTEQX)
 - first foray into high-x, low-Q^2 region
 - surprising new results for d/u

- Future experimental constraints
Why are PDFs at large x interesting?

- Most direct connection between quark distributions and nonperturbative structure of nucleon is via *valence* quarks

→ most cleanly revealed at $x > 0.4$
Why are PDFs at large x interesting?

- Most direct connection between quark distributions and nonperturbative structure of nucleon is via *valence* quarks

- Predictions for $x \to 1$ behavior of e.g. d/u ratio
 - scalar diquark dominance: $d/u = 0$
 - Feynman (1972)
 - hard gluon exchange: $d/u = 1/5$
 - Farrar, Jackson (1975)
 - SU(6) symmetry: $d/u = 1/2$
Why are PDFs at large x interesting?

- Most direct connection between quark distributions and nonperturbative structure of nucleon is via *valence* quarks.

- Predictions for $x \rightarrow 1$ behavior of *e.g.* d/u ratio:

 - Scalar diquark dominance: $d/u = 0$
 Feynman (1972)

 - Hard gluon exchange: $d/u = 1/5$
 Farrar, Jackson (1975)

 - SU(6) symmetry: $d/u = 1/2$

- Needed to understand backgrounds in searches for *new physics* beyond the Standard Model at LHC, ν oscillation experiments, astrophysics applications.

 - DGLAP evolution feeds low x, high Q^2 from high x, low Q^2.
At large x, valence u and d distributions extracted from p and n structure functions, e.g. at LO

\[\frac{1}{x} F_2^p \approx \frac{4}{9} u_v + \frac{1}{9} d_v \]

\[\frac{1}{x} F_2^n \approx \frac{4}{9} d_v + \frac{1}{9} u_v \]

- u quark distribution well determined from proton
- d quark distribution requires neutron structure function

\[\frac{d}{u} \approx \frac{4 - F_2^n / F_2^p}{4F_2^n / F_2^p - 1} \]
No FREE neutron targets
(neutron half-life ~ 12 mins)

- use deuteron as “effective” neutron target

BUT deuteron is a nucleus

- \(F_2^d \neq F_2^p + F_2^n \)

- nuclear effects (nuclear binding, Fermi motion, shadowing) obscure neutron structure information

- need to correct for “nuclear EMC effect”

large uncertainty beyond \(x \sim 0.5 \)

Tuesday, October 6, 2009
Large-\(x\) landscape:

\textit{nuclear effects in the deuteron}
nuclear “impulse approximation”

→ incoherent scattering from individual nucleons in \(d \)
 (good approx. at \(x \gg 0 \))

\[
F_2^d(x, Q^2) = \int \frac{dy}{x} f(y, \gamma) F_2^N(x/y, Q^2) + \delta^{(\text{off})} F_2^d
\]

nucleon momentum distribution in \(d \)
(“smearing function”)

\[
y = \frac{p \cdot q}{P \cdot q}
\]
light-cone momentum fraction of \(d \) carried by \(N \)

→ at finite \(Q^2 \), smearing function depends also on parameter

\[
\gamma = \frac{|q|}{q_0} = \sqrt{1 + 4M^2x^2/Q^2}
\]
N momentum distributions in d

- weak binding approximation (WBA):
 expand amplitudes to order \vec{p}^2 / M^2

$$f(y, \gamma) = \int \frac{d^3p}{(2\pi)^3} |\psi_d(p)|^2 \delta \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M} \right)$$

$$\times \frac{1}{\gamma^2} \left[1 + \frac{\gamma^2 - 1}{y^2} \left(1 + \frac{2\varepsilon}{M} + \frac{\vec{p}^2}{2M^2} (1 - 3\hat{p}_z^2) \right) \right]$$

- deuteron wave function $\psi_d(p)$
- deuteron separation energy $\varepsilon = \varepsilon_d - \frac{\vec{p}^2}{2M}$
- approaches usual nonrelativistic momentum distribution in $\gamma \rightarrow 1$ limit
N momentum distributions in d

broader with increasing γ

$\gamma \lesssim 2$

Kahn, WM, Kulagin (2009)
Off-shell correction

\[\delta^{(\text{off})} F_2^d \rightarrow \delta^{(\Psi)} F_2^d \] negative energy components of \(\psi_d \)

\[\delta^{(p^2)} F_2^d \] off-shell \(N \) structure function

\[\delta^{(\text{off})} F_2^d/F_2 \]

\[\leq 1 - 2\% \] effect

WM, Schreiber, Thomas (1994)
EMC effect in deuteron

\[Q^2 = 2 \text{ GeV}^2 \]

\[F_2^d / F_2^N \]

\[x \]

\[x \sim 0.5 \text{–} 0.6 \]

\[\sim 2\text{–}3\% \] reduction of \(d/N \) ratio at \(x \sim 0.5\text{–}0.6 \) with steep rise for \(x > 0.6 \)

\[\rightarrow \] can significantly affect neutron extraction

Frankfurt-Strikman “light-cone” model (no binding)
Large-x landscape:

target mass & higher twist corrections
Target mass corrections

- Additional corrections from *kinematical* Q^2/ν^2 effects

 \rightarrow “target mass corrections” (TMC), since $x = Q^2/2M\nu$

- Important at large x and low Q^2

 \rightarrow new “Nachtmann” scaling variable

 $\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$

 Baumik, Greenberg (1971)
 Nachtmann (1973)

 \rightarrow but *not unique* – depends on formalism
 (e.g. OPE, collinear factorization)
Operator product expansion

n-th Cornwall-Norton moment of F_2 structure function

\[M_2^n(Q^2) = \int dx \ x^{n-2} \ F_2(x, Q^2) = \sum_{j=0}^{\infty} \left(\frac{M^2}{Q^2} \right)^j \frac{(n+j)!}{j!(n-2)!} \frac{A_{n+2j}}{(n+2j)(n+2j-1)} \]

take inverse Mellin transform

\[F_2^{\text{OPE}}(x, Q^2) = \frac{x^2}{\xi^2 \gamma^3} F_2^{(0)}(\xi, Q^2) + \frac{6M^2x^3}{Q^2 \gamma^4} \int_\xi^1 du \frac{F_2^{(0)}(u, Q^2)}{u^2} \]
\[+ \frac{12M^4x^4}{Q^4 \gamma^5} \int_\xi^1 dv(v - \xi) \frac{F_2^{(0)}(v, Q^2)}{v^2} \]

where $F_2^{(0)}$ is structure function in massless (Bjorken) limit

Georgi, Politzer (1976)
Target mass corrections

TMC important for verification of quark-hadron duality

Psaker, WM et al. (2008)
Target mass corrections

TMC_{2}/F_2

Accardi, Qiu (2008)

TMC important at large x even for large Q^2
Collinear factorization

- work directly in *momentum* space at partonic level (avoids need for Mellin transform)

- expand parton momentum k around its *on-shell* and *collinear* component $(k^2 \perp \to 0)$

$$F_{T,L}(x, Q^2) = \sum_q \int_{\xi}^{\xi/x} \frac{dy}{y} \ C_{T,L}^q \left(\frac{\xi}{y}, Q^2 \right) q(y, Q^2)$$

(avoided unphysical $x > 1$ region)

- at leading order

$$F_{2\text{CF}}(x, Q^2) = \frac{x}{\xi \gamma^2} \ F_{2}^{(0)}(\xi, Q^2)$$

$$\approx \frac{\xi \gamma}{x} \ F_{2\text{OPE}}(x, Q^2)$$

Ellis, Furmanski, Petronzio (1983)

Accardi, Qiu (2008)

Kretzer, Reno (2004)
Higher twists

$\frac{1}{Q^2}$ expansion of structure function moments

$$M_n(Q^2) = \int_0^1 dx \, x^{n-2} \, F_2(x, Q^2) = A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific “twist” (= dimension – spin)

\rightarrow twist > 2 reveals long-range multi-parton correlations

\rightarrow phenomenologically important wherever TMCs important

\rightarrow parametrize x dependence by

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2} \right)$$
New global analysis ("CTEQX")
Next-to-leading order analysis of expanded set of proton and deuterium data, including large-x, low-Q^2 region

- Systematically study effects of Q^2 & W cuts
 \[\rightarrow \text{ as low as } Q \sim m_c \text{ and } W \sim 1.7 \text{ GeV} \]

- Include subleading $1/Q^2$ corrections
 \[\rightarrow \text{ target mass corrections} \]
 \[\rightarrow \text{ dynamical higher twists} \]

- Correct for nuclear effects in the deuteron
Kinematic cuts

\begin{align*}
cut0: \quad & Q^2 > 4 \text{ GeV}^2, \quad W^2 > 12.25 \text{ GeV}^2 \\
cut1: \quad & Q^2 > 3 \text{ GeV}^2, \quad W^2 > 8 \text{ GeV}^2 \\
cut2: \quad & Q^2 > 2 \text{ GeV}^2, \quad W^2 > 4 \text{ GeV}^2 \\
cut3: \quad & Q^2 > m_c^2, \quad W^2 > 3 \text{ GeV}^2
\end{align*}
Data points

<table>
<thead>
<tr>
<th></th>
<th>Total cut0</th>
<th>cut3</th>
<th>Deuterium cut0</th>
<th>cut3</th>
<th>CTEQ6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS SLAC</td>
<td>206</td>
<td>1147</td>
<td>104</td>
<td>582</td>
<td>✔</td>
</tr>
<tr>
<td>DIS NMC</td>
<td>324</td>
<td>464</td>
<td>123</td>
<td>189</td>
<td>✔</td>
</tr>
<tr>
<td>DIS BCDMS</td>
<td>590</td>
<td>605</td>
<td>251</td>
<td>254</td>
<td>✔</td>
</tr>
<tr>
<td>DIS H1</td>
<td>230</td>
<td>251</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>DIS ZEUS</td>
<td>229</td>
<td>240</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>νA DIS CCFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>νA DIS E605</td>
<td>119</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>νA DIS ES66</td>
<td>375</td>
<td>191</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>W asymmetry CDF '98 (ℓ)</td>
<td>11</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>W asymmetry CDF '05 (ℓ)</td>
<td>11</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>W asymmetry D0 '08 (ℓ)</td>
<td>10</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>W asymmetry D0 '08 (e)</td>
<td>12</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>W asymmetry CDF '09 (W)</td>
<td>13</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>jet CDF</td>
<td>33</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>jet D0</td>
<td>90</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>γ+jet D0</td>
<td>56</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2408</td>
<td>3709</td>
<td>569</td>
<td>1161</td>
<td></td>
</tr>
</tbody>
</table>

* only L−T separated data used at low Q^2
new data sets in CTEQX fit

factor 2 increase from cut0 → cut3
Effect of new data on “standard” fits

- Extrapolation

- “cut0” (as in CTEQ6.1)

- No nuclear or $1/Q^2$ corrections

- No significant effect in measured region

- u suppression at large x due to E866 DY data
Effect on “reference” fit from $1/Q^2$ and nuclear corrections

- cut0 limits significant change to u quark
- profound effect on d quark from nuclear corrections in deuteron
- must include deuteron corrections for $x > 0.5$ even for standard cuts
Effect of Q^2 & W cuts

- Systematically reduce Q^2 and W cuts
- Fit includes TMCs (CF), HT term, nuclear corrections (WBA)

d/d_{ref} for $Q^2=10$ GeV2

- stable with respect to cut reduction
- d quark suppressed by $\sim 50\%$ for $x > 0.5$
 (driven by nuclear corrections)
Nuclear corrections

\[\frac{d}{d_{\text{ref}}} = F_{d}^{2} + F_{n}^{2} \]

- \textit{increased} \(d \) quark for no nuclear effects (or nuclear density model)
- \textit{decreased} \(d \) quark for nuclear smearing models
- Modest increase with off-shell correction (larger EMC effect)

* assumes \(F_{2}^{d} = F_{2}^{p} + F_{2}^{n} \) as in CTEQ6.1 and most other global fits
Nuclear corrections

\[\frac{F_2^d}{F_2^N} - 1 \approx \frac{1}{4} \left(\frac{F_2^{Fe}}{F_2^d} - 1 \right) \]

*assumes EMC effect scales with density; extrapolated from Fe → deuterium

→ large differences with “free” for \(x > 0.6 \)

→ definition of density for deuteron is problematic
Effect of $1/Q^2$ corrections

1/Q^2 HT coefficient parametrized as $C(x) = c_1 x^{c_2} (1 + c_3 x)$

important interplay between TMCs and higher twist: HT alone cannot accommodate full Q^2 dependence

stable leading twist when both TMCs and HTs included
Consistency check of fit with F_2^d/F_2^p ratio (not used in fit)

fits without nuclear smearing in deuteron overestimate data at intermediate x, do not reproduce rise at large x
Final PDF results

- $u/u_{\text{CTEQ6.1}}$
- $d/d_{\text{CTEQ6.1}}$

$Q^2 = 10 \text{ GeV}^2$

\rightarrow full fits favors smaller d/u ratio
Final PDF results

- full fits favors smaller d/u ratio
- dominance of non-pQCD physics (cf. hard g exchange)
Final PDF results

→ full fits favors smaller d/u ratio

→ dominance of non-pQCD physics (cf. counting rules)

→ significantly reduced errors with weaker cuts
“Cleaner” methods of determining d/u

- $e \ d \rightarrow e \ p_{\text{spec}} \ X^*$
 - semi-inclusive DIS from d
 - \rightarrow tag “spectator” protons

- $e \ ^3\text{He}(^3\text{H}) \rightarrow e \ X^*$
 - ^3He-tritium mirror nuclei

- $e \ p \rightarrow e \ \pi^\pm \ X^*$
 - semi-inclusive DIS as flavor tag

- $e^\mp \ p \rightarrow \nu(\bar{\nu})X$
 - weak current as flavor probe

- $\nu(\bar{\nu}) \ p \rightarrow l^\mp \ X$

- $p \ p(\bar{p}) \rightarrow W^\pm \ X$

- $\bar{e}_L(\bar{e}_R) \ p \rightarrow e \ X^*$

*planned for JLab at 12 GeV
Summary & Outlook

- New global PDF analysis (CTEQX) including high-x, low-Q^2 data

- *Stable leading twist* PDFs obtained with TMC, higher twist and nuclear corrections (valid to $x \sim 0.8$)
 - opens door to study of nucleon structure over large kinematic domain

- Results suggest smaller d/u ratio for $x > 0.6$

- *Future*: explore effects of
 - jet mass corrections, W^2 evolution, quark-hadron duality

- Extend analysis to *spin-dependent* PDFs ("SpinTEQ")
The End